

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8bb10f8i-a-qsop24

1. Feature List

The EFM8BB1 highlighted features are listed below.

- · Core:
 - · Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - · 25 MHz maximum operating frequency
- · Memory:
 - Up to 8 kB flash memory, in-system re-programmable from firmware.
 - Up to 512 bytes RAM (including 256 bytes standard 8051 RAM and 256 bytes on-chip XRAM)
- Power
 - · Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 18 total multifunction I/O pins:
 - · All pins 5 V tolerant under bias
 - · Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - · Internal 80 kHz low-frequency oscillator
 - · External CMOS clock option

- · Timers/Counters and PWM:
 - 3-channel programmable counter array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 4 x 16-bit general-purpose timers
 - Independent watchdog timer, clocked from the low frequency oscillator
- · Communications and Digital Peripherals:
 - UART
 - SPI™ Master / Slave
 - SMBus™/I2C™ Master / Slave
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
- · Analog:
 - · 12-Bit Analog-to-Digital Converter (ADC)
 - 2 x Low-current analog comparators with adjustable reference
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- · Pre-loaded UART bootloader
- Temperature range -40 to 85 °C or -40 to 125 °C
- Single power supply 2.2 to 3.6 V
- QSOP24, SOIC16, and QFN20 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8BB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 2.2 to 3.6 V operation, is AEC-Q100 qualified, and is available in 20-pin QFN, 16-pin SOIC or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8BB10F8I-A-QFN20	8	512	16	15	8	7	Yes	-40 to +125 C	QFN20
EFM8BB10F8I-A-SOIC16	8	512	13	12	6	6	Yes	-40 to +125 C	SOIC16
EFM8BB10F4I-A-QFN20	4	512	16	15	8	7	Yes	-40 to +125 C	QFN20
EFM8BB10F2I-A-QFN20	2	256	16	15	8	7	Yes	-40 to +125 C	QFN20
EFM8BB10F8A-A-QFN20	8	512	16	15	8	7	Yes	-40 to +125 C	QFN20
EFM8BB10F4A-A-QFN20	4	512	16	15	8	7	Yes	-40 to +125 C	QFN20
EFM8BB10F2A-A-QFN20	2	256	16	15	8	7	Yes	-40 to +125 C	QFN20

The A-grade (i.e. EFM8BB10F8A-A-QFN20) devices receive full automotive quality production status, including AEC-Q100 qualification, registration with International Material Data System (IMDS), and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered and NDA approved user account.

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	_	_
Idle	Core haltedAll peripherals clocked and fully operationalCode resumes execution on wake event	Set IDLE bit in PCON0	Any interrupt
Stop	All internal power nets shut downPins retain stateExit on any reset source	1. Clear STOPCF bit in REG0CN 2. Set STOP bit in PCON0	Any reset source
Shutdown	All internal power nets shut downPins retain stateExit on pin or power-on reset	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P1.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P2.0 and P2.1 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P2.0.

- Up to 18 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- · Two drive strength settings for each port.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- Up to 16 direct-pin interrupt sources with shared interrupt vector (Port Match).

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

- · Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- External CMOS clock input (EXTCLK).
- Clock divider with eight settings for flexible clock scaling: Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base
- · Programmable clock divisor and clock source selection
- · Up to three independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- · Output polarity control
- · Frequency output mode
- · Capture on rising, falling or any edge
- · Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0

Timers (Timer 0, Timer 1, Timer 2, and Timer 3)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- · Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- · 13-bit counter/timer mode
- · 16-bit counter/timer mode
- · Dual 8-bit counter/timer mode (Timer 0)

Timer 2 and Timer 3 are 16-bit timers including the following features:

- Clock sources include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- · 16-bit auto-reload timer mode
- · Dual 8-bit auto-reload timer mode
- External pin capture (Timer 2)
- · LFOSC0 capture (Timer 3)

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

The Watchdog Timer has the following features:

- · Programmable timeout interval
- · Runs from the low-frequency oscillator
- · Lock-out feature to prevent any modification until a system reset

3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- · The core halts program execution.
- Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- · External port pins are forced to a known state.
- · Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- · Power-on reset
- · External reset pin
- · Comparator reset
- Software-triggered reset
- · Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- · Flash error reset

3.9 Debugging

The EFM8BB1 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

3.10 Bootloader

All devices come pre-programmed with a UART bootloader. This bootloader resides in the code security page, which is the last last page of code flash; it can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [**Application Notes**] tile.

