

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	132MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	256
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 40x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BBGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc5554mzp132r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Electrical Characteristics

This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MCU.

3.1 Maximum Ratings

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	1.5 V core supply voltage ²	V _{DD}	-0.3	1.7	V
2	Flash program/erase voltage	V _{PP}	-0.3	6.5	V
4	Flash read voltage	V _{FLASH}	-0.3	4.6	V
5	SRAM standby voltage	V _{STBY}	-0.3	1.7	V
6	Clock synthesizer voltage	V _{DDSYN}	-0.3	4.6	V
7	3.3 V I/O buffer voltage	V _{DD33}	-0.3	4.6	V
8	Voltage regulator control input voltage	V _{RC33}	-0.3	4.6	V
9	Analog supply voltage (reference to V _{SSA})	V _{DDA}	-0.3	5.5	V
10	I/O supply voltage (fast I/O pads) ³	V _{DDE}	-0.3	4.6	V
11	I/O supply voltage (slow and medium I/O pads) ³	V _{DDEH}	-0.3	6.5	V
12	DC input voltage ⁴ V _{DDEH} powered I/O pads V _{DDE} powered I/O pads	V _{IN}	-1.0 ⁵ -1.0 ⁵	6.5 ⁶ 4.6 ⁷	V
13	Analog reference high voltage (reference to V _{RL})	V _{RH}	-0.3	5.5	V
14	V_{SS} to V_{SSA} differential voltage	$V_{SS} - V_{SSA}$	-0.1	0.1	V
15	V _{DD} to V _{DDA} differential voltage	V _{DD} – V _{DDA}	-V _{DDA}	V _{DD}	V
16	V _{REF} differential voltage	V _{RH} – V _{RL}	-0.3	5.5	V
17	V _{RH} to V _{DDA} differential voltage	V _{RH} – V _{DDA}	-5.5	5.5	V
18	V _{RL} to V _{SSA} differential voltage	V _{RL} – V _{SSA}	-0.3	0.3	V
19	V _{DDEH} to V _{DDA} differential voltage	V _{DDEH} – V _{DDA}	-V _{DDA}	V _{DDEH}	V
20	V_{DDF} to V_{DD} differential voltage	$V_{DDF} - V_{DD}$	-0.3	0.3	V
21	V_{RC33} to V_{DDSYN} differential voltage spec has been moved to	Table 9 DC Electric	al Specificatio	ons, Spec 43a.	
22	V_{SSSYN} to V_{SS} differential voltage	$V_{\rm SSSYN} - V_{\rm SS}$	-0.1	0.1	V
23	V_{RCVSS} to V_{SS} differential voltage	V _{RCVSS} – V _{SS}	-0.1	0.1	V
24	Maximum DC digital input current ⁸ (per pin, applies to all digital pins) ⁴	I _{MAXD}	-2	2	mA
25	Maximum DC analog input current ⁹ (per pin, applies to all analog pins)	I _{MAXA}	-3	3	mA
26	Maximum operating temperature range ¹⁰ Die junction temperature	Т _Ј	ΤL	150.0	°C
27	Storage temperature range	T _{STG}	-55.0	150.0	°C

Table 2. Absolute Maximum Ratings ¹

3.2.1 General Notes for Specifications at Maximum Junction Temperature

An estimation of the device junction temperature, T_{1} , can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the:

- Construction of the application board (number of planes)
- Effective size of the board which cools the component
- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm^2

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.

References:

Semiconductor Equipment and Materials International 3081 Zanker Rd. San Jose, CA., 95134 (408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the web at http://www.jedec.org.

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, "Thermal Modeling of a PBGA for Air-Cooled Applications," Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

3.3 Package

The MPC5554 is available in packaged form. Read the package options in Section 2, "Ordering Information." Refer to Section 4, "Mechanicals," for pinouts and package drawings.

3.4 EMI (Electromagnetic Interference) Characteristics

Spec	Characteristic	Minimum	Typical	Maximum	Unit
1	Scan range	0.15	—	1000	MHz
2	Operating frequency	_	—	f _{MAX}	MHz
3	V _{DD} operating voltages		1.5	—	V
4	V_{DDSYN} , V_{RC33} , V_{DD33} , V_{FLASH} , V_{DDE} operating voltages	_	3.3	—	V
5	V _{PP} V _{DDEH} , V _{DDA} operating voltages	_	5.0	—	V
6	Maximum amplitude	_	—	14 ² 32 ³	dBuV
7	Operating temperature		—	25	°C

Table 4. EMI Testing Specifications ¹

¹ EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. Qualification testing was performed on the MPC5554 and applied to the MPC5500 family as generic EMI performance data.

