#### Silicon Labs - EFM8BB10F8I-A-SOIC16R Datasheet





#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | CIP-51 8051                                                             |
| Core Size                  | 8-Bit                                                                   |
| Speed                      | 25MHz                                                                   |
| Connectivity               | I <sup>2</sup> C, SMBus, SPI, UART/USART                                |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                   |
| Number of I/O              | 13                                                                      |
| Program Memory Size        | 8KB (8K x 8)                                                            |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                |                                                                         |
| RAM Size                   | 512 x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2.2V ~ 3.6V                                                             |
| Data Converters            | A/D 12x12b                                                              |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 16-SOIC (0.154", 3.90mm Width)                                          |
| Supplier Device Package    | 16-SOIC                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/efm8bb10f8i-a-soic16r |
|                            |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1. Feature List

The EFM8BB1 highlighted features are listed below.

- Core:
  - Pipelined CIP-51 Core
  - · Fully compatible with standard 8051 instruction set
  - · 70% of instructions execute in 1-2 clock cycles
  - 25 MHz maximum operating frequency
- Memory:
  - Up to 8 kB flash memory, in-system re-programmable from firmware.
  - Up to 512 bytes RAM (including 256 bytes standard 8051 RAM and 256 bytes on-chip XRAM)
- · Power:
  - Internal LDO regulator for CPU core voltage
  - · Power-on reset circuit and brownout detectors
- I/O: Up to 18 total multifunction I/O pins:
  - All pins 5 V tolerant under bias
  - Flexible peripheral crossbar for peripheral routing
  - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
  - Internal 24.5 MHz oscillator with ±2% accuracy
  - Internal 80 kHz low-frequency oscillator
  - External CMOS clock option

- Timers/Counters and PWM:
  - 3-channel programmable counter array (PCA) supporting PWM, capture/compare, and frequency output modes
  - 4 x 16-bit general-purpose timers
  - Independent watchdog timer, clocked from the low frequency oscillator
- Communications and Digital Peripherals:
  - UART
  - SPI™ Master / Slave
  - SMBus™/I2C™ Master / Slave
  - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
- Analog:
  - 12-Bit Analog-to-Digital Converter (ADC)
  - 2 x Low-current analog comparators with adjustable reference
- On-Chip, Non-Intrusive Debugging
  - Full memory and register inspection
  - · Four hardware breakpoints, single-stepping
- · Pre-loaded UART bootloader
- Temperature range -40 to 85 °C or -40 to 125 °C
- Single power supply 2.2 to 3.6 V
- · QSOP24, SOIC16, and QFN20 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8BB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 2.2 to 3.6 V operation, is AEC-Q100 qualified, and is available in 20-pin QFN, 16-pin SOIC or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

## 3. System Overview

#### 3.1 Introduction

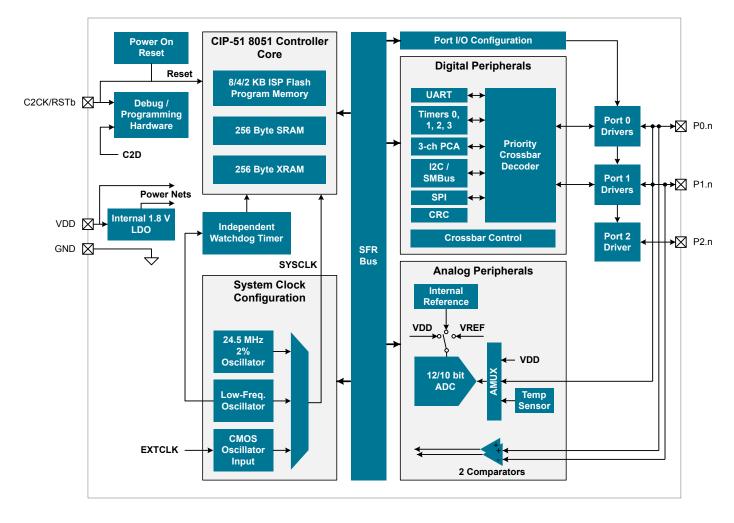



Figure 3.1. Detailed EFM8BB1 Block Diagram

This section describes the EFM8BB1 family at a high level. For more information on each module including register definitions, see the EFM8BB1 Reference Manual.