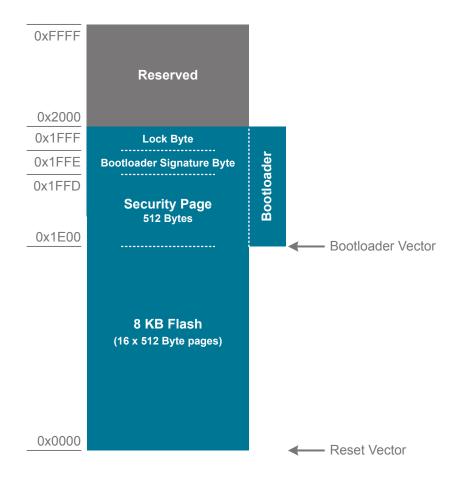


Figure 3.2. Flash Memory Map with Bootloader—8 KB Devices

Table 3.2. Summary of Pins for Bootloader Communication

Bootloader	Pins for Bootload Communication
UART	TX – P0.4
	RX – P0.5

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 12, unless stated otherwise.

4.1.1 Recommended Operating Conditions

Table 4.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V_{DD}		2.2	_	3.6	V
System Clock Frequency	f _{SYSCLK}		0	_	25	MHz
Operating Ambient Temperature	T _A	G-grade devices	-40	_	85	°C
		I-grade or A-grade devices	-40	_	125	°C

Note:

- 1. All voltages with respect to GND
- 2. GPIO levels are undefined whenever VDD is less than 1 V.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
ADC0 Always-on ⁴	I _{ADC}	800 ksps, 10-bit conversions or	_	845	1200	μA
		200 ksps, 12-bit conversions				
		Normal bias settings				
		V _{DD} = 3.0 V				
		250 ksps, 10-bit conversions or	_	425	580	μA
		62.5 ksps 12-bit conversions				
		Low power bias settings				
		V _{DD} = 3.0 V				
ADC0 Burst Mode, 10-bit single	I _{ADC}	200 ksps, V _{DD} = 3.0 V	_	370	_	μA
conversions, external reference		100 ksps, V _{DD} = 3.0 V	_	185	_	μA
		10 ksps, V _{DD} = 3.0 V	_	19	_	μA
ADC0 Burst Mode, 10-bit single	I _{ADC}	200 ksps, V _{DD} = 3.0 V	_	490	_	μA
conversions, internal reference, Low power bias settings		100 ksps, V _{DD} = 3.0 V	_	245	_	μA
		10 ksps, V _{DD} = 3.0 V	_	23	_	μA
ADC0 Burst Mode, 12-bit single	I _{ADC}	100 ksps, V _{DD} = 3.0 V	_	530	_	μA
conversions, external reference		50 ksps, V _{DD} = 3.0 V	_	265	_	μA
		10 ksps, V _{DD} = 3.0 V	_	53	_	μA
ADC0 Burst Mode, 12-bit single	I _{ADC}	100 ksps, V _{DD} = 3.0 V,	_	950	_	μA
conversions, internal reference		Normal bias				
		50 ksps, V _{DD} = 3.0 V,	_	420	_	μA
		Low power bias				
		10 ksps, V _{DD} = 3.0 V,	_	85	_	μA
		Low power bias				
Internal ADC0 Reference, Always-	I _{VREFFS}	Normal Power Mode	_	680	790	μA
on ⁵		Low Power Mode	_	160	210	μA
Temperature Sensor	I _{TSENSE}		_	75	120	μA
Comparator 0 (CMP0),	I _{CMP}	CPMD = 11	_	0.5	_	μA
Comparator 1 (CMP1)		CPMD = 10	_	3	_	μA
		CPMD = 01	_	10	_	μA
		CPMD = 00		25		μA
Voltage Supply Monitor (VMON0)	I _{VMON}		_	15	20	μA

