

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6246tcsssx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		10.3.7	Reset pin characteristics
		10.3.8	TIM 1, 2, 3, and 4 timer specifications
		10.3.9	SPI serial peripheral interface69
		10.3.10	I ² C interface characteristics
		10.3.11	10-bit ADC characteristics
		10.3.12	EMC characteristics
11	Pack	age info	ormation
	11.1	VFQFP	N32 package information 78
	11.2	LQFP4	8 package information
	11.3	LQFP3	2 package information
	11.4	Therma	Il characteristics
		11.4.1	Reference document88
		11.4.2	Selecting the product temperature range
12	Orde	ring info	ormation
13	STM	8 develo	pment tools
	13.1	Emulati	on and in-circuit debugging tools
		13.1.1	STice key features
	13.2	Softwar	re tools
		13.2.1	STM8 toolset
		13.2.2	C and assembly toolchains92
	13.3	Prograr	nming tools
14	Revis	sion his [.]	tory
			-

5 **Product overview**

This section describes the family features that are implemented in the products covered by this datasheet.

For more detailed information on each feature please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

5.1 STM8A central processing unit (CPU)

The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.1.1 Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus with single cycle fetching for most instructions
- X and Y 16-bit index registers, enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter with 16-Mbyte linear memory space
- 16-bit stack pointer with access to a 64 Kbyte stack
- 8-bit condition code register with seven condition flags for the result of the last instruction.

5.1.2 Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for efficient implementation of local variables and parameter passing

5.1.3 Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

UART mode

- Full duplex, asynchronous communications NRZ standard format (mark/space)
- High-precision baud rate generator
 - A common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits) 1 or 2 stop bits parity control
- Separate enable bits for transmitter and receiver
- Error detection flags
- Reduced power consumption mode
- Multi-processor communication enter mute mode if address match does not occur
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.10 Input/output specifications

The product features four different I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

7 Memory and register map

7.1 Memory map

			J J J J J J J J J J	
Address	Block	Register label	Register name	Reset status
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00
0x00 50A1	ne	EXTI_CR2	External interrupt control register 2	0x00
0x00 50A2 to 0x00 50B2		Re	eserved area (17 bytes)	
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾
0x00 50B4 to 0x00 50BF		Re	eserved area (12 bytes)	
0x00 50C0		CLK_ICKR	Internal clock control register	0x01
0x00 50C1	CLK	CLK_ECKR	External clock control register	0x00
0x00 50C2		F	Reserved area (1 byte)	<u></u>
0x00 50C3		CLK_CMSR	Clock master status register	0xE1
0x00 50C4		CLK_SWR	Clock master switch register	0xE1
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18
0x00 50C7	CLK	CLK_PCKENR1	Peripheral clock gating register 1	0xFF
0x00 50C8		CLK_CSSR	Clock security system register	0x00
0x00 50C9		CLK_CCOR	Configurable clock control register	0x00
0x00 50CA		CLK_PCKENR2	Peripheral clock gating register 2	0xFF
0x00 50CB		F	Reserved area (1 byte)	
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00
0x00 50CD	CLK	CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0
0x00 50CE to 0x00 50D0		R	eserved area (3 bytes)	
0x00 50D1		WWDG_CR	WWDG control register	0x7F
0x00 50D2	WWDG	WWDG_WR	WWDR window register	0x7F
0x00 50D3 to 0x00 50DF		Re	eserved area (13 bytes)	
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF
0x00 50E3 to 0x00 50EF		Re	eserved area (13 bytes)	
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00

	<u> </u>		• •		<i>, ,</i> , ,	
Table 11.	General	hardware	register	map	(continued))

Table	16.	Option	byte	description	
Table	10.	option	Dyte	description	

Option byte no.	Description			
OPT0	ROP[7:0]: Memory readout protection (ROP) 0xAA: Enable readout protection (write access via SWIM protocol) Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016) section on Flash/EEPROM memory readout protection for details.			
OPT1	UBC[5:0]: User boot code area 0x00: No UBC, no write-protection 0x01: Page 0 to 1 defined as UBC, memory write-protected 0x02: Page 0 to 3 defined as UBC, memory write-protected 0x03 to 0x3F: Pages 4 to 63 defined as UBC, memory write-protected Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016) section on Flash/EEPROM write protection for more details.			
OPT2	 AFR7: Alternate function remapping option 7 0: Port D4 alternate function = TIM2_CH1 1: Port D4 alternate function = BEEP AFR6: Alternate function remapping option 6 0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4 1: Port B5 alternate function = I²C_SDA, port B4 alternate function = I²C_SCL. AFR5: Alternate function remapping option 5 0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2, port B1 alternate function = AIN1, port B0 alternate function = AIN0. 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH2N, port B0 alternate function = TIM3_CH2 1: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = CLK_CCO Note: AFR2 option has priority over AFR3 if both are activated AFR1: Alternate function = TIM3_CH3, port D2 alternate function TIM3_CH1. 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH3. 3: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH1. 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH3. AFR0: Alternate function = TIM3_CH3, port D2 alternate function TIM3_CH3. 3: Port A3 alternate function = TIM3_CH3, port D2 alternate function TIM3_CH3. 4: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH3. 4: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH3. 4: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH3. 4: Port A3 alternate function = TIM3_CH2. 4: Port D3 alternate function = TIM3_CH2. 5: Port D3 alternate function = TIM3_CH2. 5: Port D3 alternate f			