#### 3.5 Counters/Timers and PWM

#### Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base
- · Programmable clock divisor and clock source selection
- · Up to three independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- Output polarity control
- · Frequency output mode
- · Capture on rising, falling or any edge
- Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0

#### Timers (Timer 0, Timer 1, Timer 2, and Timer 3)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- · Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- · 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2 and Timer 3 are 16-bit timers including the following features:

- Clock sources include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- 16-bit auto-reload timer mode
- Dual 8-bit auto-reload timer mode
- External pin capture (Timer 2)
- LFOSC0 capture (Timer 3)

#### Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

The Watchdog Timer has the following features:

- · Programmable timeout interval
- Runs from the low-frequency oscillator
- · Lock-out feature to prevent any modification until a system reset

#### 3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- · Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- · External port pins are forced to a known state.
- · Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- Power-on reset
- External reset pin
- · Comparator reset
- · Software-triggered reset
- Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- · Flash error reset

#### 3.9 Debugging

The EFM8BB1 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

| Device Package | Pin for Bootload Mode Entry |
|----------------|-----------------------------|
| QSOP24         | P2.0 / C2D                  |
| QFN20          | P2.0 / C2D                  |
| SOIC16         | P2.0 / C2D                  |

## Table 3.3. Summary of Pins for Bootload Mode Entry

| Parameter                                                      | Symbol              | Test Condition                     | Min | Тур | Max  | Unit |
|----------------------------------------------------------------|---------------------|------------------------------------|-----|-----|------|------|
| ADC0 Always-on <sup>4</sup>                                    | I <sub>ADC</sub>    | 800 ksps, 10-bit conversions or    | —   | 845 | 1200 | μA   |
|                                                                |                     | 200 ksps, 12-bit conversions       |     |     |      |      |
|                                                                |                     | Normal bias settings               |     |     |      |      |
|                                                                |                     | V <sub>DD</sub> = 3.0 V            |     |     |      |      |
|                                                                |                     | 250 ksps, 10-bit conversions or    | _   | 425 | 580  | μA   |
|                                                                |                     | 62.5 ksps 12-bit conversions       |     |     |      |      |
|                                                                |                     | Low power bias settings            |     |     |      |      |
|                                                                |                     | V <sub>DD</sub> = 3.0 V            |     |     |      |      |
| ADC0 Burst Mode, 10-bit single                                 | I <sub>ADC</sub>    | 200 ksps, V <sub>DD</sub> = 3.0 V  | _   | 370 |      | μA   |
| conversions, external reference                                |                     | 100 ksps, V <sub>DD</sub> = 3.0 V  | _   | 185 | _    | μA   |
|                                                                |                     | 10 ksps, V <sub>DD</sub> = 3.0 V   | _   | 19  | _    | μA   |
| ADC0 Burst Mode, 10-bit single                                 | I <sub>ADC</sub>    | 200 ksps, V <sub>DD</sub> = 3.0 V  | _   | 490 | _    | μA   |
| conversions, internal reference,<br>Low power bias settings    |                     | 100 ksps, V <sub>DD</sub> = 3.0 V  | _   | 245 |      | μA   |
|                                                                |                     | 10 ksps, V <sub>DD</sub> = 3.0 V   | _   | 23  | _    | μA   |
| ADC0 Burst Mode, 12-bit single conversions, external reference | I <sub>ADC</sub>    | 100 ksps, V <sub>DD</sub> = 3.0 V  | _   | 530 |      | μA   |
|                                                                |                     | 50 ksps, V <sub>DD</sub> = 3.0 V   | _   | 265 |      | μA   |
|                                                                |                     | 10 ksps, V <sub>DD</sub> = 3.0 V   | _   | 53  | _    | μA   |
| ADC0 Burst Mode, 12-bit single                                 | I <sub>ADC</sub>    | 100 ksps, V <sub>DD</sub> = 3.0 V, | _   | 950 |      | μA   |
| conversions, internal reference                                |                     | Normal bias                        |     |     |      |      |
|                                                                |                     | 50 ksps, V <sub>DD</sub> = 3.0 V,  | _   | 420 |      | μA   |
|                                                                |                     | Low power bias                     |     |     |      |      |
|                                                                |                     | 10 ksps, V <sub>DD</sub> = 3.0 V,  | _   | 85  |      | μA   |
|                                                                |                     | Low power bias                     |     |     |      |      |
| Internal ADC0 Reference, Always-                               | I <sub>VREFFS</sub> | Normal Power Mode                  | _   | 680 | 790  | μA   |
| on <sup>5</sup>                                                |                     | Low Power Mode                     | _   | 160 | 210  | μA   |
| Temperature Sensor                                             | ITSENSE             |                                    | _   | 75  | 120  | μA   |
| Comparator 0 (CMP0),                                           | I <sub>CMP</sub>    | CPMD = 11                          | _   | 0.5 |      | μA   |
| Comparator 1 (CMP1)                                            |                     | CPMD = 10                          | _   | 3   |      | μA   |
|                                                                |                     | CPMD = 01                          | _   | 10  |      | μA   |
|                                                                |                     | CPMD = 00                          | _   | 25  | _    | μA   |
| Voltage Supply Monitor (VMON0)                                 | I <sub>VMON</sub>   |                                    | _   | 15  | 20   | μA   |