² Measured with the single-chip EMI program.

³ Measured with the expanded EMI program.

3.5 ESD (Electromagnetic Static Discharge) Characteristics

Characteristic	Symbol	Value	Unit
ESD for human body model (HBM)		2000	V
	R1	1500	Ω
	С	100	pF
ESD for field induced charge model (EDCM)		500 (all pins)	
		750 (corner pins)	V
Number of pulses per pin:			
Positive pulses (HBM)	_	1	—
Negative pulses (HBM)	_	1	—
Interval of pulses	_	1	second

Table 5. ESD Ratings ^{1, 2}

¹ All ESD testing conforms to CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² Device failure is defined as: 'If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.

3.6 Voltage Regulator Controller (V_{RC}) and Power-On Reset (POR) Electrical Specifications

The following table lists the V_{RC} and POR electrical specifications:

Spec	Characteristic		Symbol	Min.	Max.	Units
1	1.5 V (V _{DD}) POR ¹	Negated (ramp up) Asserted (ramp down)	V _{POR15}	1.1 1.1	1.35 1.35	V
2	3.3 V (V _{DDSYN}) POR ¹	Asserted (ramp up) Negated (ramp up) Asserted (ramp down) Negated (ramp down)		0.0 2.0 2.0 0.0	0.30 2.85 2.85 0.30	V
3	RESET pin supply (V _{DDEH6}) POR ^{1, 2}	Negated (ramp up) Asserted (ramp down)	ated (ramp up) V _{POR5}		2.85 2.85	V
4		Before V _{RC} allows the pass transistor to start turning on	V _{TRANS_START}	1.0	2.0	V
5	V _{RC33} voltage	When V _{RC} allows the pass transistor to completely turn on ^{3, 4}	V _{TRANS_ON}	2.0	2.85	V
6		When the voltage is greater than the voltage at which the V_{RC} keeps the 1.5 V supply in regulation $^{5, 6}$	V _{VRC33REG}	3.0	_	V
		$-55^{\circ} C^{7}$		11.0	—	mA
	Current can be sourced	-40 ^o C		11.0	_	mA
7	by V _{RCCTL} at Tj:	25° C	I _{VRCCTL} ⁸	9.0	—	mA
		150° C		7.5	—	mA

Table 6. V_{RC} and POR Electrical Specifications

Furthermore, when all of the PORs negate, the system clock starts to toggle, adding another large increase of the current consumed by V_{RC33} . If V_{RC33} lags V_{DDSYN} by more than 100 mV, the increase in current consumed can drop V_{DD} low enough to assert the 1.5 V POR again. Oscillations are possible when the 1.5 V POR asserts and stops the system clock, causing the voltage on V_{DD} to rise until the 1.5 V POR negates again. All oscillations stop when V_{RC33} is powered sufficiently.

When powering down, V_{RC33} and V_{DDSYN} have no delta requirement to each other, because the bypass capacitors internal and external to the device are already charged. When not powering up or down, no delta between V_{RC33} and V_{DDSYN} is required for the V_{RC} to operate within specification.

There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current spikes, and so on. Therefore, the state of the I/O pins during power up and power down varies depending on which supplies are powered.

Table 7 gives the pin state for the sequence cases for all pins with pad type pad_fc (fast type).

V _{DDE}	V _{DD33}	V _{DD}	POR	Pin Status for Fast Pad Output Driver pad_fc (fast)
Low	—	_	Asserted	Low
V _{DDE}	Low	Low	Asserted	High
V _{DDE}	Low	V_{DD}	Asserted	High
V _{DDE}	V _{DD33}	Low	Asserted	High impedance (Hi-Z)
V _{DDE}	V _{DD33}	V _{DD}	Asserted	Hi-Z
V _{DDE}	V _{DD33}	V _{DD}	Negated	Functional

Table 7. Pin Status for Fast Pads During the Power Sequence

Table 8 gives the pin state for the sequence cases for all pins with pad type pad_mh (medium type) and pad_sh (slow type).

Table 8. Pin Status for Medium and Slow Pads During the Power Sequence

V _{DDEH}	V _{DD}	POR	Pin Status for Medium and Slow Pad Output Driver pad_mh (medium) pad_sh (slow)
Low		Asserted	Low
V _{DDEH}	Low	Asserted	High impedance (Hi-Z)
V _{DDEH}	V _{DD}	Asserted	Hi-Z
V _{DDEH}	V _{DD}	Negated	Functional

The values in Table 7 and Table 8 do not include the effect of the weak-pull devices on the output pins during power up.

