

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6246tdsssx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		10.3.7	Reset pin characteristics
		10.3.8	TIM 1, 2, 3, and 4 timer specifications
		10.3.9	SPI serial peripheral interface69
		10.3.10	I ² C interface characteristics
		10.3.11	10-bit ADC characteristics
		10.3.12	EMC characteristics
11	Pack	age info	ormation
	11.1	VFQFP	N32 package information 78
	11.2	LQFP4	8 package information
	11.3	LQFP3	2 package information
	11.4	Therma	Il characteristics
		11.4.1	Reference document88
		11.4.2	Selecting the product temperature range
12	Orde	ring info	ormation
13	STM	8 develo	pment tools
	13.1	Emulati	on and in-circuit debugging tools
		13.1.1	STice key features
	13.2	Softwar	re tools
		13.2.1	STM8 toolset
		13.2.2	C and assembly toolchains92
	13.3	Prograr	nming tools
14	Revis	sion his [.]	tory
			-

2 Description

The STM8AF6246, STM8AF6248, STM8AF6266 and STM8AF6268 automotive 8-bit microcontrollers offer from 16 to 32 Kbyte of Flash program memory and integrated true data EEPROM. They are referred to as medium density STM8A devices in STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

All devices of the STM8A product line provide the following benefits: reduced system cost, performance and robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.

Device performance is ensured by a clock frequency of up to 16 MHz CPU and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8A family thanks to their advanced core which is made in a state-of-the art technology for automotive applications with 3.3 V to 5 V operating supply.

All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool.

5 **Product overview**

This section describes the family features that are implemented in the products covered by this datasheet.

For more detailed information on each feature please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

5.1 STM8A central processing unit (CPU)

The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.1.1 Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus with single cycle fetching for most instructions
- X and Y 16-bit index registers, enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter with 16-Mbyte linear memory space
- 16-bit stack pointer with access to a 64 Kbyte stack
- 8-bit condition code register with seven condition flags for the result of the last instruction.

5.1.2 Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for efficient implementation of local variables and parameter passing

5.1.3 Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

5.8 Analog-to-digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

The ADC name differs between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 5*).

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
ADC	ADC1

ADC features

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f_{MASTER} divided by 2 to 18
- Conversion trigger on timer events and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result register
- Shadow registers for data consistency
- ADC input range: $V_{SSA} \le V_{IN} \le V_{DDA}$
- Analog watchdog
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption
- Scan mode (single and continuous)
- Dedicated result register for each conversion channel
- Buffer mode for continuous conversion

Note: An additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.

5.9 Communication interfaces

The following sections give a brief overview of the communication peripheral. Some peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 6*).

Table 6. Communication	peripheral n	naming correspondence
------------------------	--------------	-----------------------

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
LINUART	UART2

Table 10. 10 port hardware register map (continued)				
Address	Block	Register label	Register name	Reset status
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX ⁽¹⁾
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX ⁽¹⁾
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0xXX ⁽¹⁾
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022		PG_CR2	Port G control register 2	0x00

Table 10. I/O port hardware register map (continued)
--

1. Depends on the external circuitry.

Table 11. General naturale register map				
Address	Block	Register label	Register name	Reset status
0x00 505A		FLASH_CR1	Flash control register 1	0x00
0x00 505B		FLASH_CR2	Flash control register 2	0x00
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF
0x00 505D	Flash	FLASH_FPR	Flash protection register	0x00
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF
0x00 505F		FLASH_IAPSR	Flash in-application programming status register	0x40
0x00 5060 to 0x00 5061	Reserved area (2 bytes)			
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00
0x00 5063	Reserved area (1 byte)			
0x00 5064	Flash	FLASH_DUKR	Data EEPROM unprotection register	0x00
0x00 5065 to 0x00 509F	Reserved area (59 bytes)			

Table 11. General hardware register map

DocID14952 Rev 11

Address	Block	Register label	Register name	Reset status	
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F	
0x00 50F4 to 0x00 50FF		Re	eserved area (12 bytes)		
0x00 5200		SPI_CR1	SPI control register 1	0x00	
0x00 5201		SPI_CR2	SPI control register 2	0x00	
0x00 5202		SPI_ICR	SPI interrupt control register	0x00	
0x00 5203	SPI	SPI_SR	SPI status register	0x02	
0x00 5204	581	SPI_DR	SPI data register	0x00	
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07	
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF	
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF	
0x00 5208 to 0x00 520F	Reserved area (8 bytes)				
0x00 5210		I2C_CR1	I2C control register 1	0x00	
0x00 5211		I2C_CR2	I2C control register 2	0x00	
0x00 5212		I2C_FREQR	I2C frequency register	0x00	
0x00 5213		I2C_OARL	I2C own address register low	0x00	
0x00 5214		I2C_OARH	I2C own address register high	0x00	
0x00 5215			Reserved area (1 byte)		
0x00 5216	I2C	I2C_DR	I2C data register	0x00	
0x00 5217	120	I2C_SR1	I2C status register 1	0x00	
0x00 5218		I2C_SR2	I2C status register 2	0x00	
0x00 5219		I2C_SR3	I2C status register 3	0x00	
0x00 521A		I2C_ITR	I2C interrupt control register	0x00	
0x00 521B		I2C_CCRL	I2C clock control register low	0x00	
0x00 521C		I2C_CCRH	I2C clock control register high	0x00	
0x00 521D		I2C_TRISER	I2C TRISE register	0x02	
0x00 521E to 0x00 523F		Re	eserved area (24 bytes)		