## 4.1.6 External Clock Input

| Table 4.6. | External | Clock | Input |
|------------|----------|-------|-------|
|------------|----------|-------|-------|

| Parameter                              | Symbol             | Test Condition | Min | Тур | Max | Unit |
|----------------------------------------|--------------------|----------------|-----|-----|-----|------|
| External Input CMOS Clock              | f <sub>CMOS</sub>  |                | 0   | —   | 25  | MHz  |
| Frequency (at EXTCLK pin)              |                    |                |     |     |     |      |
| External Input CMOS Clock High<br>Time | t <sub>CMOSH</sub> |                | 18  |     | _   | ns   |
| External Input CMOS Clock Low Time     | t <sub>CMOSL</sub> |                | 18  |     |     | ns   |

#### 4.1.9 Temperature Sensor

#### Table 4.9. Temperature Sensor

| Parameter                                                 | Symbol           | Test Condition        | Min | Тур  | Max | Unit  |  |
|-----------------------------------------------------------|------------------|-----------------------|-----|------|-----|-------|--|
| Offset                                                    | V <sub>OFF</sub> | T <sub>A</sub> = 0 °C | _   | 757  | _   | mV    |  |
| Offset Error <sup>1</sup>                                 | E <sub>OFF</sub> | T <sub>A</sub> = 0 °C | _   | 17   | _   | mV    |  |
| Slope                                                     | М                |                       |     | 2.85 | _   | mV/°C |  |
| Slope Error <sup>1</sup>                                  | E <sub>M</sub>   |                       | _   | 70   | _   | µV/°C |  |
| Linearity                                                 |                  |                       | _   | 0.5  | _   | °C    |  |
| Turn-on Time                                              |                  |                       | _   | 1.8  | _   | μs    |  |
| Note: 1. Represents one standard deviation from the mean. |                  |                       |     |      |     |       |  |

#### 4.1.10 1.8 V Internal LDO Voltage Regulator

#### Table 4.10. 1.8V Internal LDO Voltage Regulator

| Parameter      | Symbol                | Test Condition | Min  | Тур | Мах  | Unit |
|----------------|-----------------------|----------------|------|-----|------|------|
| Output Voltage | V <sub>OUT_1.8V</sub> |                | 1.74 | 1.8 | 1.85 | V    |