Before exiting the internal POR state, the voltage on the pins go to a high-impedance state until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak-pull devices

(up or down) are enabled as defined in the device reference manual. If V_{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V_{DDE} and V_{DDEH} .

Spec	Characteristic	Symbol	Min	Max.	Unit
30	Operating current V _{DDE} supplies: ¹²				
	V _{DDEH1} V _{DDE2} V _{DDE3} V _{DDEH4} V _{DDE5} V _{DDE46} V _{DDE7} V _{DDE48} V _{DDE49}	I _{DD1} I _{DD2} I _{DD3} I _{DD4} I _{DD5} I _{DD6} I _{DD7} I _{DD8} I _{DD9}		Refer to footnote ¹²	mA mA mA mA mA mA mA
31	Fast I/O weak pullup current ¹³ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V		10 20 20	110 130 170	μΑ μΑ μΑ
	Fast I/O weak pulldown current ¹³ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V	ACT_F	10 20 20	100 130 170	μΑ μΑ μΑ
32	Slow and medium I/O weak pullup/down current ¹³ 3.0–3.6 V 4.5–5.5 V	I _{ACT_S}	10 20	150 170	μΑ μΑ
33	I/O input leakage current ¹⁴	I _{INACT_D}	-2.5	2.5	μA
34	DC injection current (per pin)	I _{IC}	-2.0	2.0	mA
35	Analog input current, channel off ¹⁵	I _{INACT_A}	-150	150	nA
35a	Analog input current, shared analog / digital pins (AN[12], AN[13], AN[14], AN[15])	I _{INACT_AD}	-2.5	2.5	μA
36	V_{SS} to V_{SSA} differential voltage ¹⁶	$V_{SS} - V_{SSA}$	-100	100	mV
37	Analog reference low voltage	V _{RL}	V _{SSA} – 0.1	V _{SSA} + 0.1	V
38	V _{RL} differential voltage	V _{RL} – V _{SSA}	-100	100	mV
39	Analog reference high voltage	V _{RH}	V _{DDA} – 0.1	V _{DDA} + 0.1	V
40	V _{REF} differential voltage	V _{RH} – V _{RL}	4.5	5.25	V
41	V_{SSSYN} to V_{SS} differential voltage	$V_{\rm SSSYN} - V_{\rm SS}$	-50	50	mV
42	V_{RCVSS} to V_{SS} differential voltage	$V_{\rm RCVSS} - V_{\rm SS}$	-50	50	mV
43	V_{DDF} to V_{DD} differential voltage	$V_{DDF} - V_{DD}$	-100	100	mV
43a	V _{RC33} to V _{DDSYN} differential voltage	V _{RC33} – V _{DDSYN}	-0.1	0.1 ¹⁷	V
44	Analog input differential signal range (with common mode 2.5 V)	V _{IDIFF}	-2.5	2.5	V
45	Operating temperature range, ambient (packaged)	$T_A = (T_L \text{ to } T_H)$	ΤL	Т _Н	°C
46	Slew rate on power-supply pins	—		50	V/ms

Table 9. DC Electrical Specifications ($T_A = T_L \text{ to } T_H$) (continued)

¹ V_{DDE2} and V_{DDE3} are limited to 2.25–3.6 V only if SIU_ECCR[EBTS] = 0; V_{DDE2} and V_{DDE3} have a range of 1.6–3.6 V if SIU_ECCR[EBTS] = 1.

3.10 eQADC Electrical Characteristics

Spec	Characteristic	Symbol	Minimum	Maximum	Unit
1	ADC clock (ADCLK) frequency ¹	F _{ADCLK}	1	12	MHz
2	Conversion cycles Differential Single ended	CC	13 + 2 (15) 14 + 2 (16)	13 + 128 (141) 14 + 128 (142)	ADCLK cycles
3	Stop mode recovery time ²	T _{SR}	10	—	μs
4	Resolution ³	—	1.25	—	mV
5	INL: 6 MHz ADC clock	INL6	-4	4	Counts ³
6	INL: 12 MHz ADC clock	INL12	-8	8	Counts
7	DNL: 6 MHz ADC clock	DNL6	-3 ⁴	3 ⁴	Counts
8	DNL: 12 MHz ADC clock	DNL12	6 ⁴	6 ⁴	Counts
9	Offset error with calibration	OFFWC	-4 ⁵	4 ⁵	Counts
10	Full-scale gain error with calibration	GAINWC	-8 ⁶	8 ⁶	Counts
11	Disruptive input injection current ^{7, 8, 9, 10}	I _{INJ}	-1	1	mA
12	Incremental error due to injection current. All channels are 10 k Ω < Rs <100 k Ω Channel under test has Rs = 10 k Ω , $I_{INJ} = I_{INJMAX}$, I_{INJMIN}	E _{INJ}	-4	4	Counts
13	Total unadjusted error (TUE) for single ended conversions with calibration ^{11, 12, 13, 14, 15}	TUE	-4	4	Counts

Table 13. eQADC Conversion Specifications ($T_A = T_L$ to T_H)

Conversion characteristics vary with F_{ADCLK} rate. Reduced conversion accuracy occurs at maximum F_{ADCLK} rate. The maximum value is based on 800 KS/s and the minimum value is based on 20 MHz oscillator clock frequency divided by a maximum 16 factor.

- ² Stop mode recovery time begins when the ADC control register enable bits are set until the ADC is ready to perform conversions.
- ³ At $V_{RH} V_{RL} = 5.12$ V, one least significant bit (LSB) = 1.25, mV = one count.
- ⁴ Guaranteed 10-bit mono tonicity.
- ⁵ The absolute value of the offset error without calibration \leq 100 counts.
- ⁶ The absolute value of the full scale gain error without calibration \leq 120 counts.
- ⁷ Below disruptive current conditions, the channel being stressed has conversion values of: 0x3FF for analog inputs greater than V_{RH} , and 0x000 for values less than V_{RL} . This assumes that $V_{RH} \le V_{DDA}$ and $V_{RL} \ge V_{SSA}$ due to the presence of the sample amplifier. Other channels are not affected by non-disruptive conditions.
- ⁸ Exceeding the limit can cause a conversion error on both stressed and unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage.
- ⁹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using $V_{POSCLAMP} = V_{DDA} + 0.5$ V and $V_{NEGCLAMP} = -0.3$ V, then use the larger of the calculated values.
- ¹⁰ This condition applies to two adjacent pads on the internal pad.
- ¹¹ The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to canceling errors.
- ¹² TUE does not apply to differential conversions.
- ¹³ Measured at 6 MHz ADC clock. TUE with a 12 MHz ADC clock is: -16 counts < TUE < 16 counts.
- ¹⁴ TUE includes all internal device errors such as internal reference variation (75% Ref, 25% Ref).
- ¹⁵ Depending on the input impedance, the analog input leakage current (Table 9. DC Electrical Specifications, spec 35a) can affect the actual TUE measured on analog channels AN[12], AN[13], AN[14], AN[15].

Spec	Pad	SRC / DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{4, 5} (ns)	Load Drive (pF)
		00		2.7	10
2	East	01	3.1	2.5	20
3	Fasi	10		2.4	30
		11		2.3	50
4	Pullup/down (3.6 V max)	—	—	7500	50
5	Pullup/down (5.5 V max)	—	—	9000	50

Table 17. Pad AC Specifications ($V_{DDEH} = 5.0 \text{ V}$, $V_{DDE} = 1.8 \text{ V}$)¹ (continued)

¹ These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at:

 V_{DD} = 1.35–1.65 V; V_{DDE} = 1.62–1.98 V; V_{DDEH} = 4.5–5.25 V; V_{DD33} and V_{DDSYN} = 3.0–3.6 V; and T_A = T_L to T_H .

² This parameter is supplied for reference and is guaranteed by design (not tested).

³ The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.

⁴ The output delay and rise and fall are measured to 20% or 80% of the respective signal.

⁵ This parameter is guaranteed by characterization rather than 100% tested.

Spec	Pad	SRC/DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{3, 5} (ns)	Load Drive (pF)
-			39	23	50
			120	87	200
1	Slow high voltage (SH)	01	101	52	50
1	Slow high voltage (Sh)	01	188	111	200
		00	507	248	50
		00	597	312	200
		11	23	12	50
	Medium high voltage (MH)		64	44	200
2		01	50	22	50
2			90	50	200
		00	261	123	50
		00	305	156	200
		00		2.4	10
2	East	01		2.2	20
3	Fasi	10	3.2	2.1	30
		11]	2.1	50
4	Pullup/down (3.6 V max)	—	—	7500	50
5	Pullup/down (5.5 V max)	_	_	9500	50

Table 18. Derated Pad AC Specifications ($V_{DDEH} = 3.3 \text{ V}, V_{DDE} = 3.3 \text{ V}$)¹

¹ These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at: $V_{DD} = 1.35-1.65 \text{ V}; V_{DDE} = 3.0-3.6 \text{ V}; V_{DDEH} = 3.0-3.6 \text{ V}; V_{DD33} \text{ and } V_{DDSYN} = 3.0-3.6 \text{ V}; \text{ and } T_A = T_L \text{ to } T_H.$

² This parameter is supplied for reference and guaranteed by design (not tested).

- 3 The output delay, and the rise and fall, are calculated to 20% or 80% of the respective signal.
- ⁴ The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.
- ⁵ This parameter is guaranteed by characterization rather than 100% tested.

Figure 4. Pad Output Delay

3.13 AC Timing

3.13.1 Reset and Configuration Pin Timing

Table 19. Reset and Configuration Pin Timing ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	RESET pulse width	t _{RPW}	10	—	t _{CYC}
2	RESET glitch detect pulse width	t _{GPW}	2	—	t _{CYC}
3	PLLCFG, BOOTCFG, WKPCFG, RSTCFG setup time to RSTOUT valid	t _{RCSU}	10	—	t _{CYC}
4	PLLCFG, BOOTCFG, WKPCFG, RSTCFG hold time from RSTOUT valid	t _{RCH}	0	_	t _{CYC}

¹ Reset timing specified at: $V_{DDEH} = 3.0-5.25$ V and $T_A = T_L$ to T_H .

Electrical Characteristics

3.13.2 IEEE 1149.1 Interface Timing

Table 20. JTAG Pin AC Electrical Characteristics ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	TCK cycle time	t _{JCYC}	100	—	ns
2	TCK clock pulse width (measured at $V_{DDE} \div 2$)	t _{JDC}	40	60	ns
3	TCK rise and fall times (40% to 70%)	t _{TCKRISE}	_	3	ns
4	TMS, TDI data setup time	t _{TMSS} , t _{TDIS}	5	—	ns
5	TMS, TDI data hold time	t _{TMSH} , t _{TDIH}	25	—	ns
6	TCK low to TDO data valid	t _{TDOV}	—	20	ns
7	TCK low to TDO data invalid	t _{TDOI}	0	—	ns
8	TCK low to TDO high impedance	t _{TDOHZ}	—	20	ns
9	JCOMP assertion time	t _{JCMPPW}	100	—	ns
10	JCOMP setup time to TCK low	t _{JCMPS}	40	—	ns
11	TCK falling-edge to output valid	t _{BSDV}	—	50	ns
12	TCK falling-edge to output valid out of high impedance	t _{BSDVZ}	_	50	ns
13	TCK falling-edge to output high impedance (Hi-Z)	t _{BSDHZ}	—	50	ns
14	Boundary scan input valid to TCK rising-edge	t _{BSDST}	50	—	ns
15	TCK rising-edge to boundary scan input invalid	t _{BSDHT}	50	—	ns

¹ These specifications apply to JTAG boundary scan only. JTAG timing specified at: $V_{DDE} = 3.0-3.6$ V and $T_A = T_L$ to T_H . Refer to Table 21 for Nexus specifications.

3.13.4 External Bus Interface (EBI) Timing

Table 22 lists the timing information for the external bus interface (EBI).

	Characteristic			Extern	al Bus F					
Spec	and	Symbol	40 I	MHz	56 I	MHz	66 I	MHz	Unit	Notes
	Description		Min. Max.		Min.	Max.	Min.	Min. Max.		
1	CLKOUT period	т _с	24.4	_	17.5	_	15.2	_	ns	Signals are measured at 50% V _{DDE} .
2	CLKOUT duty cycle	t _{CDC}	45%	55%	45%	55%	45%	55%	Т _С	
3	CLKOUT rise time	t _{CRT}		_4		4	—	4	ns	
4	CLKOUT fall time	t _{CFT}	_	_4	_	4	—	4	ns	
5	CLKOUT positive edge to output signal <i>invalid</i> or Hi-Z (hold time) External bus interface BG ⁵ BR ⁶ BB CS[0:3] ADDR[8:31] DATA[0:31] ⁷ BDIP OE RD_WR TA TEA ⁸ TS TSIZ[0:1] WE/BE[0:3] ⁹	t _{сон}	1.0 ¹⁰ 1.5		1.0 ¹⁰ 1.5		1.0 ¹⁰ 1.5	_	ns	EBTS = 0 EBTS = 1 Hold time selectable via SIU_ECCR [EBTS] bit.
6	CLKOUT positive edge to output signal <i>valid</i> (output delay) External bus interface BG ⁵ BR ⁶ BB CS[0:3] ADDR[8:31] DATA[0:31] ⁷ BDIP OE RD_WR TA TEA ⁸ TS TSIZ[0:1] WE/BE[0:3] ⁹	tcov		10.010		7.5 ¹⁰ 8.5		6.0 ¹⁰ 7.0	ns	EBTS = 0 EBTS = 1 Output valid time selectable via SIU_ECCR [EBTS] bit.

Table 22. Bus Operation Timing¹

3.13.7 eMIOS Timing

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	eMIOS input pulse width	t _{MIPW}	4	-	t _{CYC}
2	eMIOS output pulse width	t _{MOPW}	1 ²	_	t _{CYC}

Table 25. eMIOS Timing ¹

¹ eMIOS timing specified at: $V_{DDEH} = 3.0-5.25$ V and $T_A = T_L$ to T_H .

² This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control field (SRC) in the pad configuration register (PCR).

Figure 17. eMIOS Timing

3.13.8 DSPI Timing

Table 26. DSPI Timing^{1, 2}

Spec	Characteristic	Symbol	80	MHz	112	MHz	132	Unit	
Spec			Min.	Max.	Min.	Max.	Min.	Max.	onit
1	SCK cycle time ^{3, 4}	t _{SCK}	24.4 ns	2.9 ms	17.5 ns	2.1 ms	15.2 ns	1.7 ms	_
2	PCS to SCK delay ⁵	t _{CSC}	23	—	15	—	13	—	ns
3	After SCK delay ⁶	t _{ASC}	22	—	14	—	12	—	ns
4	SCK duty cycle	t _{SDC}	(t _{SCK} ÷ 2) – 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) - 2 ns	(t _{SCK} ÷ 2) + 2 ns	(t _{SCK} ÷ 2) - 2 ns	(t _{SCK} ÷ 2) + 2 ns	ns
5	Slave access time (SS active to SOUT driven)	t _A	_	25	—	25	_	25	ns
6	Slave SOUT disable time (SS inactive to SOUT Hi-Z, or invalid)	t _{DIS}	_	25	_	25	_	25	ns
7	PCS <i>x</i> to PCSS time	t _{PCSC}	4	—	4	_	4	_	ns
8	PCSS to PCSx time	t _{PASC}	5	—	5	_	5	_	ns