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Write Time ¹ , ²	t _{WRITE}	One Byte,	19	20	21	μs
		F _{SYSCLK} = 24.5 MHz				
Erase Time ^{1,2}	t _{ERASE}	One Page,	5.2	5.35	5.5	ms
		F _{SYSCLK} = 24.5 MHz				
V _{DD} Voltage During Programming ³	V _{PROG}		2.2	_	3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	_	Cycles
CRC Calculation Time	t _{CRC}	One 256-Byte Block	_	11	_	μs
		SYSCLK = 24.5 MHz				

Note:

- 1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.
- 2. The internal High-Frequency Oscillator has a programmable output frequency using the HFO0CAL register, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.
- 3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).
- 4. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.5 Internal Oscillators

Table 4.5. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
High Frequency Oscillator 0 (24	I.5 MHz)					
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply Range	24	24.5	25	MHz
Power Supply Sensitivity	PSS _{HFOS}	T _A = 25 °C	_	0.5	_	%/V
Temperature Sensitivity	TS _{HFOSC0}	V _{DD} = 3.0 V	_	40	_	ppm/°C
Low Frequency Oscillator (80 k	Hz)					
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	_	0.05	_	%/V
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V	_	65	_	ppm/°C

4.1.7 ADC

Table 4.7. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Throughput Rate	f _S	12 Bit Mode	_	_	200	ksps
(High Speed Mode)		10 Bit Mode	_	_	800	ksps
Throughput Rate	f _S	12 Bit Mode	_	_	62.5	ksps
(Low Power Mode)		10 Bit Mode	_	_	250	ksps
Tracking Time	t _{TRK}	High Speed Mode	230	_	_	ns
		Low Power Mode	450	_	_	ns
Power-On Time	t _{PWR}		1.2	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode,	_	_	6.25	MHz
		Reference is 2.4 V internal				
		High Speed Mode,	_	_	12.5	MHz
		Reference is not 2.4 V internal				
		Low Power Mode	_	_	4	MHz
Conversion Time	t _{CNV}	10-Bit Conversion,		1.1		μs
		SAR Clock = 12.25 MHz,				
		System Clock = 24.5 MHz.				
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5	_	pF
		Gain = 0.5	_	2.5	_	pF
Input Pin Capacitance	C _{IN}		_	20	_	pF
Input Mux Impedance	R _{MUX}		_	550	_	Ω
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V
Input Voltage Range*	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2xV _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}		_	70	_	dB
DC Performance						
Integral Nonlinearity	INL	12 Bit Mode	_	±1	±2.3	LSB
		10 Bit Mode	<u> </u>	±0.2	±0.6	LSB
Differential Nonlinearity (Guaran-	DNL	12 Bit Mode	-1	±0.7	1.9	LSB
teed Monotonic)		10 Bit Mode	_	±0.2	±0.6	LSB
Offset Error	E _{OFF}	12 Bit Mode, VREF = 1.65 V	-3	0	3	LSB
		10 Bit Mode, VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.004	_	LSB/°C

4.1.13 SMBus

Table 4.13. SMBus Peripheral Timing Performance (Master Mode)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Standard Mode (100 kHz Class)						
I2C Operating Frequency	f _{I2C}		0	_	70 ²	kHz
SMBus Operating Frequency	f _{SMB}		40 ¹	_	70 ²	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		9.4	_	_	μs
Hold Time After (Repeated) START Condition	t _{HD:STA}		4.7	_	_	μs
Repeated START Condition Setup Time	t _{SU:STA}		9.4	_	_	μs
STOP Condition Setup Time	t _{SU:STO}		9.4	_	_	μs
Data Hold Time	t _{HD:DAT}		489 ³	_	_	ns
Data Setup Time	t _{SU:DAT}		448 ³	_	_	ns
Detect Clock Low Timeout	t _{TIMEOUT}		25	_	_	ms
Clock Low Period	t _{LOW}		4.7	_	_	μs
Clock High Period	t _{HIGH}		9.4	_	50 ⁴	μs
Fast Mode (400 kHz Class)						
I2C Operating Frequency	f _{I2C}		0	_	255 ²	kHz
SMBus Operating Frequency	f _{SMB}		40 ¹	_	255 ²	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		2.6	_	_	μs
Hold Time After (Repeated) START Condition	t _{HD:STA}		1.3	_	_	μs
Repeated START Condition Setup Time	t _{SU:STA}		2.6	_	_	μs
STOP Condition Setup Time	t _{SU:STO}		2.6	_	_	μs
Data Hold Time	t _{HD:DAT}		489 ³	_	_	ns
Data Setup Time	t _{SU:DAT}		448 ³	_	_	ns
Detect Clock Low Timeout	t _{TIMEOUT}		25	_	_	ms
Clock Low Period	t _{LOW}		1.3	_	_	μs
Clock High Period	t _{HIGH}		2.6	_	50 ⁴	μs