#### 4.1.13 SMBus

| Parameter                                       | Symbol               | Test Condition | Min              | Тур | Max              | Unit |
|-------------------------------------------------|----------------------|----------------|------------------|-----|------------------|------|
| Standard Mode (100 kHz Class)                   |                      |                |                  |     |                  |      |
| I2C Operating Frequency                         | f <sub>I2C</sub>     |                | 0                | _   | 70 <sup>2</sup>  | kHz  |
| SMBus Operating Frequency                       | f <sub>SMB</sub>     |                | 40 <sup>1</sup>  | —   | 70 <sup>2</sup>  | kHz  |
| Bus Free Time Between STOP and START Conditions | t <sub>BUF</sub>     |                | 9.4              | _   | _                | μs   |
| Hold Time After (Repeated)<br>START Condition   | t <sub>HD:STA</sub>  |                | 4.7              | _   | _                | μs   |
| Repeated START Condition Setup<br>Time          | t <sub>SU:STA</sub>  |                | 9.4              | _   | _                | μs   |
| STOP Condition Setup Time                       | t <sub>SU:STO</sub>  |                | 9.4              | —   | —                | μs   |
| Data Hold Time                                  | t <sub>HD:DAT</sub>  |                | 489 <sup>3</sup> | _   | —                | ns   |
| Data Setup Time                                 | t <sub>SU:DAT</sub>  |                | 448 <sup>3</sup> | —   | —                | ns   |
| Detect Clock Low Timeout                        | t <sub>TIMEOUT</sub> |                | 25               | —   | —                | ms   |
| Clock Low Period                                | t <sub>LOW</sub>     |                | 4.7              | _   | —                | μs   |
| Clock High Period                               | t <sub>HIGH</sub>    |                | 9.4              | —   | 50 <sup>4</sup>  | μs   |
| Fast Mode (400 kHz Class)                       |                      |                |                  |     |                  |      |
| I2C Operating Frequency                         | f <sub>I2C</sub>     |                | 0                | -   | 255 <sup>2</sup> | kHz  |
| SMBus Operating Frequency                       | f <sub>SMB</sub>     |                | 40 <sup>1</sup>  | —   | 255 <sup>2</sup> | kHz  |
| Bus Free Time Between STOP and START Conditions | t <sub>BUF</sub>     |                | 2.6              | —   | _                | μs   |
| Hold Time After (Repeated)<br>START Condition   | t <sub>HD:STA</sub>  |                | 1.3              | _   | _                | μs   |
| Repeated START Condition Setup<br>Time          | t <sub>SU:STA</sub>  |                | 2.6              | _   | _                | μs   |
| STOP Condition Setup Time                       | t <sub>SU:STO</sub>  |                | 2.6              | _   |                  | μs   |
| Data Hold Time                                  | t <sub>HD:DAT</sub>  |                | 489 <sup>3</sup> | —   | —                | ns   |
| Data Setup Time                                 | t <sub>SU:DAT</sub>  |                | 448 <sup>3</sup> | —   | —                | ns   |
| Detect Clock Low Timeout                        | t <sub>TIMEOUT</sub> |                | 25               | -   | —                | ms   |
| Clock Low Period                                | t <sub>LOW</sub>     |                | 1.3              | —   | —                | μs   |
| Clock High Period                               | t <sub>HIGH</sub>    |                | 2.6              | _   | 50 <sup>4</sup>  | μs   |

### Table 4.13. SMBus Peripheral Timing Performance (Master Mode)

| Parameter | Symbol | Test Condition | Min | Тур | Max | Unit |
|-----------|--------|----------------|-----|-----|-----|------|
| Note:     |        |                |     |     |     |      |

- 1. The minimum SMBus frequency is limited by the maximum Clock High Period requirement of the SMBus specification.
- 2. The maximum I2C and SMBus frequencies are limited by the minimum Clock Low Period requirements of their respective specifications. The maximum frequency cannot be achieved with all combinations of oscillators and dividers available, but the effective frequency must not exceed 256 kHz.
- 3. Data setup and hold timing at 25 MHz or lower with EXTHOLD set to 1.
- 4. SMBus has a maximum requirement of 50 μs for Clock High Period. Operating frequencies lower than 40 kHz will be longer than 50 μs. I2C can support periods longer than 50 μs.

#### Table 4.14. SMBus Peripheral Timing Formulas (Master Mode)

| Parameter                                       | Symbol              | Clocks               |
|-------------------------------------------------|---------------------|----------------------|
| SMBus Operating Frequency                       | f <sub>SMB</sub>    | f <sub>CSO</sub> / 3 |
| Bus Free Time Between STOP and START Conditions | t <sub>BUF</sub>    | 2 / f <sub>CSO</sub> |
| Hold Time After (Repeated) START Condition      | t <sub>HD:STA</sub> | 1 / f <sub>CSO</sub> |
| Repeated START Condition Setup Time             | t <sub>SU:STA</sub> | 2 / f <sub>CSO</sub> |
| STOP Condition Setup Time                       | t <sub>SU:STO</sub> | 2 / f <sub>CSO</sub> |
| Clock Low Period                                | t <sub>LOW</sub>    | 1 / f <sub>CSO</sub> |
| Clock High Period                               | tнідн               | 2 / f <sub>CSO</sub> |
| Note:                                           | l                   | 1                    |

 $1.\,f_{CSO}$  is the SMBus peripheral clock source overflow frequency.

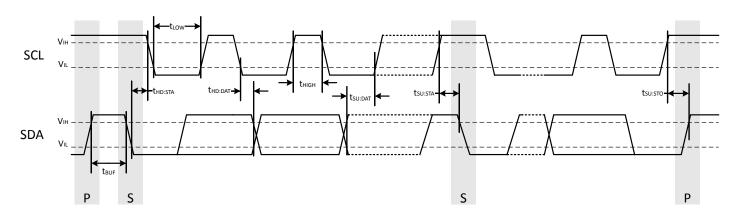



Figure 4.1. SMBus Peripheral Timing Diagram (Master Mode)

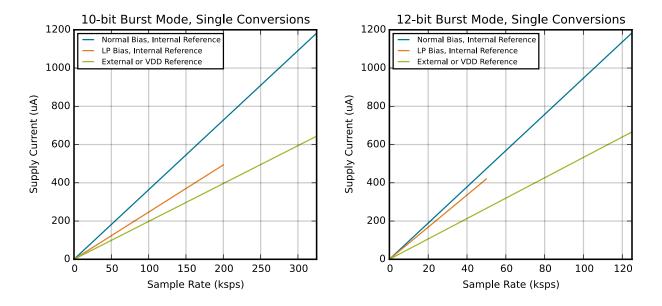



Figure 4.4. Typical ADC0 and Internal Reference Supply Current in Burst Mode

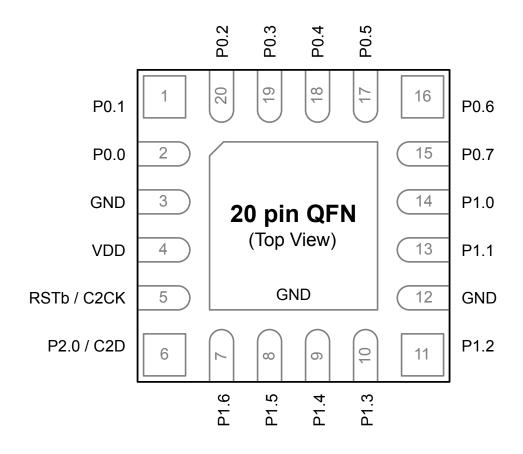



Figure 6.2. EFM8BB1x-QFN20 Pinout

| Table 6.2. | Pin Definitions for EFM8BB1x-QFN20 |
|------------|------------------------------------|
|------------|------------------------------------|

| Pin<br>Number | Pin Name | Description       | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|-------------------|---------------------|---------------------------------|------------------|
| 1             | P0.1     | Multifunction I/O | Yes                 | P0MAT.1                         | ADC0.1           |
|               |          |                   |                     | INT0.1                          | CMP0P.1          |
|               |          |                   |                     | INT1.1                          | CMP0N.1          |
|               |          |                   |                     |                                 | AGND             |
| 2             | P0.0     | Multifunction I/O | Yes                 | P0MAT.0                         | ADC0.0           |
|               |          |                   |                     | INT0.0                          | CMP0P.0          |
|               |          |                   |                     | INT1.0                          | CMP0N.0          |
|               |          |                   |                     |                                 | VREF             |

| Pin    | Pin Name | Description         | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|--------|----------|---------------------|---------------------|---------------------------------|------------------|
| Number |          |                     |                     | Tunctions                       |                  |
| 3      | GND      | Ground              |                     |                                 |                  |
| 4      | VDD      | Supply Power Input  |                     |                                 |                  |
| 5      | RSTb /   | Active-low Reset /  |                     |                                 |                  |
|        | C2CK     | C2 Debug Clock      |                     |                                 |                  |
| 6      | P2.0 /   | Multifunction I/O / |                     |                                 |                  |
|        | C2D      | C2 Debug Data       |                     |                                 |                  |
| 7      | P1.6     | Multifunction I/O   | Yes                 | P1MAT.6                         | ADC0.14          |
|        |          |                     |                     |                                 | CMP1P.6          |
|        |          |                     |                     |                                 | CMP1N.6          |
| 8      | P1.5     | Multifunction I/O   | Yes                 | P1MAT.5                         | ADC0.13          |
|        |          |                     |                     |                                 | CMP1P.5          |
|        |          |                     |                     |                                 | CMP1N.5          |
| 9      | P1.4     | Multifunction I/O   | Yes                 | P1MAT.4                         | ADC0.12          |
|        |          |                     |                     |                                 | CMP1P.4          |
|        |          |                     |                     |                                 | CMP1N.4          |
| 10     | P1.3     | Multifunction I/O   | Yes                 | P1MAT.3                         | ADC0.11          |
|        |          |                     |                     |                                 | CMP1P.3          |
|        |          |                     |                     |                                 | CMP1N.3          |
| 11     | P1.2     | Multifunction I/O   | Yes                 | P1MAT.2                         | ADC0.10          |
|        |          |                     |                     |                                 | CMP1P.2          |
|        |          |                     |                     |                                 | CMP1N.2          |
| 12     | GND      | Ground              |                     |                                 |                  |
| 13     | P1.1     | Multifunction I/O   | Yes                 | P1MAT.1                         | ADC0.9           |
|        |          |                     |                     |                                 | CMP1P.1          |
|        |          |                     |                     |                                 | CMP1N.1          |
| 14     | P1.0     | Multifunction I/O   | Yes                 | P1MAT.0                         | ADC0.8           |
|        |          |                     |                     |                                 | CMP1P.0          |
|        |          |                     |                     |                                 | CMP1N.0          |
| 15     | P0.7     | Multifunction I/O   | Yes                 | P0MAT.7                         | ADC0.7           |
|        |          |                     |                     | INT0.7                          | CMP0P.7          |
|        |          |                     |                     | INT1.7                          | CMP0N.7          |
| 16     | P0.6     | Multifunction I/O   | Yes                 | P0MAT.6                         | ADC0.6           |
|        |          |                     |                     | CNVSTR                          | CMP0P.6          |
|        |          |                     |                     | INT0.6                          | CMP0N.6          |
|        |          |                     |                     | INT1.6                          |                  |

| Pin    | Pin Name | Description       | Crossbar Capability | Additional Digital | Analog Functions |
|--------|----------|-------------------|---------------------|--------------------|------------------|
| Number |          |                   |                     | Functions          |                  |
| 17     | P0.5     | Multifunction I/O | Yes                 | P0MAT.5            | ADC0.5           |
|        |          |                   |                     | INT0.5             | CMP0P.5          |
|        |          |                   |                     | INT1.5             | CMP0N.5          |
| 18     | P0.4     | Multifunction I/O | Yes                 | P0MAT.4            | ADC0.4           |
|        |          |                   |                     | INT0.4             | CMP0P.4          |
|        |          |                   |                     | INT1.4             | CMP0N.4          |
| 19     | P0.3     | Multifunction I/O | Yes                 | P0MAT.3            | ADC0.3           |
|        |          |                   |                     | EXTCLK             | CMP0P.3          |
|        |          |                   |                     | INT0.3             | CMP0N.3          |
|        |          |                   |                     | INT1.3             |                  |
| 20     | P0.2     | Multifunction I/O | Yes                 | P0MAT.2            | ADC0.2           |
|        |          |                   |                     | INT0.2             | CMP0P.2          |
|        |          |                   |                     | INT1.2             | CMP0N.2          |
| Center | GND      | Ground            |                     |                    |                  |

| Min | Тур  | Мах                  |
|-----|------|----------------------|
|     | 0.20 |                      |
|     | 0.18 |                      |
|     | 0.10 |                      |
|     | 0.10 |                      |
|     | Min  | 0.20<br>0.18<br>0.10 |

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

## 8. QFN20 Package Specifications

#### 8.1 QFN20 Package Dimensions

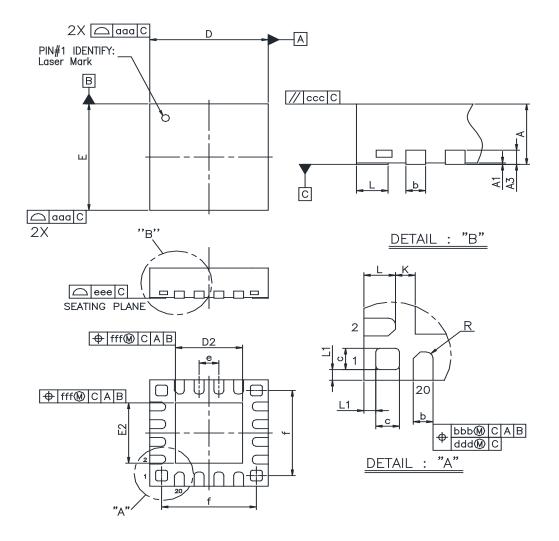



Figure 8.1. QFN20 Package Drawing

| Table 8.1. | QFN20 | Package | Dimensions |
|------------|-------|---------|------------|
|------------|-------|---------|------------|

| Dimension | Min      | Тур  | Мах  |
|-----------|----------|------|------|
| A         | 0.70     | 0.75 | 0.80 |
| A1        | 0.00     | 0.02 | 0.05 |
| A3        | 0.20 REF |      |      |
| b         | 0.18     | 0.25 | 0.30 |
| С         | 0.25     | 0.30 | 0.35 |
| D         | 3.00 BSC |      |      |
| D2        | 1.6      | 1.70 | 1.80 |
| е         | 0.50 BSC |      |      |

#### 8.2 QFN20 PCB Land Pattern

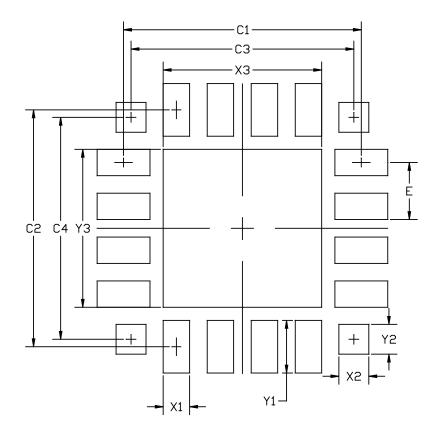



Figure 8.2. QFN20 PCB Land Pattern Drawing

| Dimension | Min  | Max  |  |
|-----------|------|------|--|
| C1        | 3.10 |      |  |
| C2        | 3.4  | 10   |  |
| C3        | 2.50 |      |  |
| C4        | 2.50 |      |  |
| E         | 0.50 |      |  |
| X1        | 0.30 |      |  |
| X2        | 0.25 | 0.35 |  |
| Х3        | 1.80 |      |  |
| Y1        | 0.90 |      |  |
| Y2        | 0.25 | 0.35 |  |
| Y3        | 1.80 |      |  |

## 9. SOIC16 Package Specifications

#### 9.1 SOIC16 Package Dimensions

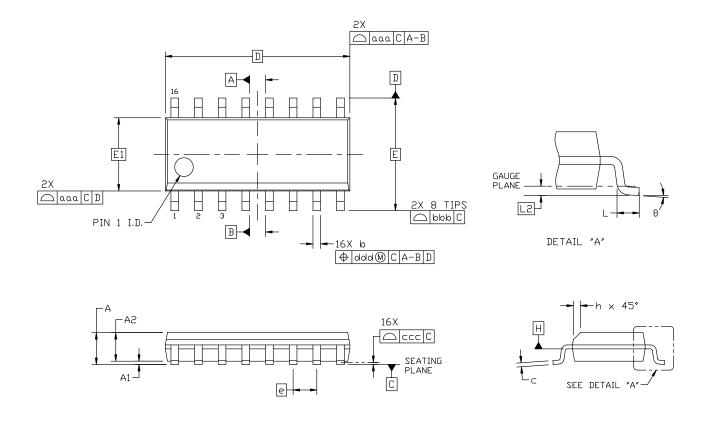



Figure 9.1. SOIC16 Package Drawing

#### Table 9.1. SOIC16 Package Dimensions

| Dimension | Min      | Тур | Мах  |  |
|-----------|----------|-----|------|--|
| A         | _        | _   | 1.75 |  |
| A1        | 0.10     | _   | 0.25 |  |
| A2        | 1.25     | _   | —    |  |
| b         | 0.31     | _   | 0.51 |  |
| c         | 0.17     | _   | 0.25 |  |
| D         | 9.90 BSC |     |      |  |
| E         | 6.00 BSC |     |      |  |
| E1        | 3.90 BSC |     |      |  |
| e         | 1.27 BSC |     |      |  |
| L         | 0.40     | _   | 1.27 |  |
| L2        | 0.25 BSC |     |      |  |

# **Table of Contents**

| 1. | Feature List                                     |    | 1  |
|----|--------------------------------------------------|----|----|
| 2. | Ordering Information                             |    | 2  |
| 3. | System Overview                                  |    | 4  |
|    | 3.1 Introduction.                                |    | 4  |
|    | 3.2 Power                                        |    | 5  |
|    | 3.3 I/O                                          |    | 5  |
|    | 3.4 Clocking                                     |    | 5  |
|    | 3.5 Counters/Timers and PWM                      |    | 6  |
|    | 3.6 Communications and Other Digital Peripherals |    | 7  |
|    | 3.7 Analog                                       |    |    |
|    | 3.8 Reset Sources                                |    |    |
|    | 3.9 Debugging                                    |    |    |
|    | 3.10 Bootloader                                  |    |    |
| _  |                                                  |    |    |
| 4. | Electrical Specifications                        |    |    |
|    | 4.1 Electrical Characteristics                   |    |    |
|    | 4.1.1 Recommended Operating Conditions           |    |    |
|    | 4.1.2 Power Consumption                          |    |    |
|    | 4.1.3 Reset and Supply Monitor                   |    |    |
|    | 4.1.4 Flash Memory                               |    |    |
|    | 4.1.6 External Clock Input                       |    |    |
|    | 4.1.7 ADC                                        |    |    |
|    | 4.1.8 Voltage Reference.                         |    |    |
|    | 4.1.9 Temperature Sensor                         |    |    |
|    | 4.1.10 1.8 V Internal LDO Voltage Regulator      |    |    |
|    | 4.1.11 Comparators                               |    |    |
|    | 4.1.12 Port I/O                                  | .2 | 23 |
|    | 4.1.13 SMBus                                     | .2 | 24 |
|    | 4.2 Thermal Conditions                           | .2 | 26 |
|    | 4.3 Absolute Maximum Ratings                     | .2 | 26 |
|    | 4.4 Typical Performance Curves                   | .2 | 27 |
| 5. | Typical Connection Diagrams                      | 3  | 31 |
|    | 5.1 Power                                        | .3 | 31 |
|    | 5.2 Debug                                        |    |    |
|    | 5.3 Other Connections                            |    |    |
| 6. | Pin Definitions                                  |    |    |
|    | 6.1 EFM8BB1x-QSOP24 Pin Definitions              |    |    |
|    |                                                  |    |    |
|    | 6.2 EFM8BB1x-QFN20 Pin Definitions               | .: | סנ |





#### **Simplicity Studio**

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!







Supp

Support and Community community.silabs.com

#### Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

#### **Trademark Information**

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.



Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

# http://www.silabs.com