Figure 18. DSPI Classic SPI Timing—Master, CPHA = 0

Figure 22. DSPI Modified Transfer Format Timing—Master, CPHA = 0

Figure 23. DSPI Modified Transfer Format Timing—Master, CPHA = 1

Figure 24. DSPI Modified Transfer Format Timing—Slave, CPHA = 0

Figure 25. DSPI Modified Transfer Format Timing—Slave, CPHA = 1

Figure 26. DSPI PCS Strobe (PCSS) Timing

Mechanicals

	1	2	3	4	5	6	7	8	9	10	11	12	13
А	VSS	VSTBY	AN37	AN11	VDDA1	AN16	AN1	AN5	VRH	AN23	AN27	AN28	AN35
В	VDD	VSS	AN36	AN39	AN19	AN20	AN0	AN4	REF BYPC	AN22	AN26	AN31	AN32
С	VDD33	VDD	VSS	AN8	AN17	VSSA1	AN21	AN3	AN7	VRL	AN25	AN30	AN33
D	ETPUA 30	ETPUA 31	VDD	VSS	AN38	AN9	AN10	AN18	AN2	AN6	AN24	AN29	AN34
Е	ETPUA 28	ETPUA 29	VDDEH 1	VDD									
F	ETPUA 24	ETPUA 27	ETPUA 26	VDDEH 1									
G	ETPUA 23	ETPUA 22	ETPUA 25	ETPUA 21									
н	ETPUA 20	ETPUA 19	ETPUA 18	ETPUA 17									
J	ETPUA 16	ETPUA 15	ETPUA 14	ETPUA 13									
к	ETPUA 12	ETPUA 11	ETPUA 10	ETPUA 9						VSS	VSS	VSS	VSS
L	ETPUA 8	ETPUA 7	ETPUA 6	ETPUA 5						VSS	VSS	VSS	VSS
М	ETPUA 4	ETPUA 3	ETPUA 2	ETPUA 1						VDDE2	VDDE2	VSS	VSS
Ν	BDIP	TEA	ETPUA 0	TCRCLK A						VDDE2	VDDE2	VSS	VSS
Ρ	CS3	CS2	CS1	CS0						VDDE2	VDDE2	VSS	VSS
R	WE3	WE2	WE1	WE0						VDDE2	VDDE2	VSS	VSS
т	VDDE2	TSIZ0	RD_WR	VDDE2						VDDE2	VSS	VDDE2	VDDE2
U	ADDR 16	TSIZ1	TA	VDD33						VSS	VDDE2	VDDE2	VDDE2
V	ADDR 18	ADDR 17	TS	ADDR 8									
W	ADDR 20	ADDR 19	ADDR 9	ADDR 10									
Y	ADDR 22	ADDR 21	ADDR 11	VDDE2									
AA	ADDR 24	ADDR 23	ADDR 13	ADDR 12									
AB	VDDE2	ADDR 25	ADDR 15	ADDR 14									
AC	ADDR 26	ADDR 27	ADDR 31	VSS	VDD	DATA 26	DATA 28	VDDE2	DATA 30	DATA 31	DATA 8	DATA 10	VDDE2
AD	ADDR 28	ADDR 30	VSS	VDD	DATA 24	DATA 25	DATA 27	DATA 29	VDD33	GPIO 207	DATA 9	DATA 11	DATA 13
AE	ADDR 29	VSS	VDD	DATA 17	DATA 19	DATA 21	DATA 23	DATA 0	DATA 2	DATA 4	DATA 6	OE	BR
AF	VSS	VDD	DATA 16	DATA 18	VDDE2	DATA 20	DATA 22	GPIO 206	DATA 1	DATA 3	VDDE2	DATA 5	DATA 7
	1	2 Fier	3	4 MDOG	5	6 6667 4	7 16 Dec	8 skogo j	9 off 6:	10 do ();;;-	11	12 2)	13
		1 191	ui C 23.			5007 4	IV Fat	naye	Lent Of			<u>~</u> j	

Mechanicals

14	15	16	17	18	19	20	21	22	23	24	25	26	
VSSA0	AN15	ETRIG 1	ETPUB 18	ETPUB 20	ETPUB 24	ETPUB 27	GPIO 205	MDO11	MDO8	VDD	VDD33	VSS	А
VSSA0	AN14	ETRIG 0	ETPUB 21	ETPUB 25	ETPUB 28	ETPUB 31	MDO10	MDO7	MDO4	MDO0	VSS	VDDE7	В
VDDA0	AN13	ETPUB 19	ETPUB 22	ETPUB 26	ETPUB 30	MDO9	MDO6	MDO3	MDO1	VSS	VDDE7	VDD	С
VDDEH 9	AN12	ETPUB 16	ETPUB 17	ETPUB 23	ETPUB 29	MDO5	MDO2	VDDEH 8	VSS	VDDE7	ТСК	TDI	D
									VDDE7	TMS	TDO	TEST	Е
									MSEO0	JCOMP	EVTI	EVTO	F
									MSEO1	МСКО	GPIO 204	ETPUB 15	G
									RDY	GPIO 203	ETPUB 14	ETPUB 13	Н
									VDDEH 6	ETPUB 12	ETPUB 11	ETPUB 9	J
VDDE7	VDDE7	VDDE7	VDDE7						ETPUB 10	ETPUB 8	ETPUB 7	ETPUB 5	к
VSS	VSS	VSS	VDDE7						ETPUB 6	ETPUB 4	ETPUB 3	ETPUB 2	L
VSS	VSS	VSS	VDDE7						TCRCLK B	ETPUB 1	ETPUB 0	SINB	М
VSS	VSS	VSS	VDDE7						SOUTB	PCSB3	PCSB0	PCSB1	Ν
VSS	VSS	VSS	VSS						PCSA3	PCSB4	SCKB	PCSB2	Ρ
VSS	VSS	VSS	VSS						PCSB5	SOUTA	SINA	SCKA	R
VDDE2	VDDE2	VSS	VSS						PCSA1	PCSA0	PCSA2	VPP	т
VDDE2	VDDE2	VSS	VSS						PCSA4	TXDA	PCSA5	VFLASH	U
									CNTXC	RXDA	RSTOUT	RST CFG	V
									RXDB	CNRXC	TXDB	RESET	W
I	Note:	NC	No co	nnect.	AC22 8	AD23	reserve	ed	WKP CFG	BOOT CFG1	VRC VSS	VSS SYN	Y
									VDDEH 6	PLL CFG1	BOOT CFG0	EXTAL	AA
									VDD	VRC CTL	PLL CFG0	XTAL	AB
DATA 12	DATA 14	EMIOS 2	EMIOS 8	EMIOS 12	EMIOS 21	VDDEH 4	VDDE5	NC	VSS	VDD	VRC33	VDD SYN	AC
DATA 15	EMIOS 3	EMIOS 6	EMIOS 10	EMIOS 15	EMIOS 17	EMIOS 22	CNTXA	VDDE5	NC	VSS	VDD	VDD33	AD
BG	EMIOS 1	EMIOS 5	EMIOS 9	EMIOS 13	EMIOS 16	EMIOS 19	EMIOS 23	CNRXA	VDDE5	CLKOUT	VSS	VDD	AE
BB	EMIOS 0	EMIOS 4	EMIOS 7	EMIOS 11	EMIOS 14	EMIOS 18	EMIOS 20	CNTXB	CNRXB	VDDE5	ENG CLK	VSS	AF
14	15	16	17	18	19	20	21	22	23	24	25	26	
	F	igure (30. MP	C5553	546667	7 416 F	Packag	e Righ	t Side	(view	2 of 2)		