4.2 Thermal Conditions

Table 4.15. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance (Junction to	θ_{JA}	SOIC-16 Packages	_	70	_	°C/W
Ambient)		QFN-20 Packages	_	60	_	°C/W
		QSOP-24 Packages	_	65	_	°C/W
Thermal Resistance (Junction to Case)	θ _{JC}	QFN-20 Packages	_	28.86	_	°C/W

Note:

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.16 Absolute Maximum Ratings on page 26 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.16. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		GND-0.3	4.2	V
Voltage on I/O pins or RST	V _{IN}	V _{DD} ≥ 3.3 V	GND-0.3	5.8	V
		V < 3.3 V	GND-0.3	V _{DD} +2.5	V
Total Current Sunk into Supply Pin	I _{VDD}		_	200	mA DD
Total Current Sourced out of Ground Pin	I _{GND}		200	_	mA
Current Sourced or Sunk by Any I/O Pin or RSTb	I _{IO}		-100	100	mA
Operating Junction Temperature	TJ	T _A = -40 °C to 85 °C	-40	105	°C
		T _A = -40 °C to 125 °C (I-grade or A-grade parts only)	-40	130	°C

^{1.} Thermal resistance assumes a multi-layer PCB with any exposed pad soldered to a PCB pad.

Figure 4.5. Typical ADC0 Supply Current in Normal (always-on) Mode

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 31 shows a typical connection diagram for the power pins of the EFM8BB1 devices.

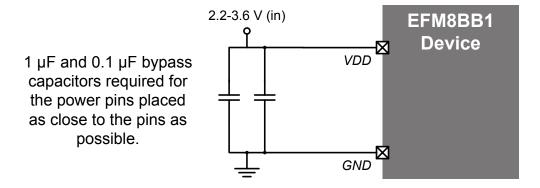


Figure 5.1. Power Connection Diagram

5.2 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in application note, "AN127: Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

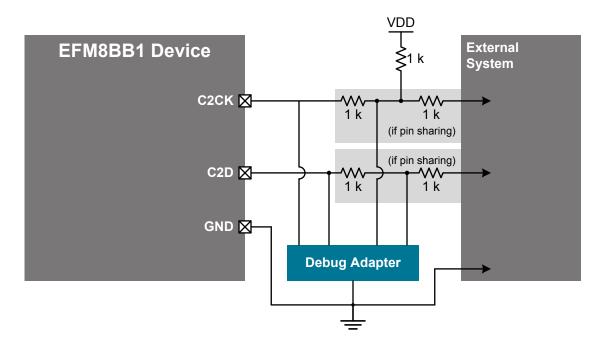


Figure 5.2. Debug Connection Diagram

5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application note, "AN203: 8-bit MCU Printed Circuit Board Design Notes", contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes).