Option byte no.	Description				
OPT12	TMU_KEY 5 [7:0]: Temporary unprotection key 4 Temporary unprotection key: Must be different from 0x00 or 0xFF				
OPT13	TMU_KEY 6 [7:0]: Temporary unprotection key 5 Temporary unprotection key: Must be different from 0x00 or 0xFF				
OPT14	TMU_KEY 7 [7:0]: Temporary unprotection key 6 Temporary unprotection key: Must be different from 0x00 or 0xFF				
OPT15 TMU_KEY 8 [7:0]: Temporary unprotection key 7 Temporary unprotection key: Must be different from 0x00 or 0x					
OPT16	 TMU_MAXATT [7:0]: TMU access failure counter TMU_MAXATT can be initialized with the desired value only if TMU is disabled (TMU[3:0]=0101 in OPT6 option byte). When TMU is enabled, any attempt to temporary remove the readout protection by using wrong key values increments the counter. When the option byte value reaches 0x08, the Flash memory and data EEPROM are erased. 				
OPT17	BL [7:0]: Bootloader enable If this option byte is set to 0x55 (complementary value 0xAA) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0560).				

Table 16. Option byte description (continued)

	Table 20.1 rogramming current consumption							
Symbol	Parameter	Conditions	Тур	Max	Unit			
I _{DD(PROG)}	Programming current	V _{DD} = 5 V, -40 °C to 150 °C, erasing and programming data or Flash program memory	1.0	1.7	mA			

Table 26. Programming current consumption

Table 27. Typical peripheral current consumption $V_{DD} = 5.0 V^{(1)}$

Symbol	Parameter	Typ. f _{master} = 2 MHz	Typ. f _{master} = 16 MHz	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽²⁾	0.03	0.23	
I _{DD(TIM2)}	TIM2 supply current ⁽²⁾	0.02	0.12	
I _{DD(TIM3)}	TIM3 supply current ⁽²⁾	0.01	0.1	
I _{DD(TIM4)}	TIM4 supply current ⁽²⁾	0.004	0.03	
I _{DD(LINUART)}	LINUART supply current ⁽²⁾	0.03	0.11	
I _{DD(SPI)}	SPI supply current ⁽²⁾	0.01	0.04	mA
I _{DD(I²C)}	I ² C supply current ⁽²⁾	0.02	0.06	
I _{DD(AWU)}	AWU supply current ⁽²⁾	0.003	0.02	
I _{DD(TOT_DIG)}	All digital peripherals on	0.22	1	
I _{DD(ADC)}	ADC supply current when converting ⁽³⁾	0.93	0.95	

1. Typical values not tested in production. Since the peripherals are powered by an internally regulated, constant digital supply voltage, the values are similar in the full supply voltage range.

2. Data based on a differential I_{DD} measurement between no peripheral clocked and a single active peripheral. This measurement does not include the pad toggling consumption.

3. Data based on a differential ${\rm I}_{\rm DD}$ measurement between reset configuration and continuous A/D conversions.

Current consumption curves

Figure 10 to *Figure 15* show typical current consumption measured with code executing in RAM.

Figure 17. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

The crystal characteristics have to be checked with the following formula:

g_m » g_{mcrit}

where g_{mcrit} can be calculated with the crystal parameters as follows:

$$g_{mcrit} = (2 \times \Pi \times {}^{f}HSE)^{2} \times R_{m}(2Co + C)^{2}$$

R_m: Notional resistance (see crystal specification)

L_m: Notional inductance (see crystal specification)

C_m: Notional capacitance (see crystal specification)

Co: Shunt capacitance (see crystal specification)

 $C_{1,1} = C_{1,2} = C$: Grounded external capacitance

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and T_A.

High speed internal RC oscillator (HSI)

Table 30.	. HSI	oscillator	characteristics
-----------	-------	------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	-	-	16	-	MHz

10.3.8 TIM 1, 2, 3, and 4 timer specifications

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Table 37	. TIM 1, 2	, 3, and 4	l electrical	specifications
----------	------------	------------	--------------	----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{EXT}	Timer external clock frequency ⁽¹⁾	-	-	-	16	MHz

1. Not tested in production. On 64 Kbyte devices, the frequency is limited to 16 MHz.

10.3.9 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 38* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions		Min	Мах	Unit
		Master mode		0	10	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	V_{DD} < 4.5 V		6 ⁽¹⁾	MHz
-0(00N)		Slave mode	V _{DD} = 4.5 V to 5.5 V	0	8 ⁽¹⁾	
t _{r(SCK}) t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		-	25 ⁽²⁾	
t _{su(NSS)} ⁽³⁾	NSS setup time	Slave mode		4 * t _{MASTER}	-	
t _{h(NSS)} ⁽³⁾	NSS hold time	Slave mode		70	-	
t _{w(SCKH)} ⁽³⁾ t _{w(SCKL)} ⁽³⁾	SCK high and low time	Master mode		t _{SCK} /2 - 15	t _{SCK} /2 + 15	
t _{su(MI)} (3)	Data input setup time	Master mode		5	-	
t _{su(SI)} (3)		Slave mode		5	-	
t _{h(MI)} (3)	Data input hold time	Master mode		7	-	ns
t _{h(SI)} ⁽³⁾		Slave mode		10	-	
t _{a(SO)} (3)(4)	Data output access time	Slave mode		-	3* t _{MASTER}	
t _{dis(SO)} ⁽³⁾⁽⁵⁾	Data output disable time	Slave mode		25		
+ (3)	Data output valid timo	Slave mode	V _{DD} < 4.5 V	-	75	
v(SO)`´	v(SO) ⁽³⁾ Data output valid time (a	(after enable edge) $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$		-	53	
t _{v(MO)} ⁽³⁾	Data output valid time	Master mode (after enable edge)		-	30	
t _{h(SO)} ⁽³⁾	Data output hold time	Slave mode (after enable edge) Master mode (after enable edge)		31	-	
t _{h(MO)} ⁽³⁾				12	-	

Table	38.	SPI	characteristics
-------	-----	-----	-----------------

1. $f_{SCK} < f_{MASTER}/2$.

2. The pad has to be configured accordingly (fast mode).

Figure 39. SPI timing diagram - master mode

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Figure 43. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

11.2 LQFP48 package information

SEATING PLANE A2 ŨŦŨŦŨŦŨŦĬĦŮŸŨŦŨŦŨŦŨŦŎŹ F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b Œ <u>ш</u> ш Ē ----------£ 48 13 12 e 5B_ME_V2

Figure 45. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Cumhal	millimeters			inches ⁽¹⁾		
Зутвої	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

Table 48. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

11.4 Thermal characteristics

In case the maximum chip junction temperature (T_{Jmax}) specified in *Table 21: General operating conditions on page 52* is exceeded, the functionality of the device cannot be guaranteed.

 T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in $^{\circ}C$
- O_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \; (\mathsf{V}_\mathsf{OL} * \mathsf{I}_\mathsf{OL}) + \Sigma ((\mathsf{V}_\mathsf{DD} - \mathsf{V}_\mathsf{OH}) * \mathsf{I}_\mathsf{OH}),$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	59	°C/W
Θ_{JA}	Thermal resistance junction-ambient VFQFPN32	25	°C/W

Table 49. Thermal characteristics⁽¹⁾

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.4.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

11.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see *Section 12: Ordering information*).

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 14 mA, V_{DD} = 5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V

P_{INTmax} = 14 mA x 5 V= 70 mW

P_{IOmax} = 20 x 8 mA x 0.4 V = 64 mW

This gives: P_{INTmax} = 70 mW and P_{IOmax} 64 mW:

P_{Dmax} = 70 mW + 64 mW

Thus: P_{Dmax} = 134 mW.

Using the values obtained in *Table 49: Thermal characteristics* T_{Jmax} is calculated as follows:

For LQFP64 46 °C/W

This is within the range of the suffix C version parts (-40 < T_J < 125 °C).

Parts must be ordered at least with the temperature range suffix C.

Date	Revision	Changes
09-Jun-2015	10	 Updated: the product naming in the document headers and captions, LIN version in <i>Features</i> and <i>Section 5.9.3</i>: Universal asynchronous receiver/transmitter with LIN support (LINUART). Added: the third table footnote to <i>Table 22</i>: Operating conditions at power-up/power-down, Figure 44: VFQFPN32 marking example (package top view), Figure 50: LQFP48 marking example (package top view), Figure 50: LQFP32 marking example (package top view), the note about the parts marked "E" and "ES" below Figure 51: STM8AF6246/48/66/68 ordering information scheme(1) (2), the standard for EMI characteristics in <i>Table 43</i>: EMI data. Removed the references to STM8AF61xx and STM8AH61xx obsolete products.
14-Jun-2016	11	Update Table 46: VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data

Table 50. I	Document revisi	on history	(continued)
-------------	-----------------	------------	-------------

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID14952 Rev 11