Figure 31. MPC5567 416 Package

Mechanicals

The package drawings of the MPC55 208-pin MAP BGA are shown below.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ARS23882W	REV: D
208 I/O MAP BG/	А, РІТСН	CASE NUMBER	2: 1159A—01	02 AUG 2005
	i iioii	STANDARD: JE	DEC MO-151 AAF-1	

Figure 32. 208-Pin Package

Revision History for the MPC5554 Data Sheet

Table 28. Changes Between Rev. 2.0 and 3.0 (continued)

Location	Description of Changes							
Table 20 (J	Table 20 (JTAG Pin AC Electrical Characteristics) JTAG Pin AC Electrical Characteristics							
	• Footnote 1: Removed V_{DD} = 1.35–1.65 V, and V_{DD33} and V_{DDSYN} = 3.0–3.6 V.							
Table 22 (E	Bus Operation Timing) Bus Operation Timing:							
	 External Bus Frequency in the table heading: Added footnote that reads: Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM; and 132 MHz parts allow for 128 MHz system clock + 2% FM. Specifications 5, 6, 7, and 8: Reordered the EBI signals within each specification. Specifications 7 and 8: Removed EBI signals BDIP, OE, TSIZ[0:1], WE/BE[0:3]. Footnote 1: Removed V_{DD} = 1.35–1.65 V, and V_{DD33} and V_{DDSYN} = 3.0–3.6 V. Footnote 8: Changed EBTS to SIU_ECCR[EBTS]. 							
Table 23 (E	External Interrupt Timing) External Interrupt Timing (IRQ Signals)							
	• Footnote 1: Removed V_{DD} = 1.35–1.65 V; changed V_{DDEH} = 3.0–5.5 V to V_{DDEH} = 3.0–5.25 V.							
Table 24 (e	TPU Timing) eTPU Timing							
	• Footnote 1: Changed $V_{DDEH} = 3.0-5.5$ V to $V_{DDEH} = 3.0-5.25$ V.							
Table 25 (e	MIOS Timing) eMIOS Timing							
	• Footnote 1: Changed $V_{DDEH} = 3.0-5.5$ V to $V_{DDEH} = 3.0-5.25$ V.							
Table 26 (D	SPI Timing') DSPI Timing:							
	 Footnote 1, changed 'V_{DDEH} = 3.0–5.5 V;' to 'V_{DDEH} = 3.0–5.25 V;' Table Title: Added footnote that reads: Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM; and 132 MHz parts allow for 128 MHz system clock + 2% FM. Spec 1: SCK cycle time; Changed to 80 MHz minimum column from 25 to 24.4; 112 MHz minimum column from 							
T. L.L. 07. (5	17.9 to 17.5; 112 MHz maximum column from 2.0 to 2.1.							
Table 27 (E	EQADC SSI Timing Characteristics) EQADC SSI Timing Characteristics							
	• Footnote 1: Changed V _{DDEH} = 3.0–5.5 V to V _{DDEH} = 3.0–5.25 V.							

THIS PAGE IS INTENTIONALLY BLANK