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
17	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
18	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.4
				INT1.4	CMP0N.4
19	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CMP0P.3
				INT0.3	CMP0N.3
				INT1.3	
20	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				INT0.2	CMP0P.2
				INT1.2	CMP0N.2
Center	GND	Ground			

7.2 QSOP24 PCB Land Pattern

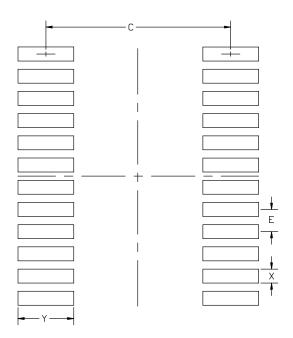


Figure 7.2. QSOP24 PCB Land Pattern Drawing

Table 7.2. QSOP24 PCB Land Pattern Dimensions

Dimension	Min	Мах	
С	5.20	5.30	
Е	0.635 BSC		
Х	0.30	0.40	
Y	1.50	1.60	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This land pattern design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μ m minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.2 QFN20 PCB Land Pattern

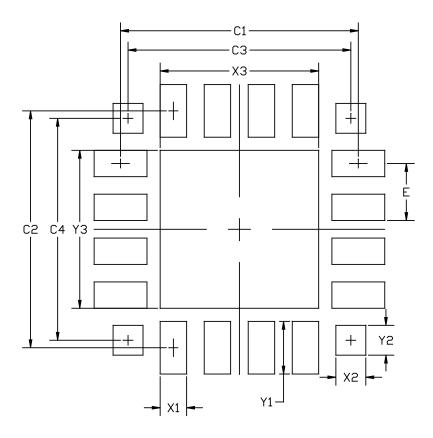
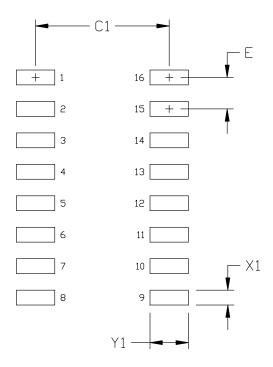


Figure 8.2. QFN20 PCB Land Pattern Drawing

Table 8.2. QFN20 PCB Land Pattern Dimensions

Dimension	Min	Max	
C1	3.10		
C2	3.10		
C3	2.50		
C4	2.50		
Е	0.50		
X1	0.30		
X2	0.25	0.35	
Х3	1.80		
Y1	0.90		
Y2	0.25	0.35	
Y3	1.80		

9.2 SOIC16 PCB Land Pattern



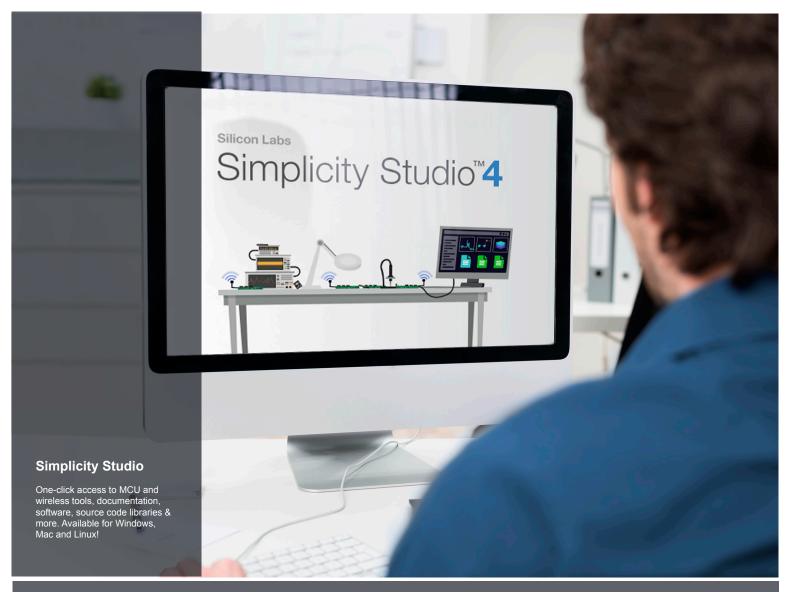

Figure 9.2. SOIC16 PCB Land Pattern Drawing

Table 9.2. SOIC16 PCB Land Pattern Dimensions

Dimension	Feature	(mm)
C1	Pad Column Spacing	5.40
E	Pad Row Pitch	1.27
X1	Pad Width	0.60
Y1	Pad Length	1.55

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).
- 3. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.

loT Portfolio www.silabs.com/loT

SW/HW www.silabs.com/simplicity

Quality www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, Silabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZRadio®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA