

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6226tcsssy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction	9							
2	Desc	cription								
3	Proc	duct line-up								
4	Bloc	k diagra	am							
5	Prod	luct ove	rview							
	5.1	STM8A	A central processing unit (CPU) 14							
		5.1.1	Architecture and registers							
		5.1.2	Addressing							
		5.1.3	Instruction set							
	5.2	Single	wire interface module (SWIM) and debug module (DM) 15							
		5.2.1	SWIM							
		5.2.2	Debug module							
	5.3	Interru	pt controller							
	5.4	Flash p	program and data EEPROM 15							
		5.4.1	Architecture							
		5.4.2	Write protection (WP)16							
		5.4.3	Protection of user boot code (UBC)16							
		5.4.4	Read-out protection (ROP) 17							
	5.5	Clock of	controller							
		5.5.1	Features							
		5.5.2	16 MHz high-speed internal RC oscillator (HSI)							
		5.5.3	128 kHz low-speed internal RC oscillator (LSI)							
		5.5.4	16 MHz high-speed external crystal oscillator (HSE)							
		5.5.5	External clock input							
		5.5.6	Clock security system (CSS) 19							
	5.6	Low-po	ower operating modes							
	5.7	Timers								
		5.7.1	Watchdog timers							
		5.7.2	Auto-wakeup counter							
		5.7.3	Beeper							

2 Description

The STM8AF6246, STM8AF6248, STM8AF6266 and STM8AF6268 automotive 8-bit microcontrollers offer from 16 to 32 Kbyte of Flash program memory and integrated true data EEPROM. They are referred to as medium density STM8A devices in STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

All devices of the STM8A product line provide the following benefits: reduced system cost, performance and robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.

Device performance is ensured by a clock frequency of up to 16 MHz CPU and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8A family thanks to their advanced core which is made in a state-of-the art technology for automotive applications with 3.3 V to 5 V operating supply.

All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool.

3 Product line-up

Order code	Package	Medium density Flash program memory (byte)	RAM (byte)	Data EE (byte)	10-bit A/D ch.	Timers (IC/OC/PWM)	Serial interfaces	l/0 wakeup pins
STM8AF/P6268	32 K			1 K		1x8-bit: TIM4 3x16-bit: TIM1,	LIN(UART),	
STM8AF/P6248	LQFP48 (7x7)	16 K		0.5 K	10	TIM2, TIM3 (9/9/9)	SPI, I ² C	38/35
STM8AF/P6266		32 K		1 K		1x8-bit: TIM4 3x16-bit: TIM1, TIM2, TIM3 (8/8/8)	LIN(UART), SPI, I²C	
STM8AF/P6246	LQFP32 (7x7)	16 K	2 K	0.5 K	7			25/23
STM8AF/P6266		32 K		1 K		1x8-bit: TIM4		
STM8AF/P6246	VFQFPN32	16 K		0.5 K	7	3x16-bit: TIM1, TIM2, TIM3 (8/8/8)	LIN(UART), SPI, I²C	25/23

Table 1. STM8AF6246/48/66/68 product line-up

Legend: ADC: Analog-to-digital converter beCAN: Controller area network BOR: Brownout reset I²C: Inter-integrated circuit multimaster interface IWDG: Independent window watchdog LINUART: Local interconnect network universal asynchronous receiver transmitter POR: Power on reset SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter Window WDG: Window watchdog

5 **Product overview**

This section describes the family features that are implemented in the products covered by this datasheet.

For more detailed information on each feature please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

5.1 STM8A central processing unit (CPU)

The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.1.1 Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus with single cycle fetching for most instructions
- X and Y 16-bit index registers, enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter with 16-Mbyte linear memory space
- 16-bit stack pointer with access to a 64 Kbyte stack
- 8-bit condition code register with seven condition flags for the result of the last instruction.

5.1.2 Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for efficient implementation of local variables and parameter passing

5.1.3 Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

TIM1: Advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and bridge driver.

- 16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
- Four independent CAPCOM channels configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In the present implementation it is possible to trigger the ADC upon a timer event.
- External trigger to change the timer behavior depending on external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break

TIM2 and TIM3: 16-bit general purpose timers

- 16-bit auto-reload up-counter
- 15-bit prescaler adjustable to fixed power of two ratios 1...32768
- Timers with three or two individually configurable CAPCOM channels
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5.7.5 Basic timer

The typical usage of this timer (TIM4) is the generation of a clock tick.

Table	Λ	TIMA
lable	4.	1 11114

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM4	8-bit	Up	2 ⁿ n = 0 to 7	0	None	No	No	No	No

- 8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
- Clock source: master clock
- Interrupt source: 1 x overflow/update

5.8 Analog-to-digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

The ADC name differs between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 5*).

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
ADC	ADC1

ADC features

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f_{MASTER} divided by 2 to 18
- Conversion trigger on timer events and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result register
- Shadow registers for data consistency
- ADC input range: $V_{SSA} \le V_{IN} \le V_{DDA}$
- Analog watchdog
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption
- Scan mode (single and continuous)
- Dedicated result register for each conversion channel
- Buffer mode for continuous conversion

Note: An additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.

5.9 Communication interfaces

The following sections give a brief overview of the communication peripheral. Some peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 6*).

Table 6. Communication	peripheral n	naming correspondence
------------------------	--------------	-----------------------

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
LINUART	UART2

UART mode

- Full duplex, asynchronous communications NRZ standard format (mark/space)
- High-precision baud rate generator
 - A common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits) 1 or 2 stop bits parity control
- Separate enable bits for transmitter and receiver
- Error detection flags
- Reduced power consumption mode
- Multi-processor communication enter mute mode if address match does not occur
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.10 Input/output specifications

The product features four different I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

Pi num					Inpu	t		Out	put				
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЪР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
24		PE6/AIN9	I/O	Х	Х	Х	-	01	Х	Х	Port E7	Analog input 9	-
25	17	PE5/SPI_NSS	I/O	Х	Х	Х	-	01	Х	Х	Port E5	SPI master/slave select	-
26	18	PC1/TIM1_CH1	I/O	Х	Х	Х	HS	O3	Х	Х	Port C1	Timer 1 - channel 1	-
27	19	PC2/TIM1_CH2	I/O	Х	Х	Х	HS	O3	Х	Х	Port C2	Timer 1- channel 2	-
28	20	PC3/TIM1_CH3	I/O	Х	Х	Х	HS	O3	Х	Х	Port C3	Timer 1 - channel 3	-
29	21	PC4/TIM1_CH4	I/O	Х	Х	Х	HS	O3	Х	Х	Port C4	Timer 1 - channel 4	-
30	22	PC5/SPI_SCK	I/O	Х	Х	Х		O3	Х	Х	Port C5	SPI clock	-
31	-	V _{SSIO_2}	S	-	-	-	-	-	-	-	I/O ground		-
32	-	V _{DDIO_2}	S	-	-	-	-	-	-	-	I/O power supply		-
33	23	PC6/SPI_MOSI	I/O	x	х	х	-	O3	х	х	Port C6	SPI master out/ slave in	-
34	24	PC7/SPI_MISO	I/O	Х	Х	Х	-	O3	Х	Х	Port C7	SPI master in/ slave out	-
35	-	PG0	I/O	Х	Х	-	-	01	Х	Х	Port G0	-	-
36	-	PG1	I/O	Х	Х	-	-	01	Х	Х	Port G1	-	-
37	-	PE3/TIM1_BKIN	I/O	Х	Х	Х	-	01	Х	Х	Port E3	Timer 1 - break input	-
38	-	PE2/I ² C_SDA	I/O	Χ	-	Х	-	01	T ⁽⁶⁾	-	Port E2	I ² C data	-
39	-	PE1/I ² C_SCL	I/O	Χ	-	Х	-	01	T ⁽⁶⁾	-	Port E1	I ² C clock	-
40	-	PE0/CLK_CCO	I/O	x	х	х	-	O3	х	х	Port E0	Configurable clock output	-
41	25	PD0/TIM3_CH2	I/O	x	x	х	HS	O3	x	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
42	26	PD1/SWIM ⁽⁷⁾	I/O	Х	X	Х	HS	O4	Х	Х	Port D1	SWIM data interface	-
43	27	PD2/TIM3_CH1	I/O	x	х	х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
44	28	PD3/TIM2_CH2	I/O	x	х	х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
45	29	PD4/TIM2_CH1/ BEEP	I/O	x	х	х	HS	O3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
46	30	PD5/ LINUART_TX	I/O	x	х	Х	-	01	x	х	Port D5	LINUART data transmit	-

Table 8. STM8AF6246/48/66/68 (32 Kbyte) microcontroller pin description ⁽¹⁾⁽²⁾ (conti
--

P num					Inpu	t		Out	put		_		
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЪР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
47	31	PD6/ LINUART_RX	I/O	x	х	х	-	01	х	х	Port D6	LINUART data receive	-
48	32	PD7/TLI ⁽⁸⁾	I/O	X	Х	Х	-	01	Х	Х	Port D7	Top level interrupt	-

Table 8. STM8AF6246/48/66/68 (32 Kbyte) microcontroller pin description⁽¹⁾⁽²⁾ (continued)

1. Refer to Table 7 for the definition of the abbreviations.

Reset state is shown in bold.

3. In Halt/Active-halt mode this pad behaves in the following way:

- the input/output path is disabled

- if the HSE clock is used for wakeup, the internal weak pull up is disabled - if the HSE clock is off, internal weak pull up setting from corresponding OR bit is used

By managing the OR bit correctly, it must be ensured that the pad is not left floating during Halt/Active-halt.

4. On this pin, a pull-up resistor as specified in Table 35. I/O static characteristics is enabled during the reset phase of the product.

5. AIN12 is not selectable in ADC scan mode or with analog watchdog.

- In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, week pull-up, and protection diode to V_{DD} are 6. not implemented)
- 7. The PD1 pin is in input pull-up during the reset phase and after reset release.

8. If this pin is configured as interrupt pin, it will trigger the TLI.

6.2 Alternate function remapping

As shown in the rightmost column of *Table 8*, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to Section 9: Option bytes on page 44. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016).

Table 11. General hardware register map (continued)					
Address	Block	Register label	Register name	Reset status	
0x00 5240		UART2_SR	LINUART status register	0xC0	
0x00 5241		UART2_DR	LINUART data register	0xXX	
0x00 5242		UART2_BRR1	LINUART baud rate register 1	0x00	
0x00 5243		UART2_BRR2	LINUART baud rate register 2	0x00	
0x00 5244		UART2_CR1	LINUART control register 1	0x00	
0x00 5245	LINUART	UART2_CR2	LINUART control register 2	0x00	
0x00 5246		UART2_CR3	LINUART control register 3	0x00	
0x00 5247		UART2_CR4	LINUART control register 4	0x00	
0x00 5248			Reserved		
0x00 5249		UART2_CR6	LINUART control register 6	0x00	
0x00 524A to 0x00 524F		Reserved area (6 bytes)			
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00	
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00	
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00	
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00	
0x00 5254		TIM1_IER	TIM1 Interrupt enable register	0x00	
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00	
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00	
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00	
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00	
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00	
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00	
0x00 525B	TIM1	TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00	
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00	
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00	
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00	
0x00 525F		TIM1_CNTRL	TIM1 counter low	0x00	
0x00 5260		TIM1_PSCRH	TIM1 prescaler register high	0x00	
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00	
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF	
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF	
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00	

 Table 11. General hardware register map (continued)

Option byte no.	Description
	HSITRIM: Trimming option for 16 MHz internal RC oscillator 0: 3-bit on-the-fly trimming (compatible with devices based on the 128K silicon) 1: 4-bit on-the-fly trimming
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
OPT3	IWDG_HW: Independent watchdog 0: IWDG independent watchdog activated by software 1: IWDG independent watchdog activated by hardware
	WWDG_HW: Window watchdog activation 0: WWDG window watchdog activated by software 1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on Halt 0: No reset generated on Halt if WWDG active 1: Reset generated on Halt if WWDG active
	EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
OPT4	CKAWUSEL: Auto-wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0]: AWU clock prescaler 00: Reserved 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00.
OPT6	TMU [3:0]: Enable temporary memory unprotection 0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
OPT7	Reserved
OPT8	TMU_KEY 1 [7:0]: Temporary unprotection key 0 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT9	TMU_KEY 2 [7:0]: Temporary unprotection key 1 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT10	TMU_KEY 3 [7:0]: Temporary unprotection key 2 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT11	TMU_KEY 4 [7:0]: Temporary unprotection key 3 Temporary unprotection key: Must be different from 0x00 or 0xFF

Table 16. Option byte description (continued)

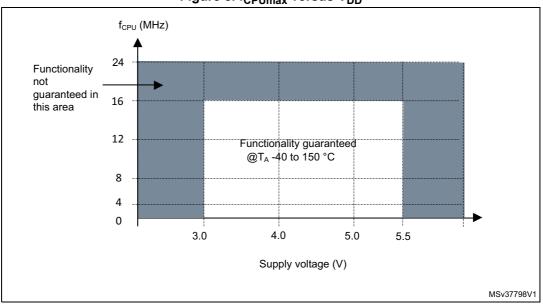

10.3 Operating conditions

Table 21. General operating conditions						
Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{CPU}	Internal CPU clock frequency	T_A = -40 °C to 150 °C	0	16	MHz	
V _{DD/} V _{DDIO}	Standard operating voltage	-	3.0	5.5	V	
(1)	C _{EXT} : capacitance of external capacitor	-	470	3300	nF	
$V_{CAP}^{(1)}$	ESR of external capacitor	at 1 MHz ⁽²⁾	-	0.3	Ω	
ESL of external capacitor			-	15	nH	
		LQFP32	-	85		
P _D	Power dissipation (all temperature ranges)	VFQFPN32	-	200	mW	
		LQFP48	-	88		
		Suffix A		85	°C	
T _A	Ambient temperature	Suffix C		125		
		Suffix D	40	150		
TJ		Suffix A	-40	90		
	Junction temperature range	Suffix C		130		
		Suffix D		155		

Table 21. General operating conditions

1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

2. This frequency of 1 MHz as a condition for V_{CAP} parameters is given by design of internal regulator.

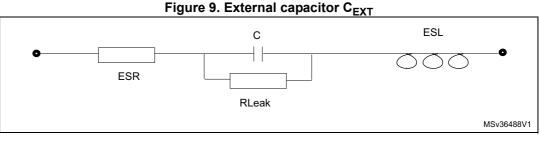


Figure 8. f_{CPUmax} versus V_{DD}

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 21*. Care should be taken to limit the series inductance to less than 15 nH.

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 6 on page 49* and *Figure 7 on page 50*.

If not explicitly stated, general conditions of temperature and voltage apply.

General conditions for v_{DD} apply, $I_A = -40$ to 150 °C						
Symbol	Parameter	Condi	tions	Тур	Мах	Unit
		All peripherals	f _{CPU} = 16 MHz	7.4	14	
I _{DD(RUN)} ⁽¹⁾	Supply current in	clocked, code executed from Flash	f _{CPU} = 8 MHz	4.0	7.4 ⁽²⁾	
'DD(RUN)`	Run mode	program memory, HSE external clock	f _{CPU} = 4 MHz	2.4	4.1 ⁽²⁾	
		(without resonator)	f _{CPU} = 2 MHz	1.5	2.5	
	All peripherals		f _{CPU} = 16 MHz	3.7	5.0	
L (1)	Supply current in	clocked, code executed from RAM and EEPROM, HSE external clock (without resonator)	f _{CPU} = 8 MHz	2.2	3.0 ⁽²⁾	
I _{DD(RUN)} ⁽¹⁾	Run mode		f _{CPU} = 4 MHz	1.4	2.0 ⁽²⁾	
			f _{CPU} = 2 MHz	1.0	1.5	mA
			f _{CPU} = 16 MHz	1.65	2.5	
I _{DD(WFI)} ⁽¹⁾	Supply current in Wait mode	CPU stopped, all peripherals off, HSE external clock	f _{CPU} = 8 MHz	1.15	1.9 ⁽²⁾	
'DD(WFI)`´			f _{CPU} = 4 MHz	0.90	1.6 ⁽²⁾	
			f _{CPU} = 2 MHz	0.80	1.5	
. (1)	Supply current in	f _{CPU} scaled down, all peripherals off,	Ext. clock 16 MHz f _{CPU} = 125 kHz	1.50	1.95	
I _{DD(SLOW)} ⁽¹⁾	Slow mode	code executed from RAM	LSI internal RC f _{CPU} = 128 kHz	1.50	1.80 ⁽²⁾	

Table 23. Total current consumption in Run, Wait and Slow mode. General conditions for V_{DD} apply, $T_A = -40$ to 150 °C

1. The current due to I/O utilization is not taken into account in these values.

2. Values not tested in production. Design guidelines only.

DocID14952 Rev 11

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V_{IL}	Input low level voltage		-0.3 V	-	0.3 x V _{DD}	
V _{IH}	Input high level voltage	_	0.7 x V _{DD}	-	V _{DD} + 0.3 V	
V _{hys}	Hysteresis ⁽¹⁾		-	0.1 x V _{DD}	-	
M	Output high level voltage	Standard I/0, V _{DD} = 5 V, I = 3 mA	V _{DD} - 0.5 V	-	-	
V _{OH}	output high level voltage	Standard I/0, V _{DD} = 3 V, I = 1.5 mA	V _{DD} - 0.4 V	-	-	V
		High sink and true open drain I/0, V _{DD} = 5 V I = 8 mA	-	-	0.5	
V_{OL}	Output low level voltage	Standard I/0, V _{DD} = 5 V I = 3 mA	-	-	0.6	
		Standard I/0, V _{DD} = 3 V I = 1.5 mA	-	-	0.4	
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	35	50	65	kΩ
		Fast I/Os Load = 50 pF	-	-	35 ⁽²⁾	
	Rise and fall time	Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	ns
ι _R , ι _F	t _R , t _F (10% - 90%)	Fast I/Os Load = 20 pF	-	-	20 ⁽²⁾	115
		Standard and high sink I/Os Load = 20 pF	-	-	50 ⁽²⁾	
l _{lkg}	Digital input pad leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA
1	Analog input pad leakage	V _{SS} ≤ V _{IN} ≤ V _{DD} -40 °C < T _A < 125 °C	-	-	±250	~
l _{Ikg ana}	current	V _{SS} ≤ V _{IN} ≤ V _{DD} -40 °C < T _A < 150 °C	-	-	±500	nA
l _{lkg(inj)}	Leakage current in adjacent I/O ⁽³⁾	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA
I _{DDIO}	Total current on either V _{DDIO} or V _{SSIO}	Including injection currents	-	-	60	mA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

		Conditions					
Symbol Parameter	Parameter		Monitored	Max f _{CPU} ⁽¹⁾		Unit	
		General conditions	frequency band	8 MHz	16 MHz		
		$V_{DD} = 5 V,$ $T_A = 25 °C,$ LQFP80 package conforming to IEC	0.1 MHz to 30 MHz	15	17		
S _{EMI} Peak level	Peak level			30 MHz to 130 MHz	18	22	dBµV
			130 MHz to 1 GHz	-1	3	ubμv	
	EMI level	61967-2	-	2	2.5		

Table 4	13. E	EMI c	lata
---------	-------	-------	------

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Table 44.	ESD	absolute	maximum	ratings
-----------	-----	----------	---------	---------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	ЗA	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	$T_A = 25^{\circ}C$, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = 25°C, conforming to JESD22-A115	В	200	

1. Data based on characterization results, not tested in production

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

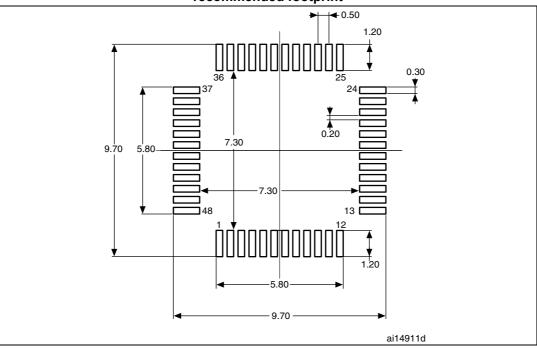
- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
		$T_A = 25 \ ^\circ C$	
	Static latch-up class	T _A = 85 °C	
LU		T _A = 125 °C	A
		T _A = 150 °C	

Table 4	5. Electrical	sensitivities
---------	---------------	---------------

 Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).



Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	_	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 46. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

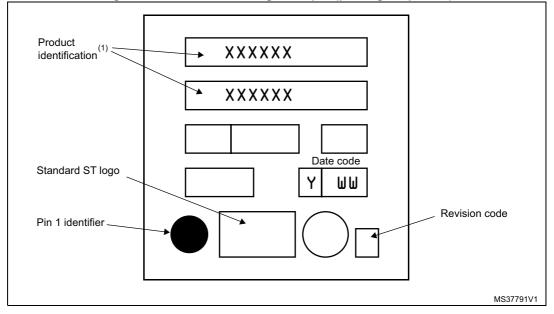


Figure 47. LQFP48 marking example (package top view)

13.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8.

13.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com. This package includes:

ST visual develop

Full-featured integrated development environment from STMicroelectronics, featuring:

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST visual programmer (STVP)

Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A microcontroller Flash memory. STVP also offers project mode for saving programming configurations and automating programming sequences.

13.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of the application directly from an easy-to-use graphical interface.

Available toolchains include:

C compiler for STM8

All compilers are available in free version with a limited code size depending on the compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com, and www.iar.com.

STM8 assembler linker

Free assembly toolchain included in the STM8 toolset, which allows users to assemble and link the application source code.