Table 11. General hardware register map (continued)

Table 11. General hardware register map (continued)					
Address	Block	Register label	Register name	Reset status	
0x00 5265		TIM1_CCR1H	TIM1 capture/compare register 1 high	0x00	
0x00 5266		TIM1_CCR1L	TIM1 capture/compare register 1 low	0x00	
0x00 5267		TIM1_CCR2H	TIM1 capture/compare register 2 high	0x00	
0x00 5268		TIM1_CCR2L	TIM1 capture/compare register 2 low	0x00	
0x00 5269		TIM1_CCR3H	TIM1 capture/compare register 3 high	0x00	
0x00 526A	TIM1	TIM1_CCR3L	TIM1 capture/compare register 3 low	0x00	
0x00 526B		TIM1_CCR4H	TIM1 capture/compare register 4 high	0x00	
0x00 526C		TIM1_CCR4L	TIM1 capture/compare register 4 low	0x00	
0x00 526D		TIM1_BKR	TIM1 break register	0x00	
0x00 526E		TIM1_DTR	TIM1 dead-time register	0x00	
0x00 526F		TIM1_OISR	TIM1 output idle state register	0x00	
0x00 5270 to 0x00 52FF		Re	eserved area (147 bytes)		
0x00 5300		TIM2_CR1	TIM2 control register 1	0x00	
0x00 5301		TIM2_IER	TIM2 interrupt enable register	0x00	
0x00 5302		TIM2_SR1	TIM2 status register 1	0x00	
0x00 5303		TIM2_SR2	TIM2 status register 2	0x00	
0x00 5304		TIM2_EGR	TIM2 event generation register	0x00	
0x00 5305		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00	
0x00 5306		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00	
0x00 5307		TIM2_CCMR3	TIM2 capture/compare mode register 3	0x00	
0x00 5308		TIM2_CCER1	TIM2 capture/compare enable register 1	0x00	
0x00 5309	TIM2	TIM2_CCER2	TIM2 capture/compare enable register 2	0x00	
0x00 530A		TIM2_CNTRH	TIM2 counter high	0x00	
0x00 530B		TIM2_CNTRL	TIM2 counter low	0x00	
00 530C0x		TIM2_PSCR	TIM2 prescaler register	0x00	
0x00 530D		TIM2_ARRH	TIM2 auto-reload register high	0xFF	
0x00 530E		TIM2_ARRL	TIM2 auto-reload register low	0xFF	
0x00 530F		TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00	
0x00 5310		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00	
0x00 5311		TIM2_CCR2H	TIM2 capture/compare reg. 2 high	0x00	
0x00 5312		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00	
0x00 5313		TIM2_CCR3H	TIM2 capture/compare register 3 high	0x00	

8 Interrupt table

Table 14. STM8A Interrupt table							
Priority	Source block	Description	Interrupt vector address	Wakeup from Halt	Comments		
-	Reset	Reset	0x00 8000	Yes	User RESET vector		
-	TRAP	SW interrupt	0x00 8004	-	-		
0	TLI	External top level interrupt	0x00 8008	-	-		
1	AWU	Auto-wakeup from Halt	0x00 800C	Yes	-		
2	Clock controller	Main clock controller	0x00 8010	-	-		
3	MISC	Ext interrupt E0	0x00 8014	Yes	Port A interrupts		
4	MISC	Ext interrupt E1	0x00 8018	Yes	Port B interrupts		
5	MISC	Ext interrupt E2	0x00 801C	Yes	Port C interrupts		
6	MISC	Ext interrupt E3	0x00 8020	Yes	Port D interrupts		
7	MISC	Ext interrupt E4	0x00 8024	Yes	Port E interrupts		
8	Reserved ⁽¹⁾	-	-	-	-		
9	Reserved ⁽¹⁾	-	-	-	-		
10	SPI	End of transfer	0x00 8030	Yes	-		
11	Timer 1	Update/overflow/ trigger/break	0x00 8034	-	-		
12	Timer 1	Capture/compare	0x00 8038	-	-		
13	Timer 2	Update/overflow	0x00 803C	-	-		
14	Timer 2	Capture/compare	0x00 8040	-	-		
15	Timer 3	Update/overflow	0x00 8044	-	-		
16	Timer 3	Capture/compare	0x00 8048	-	-		
17	Reserved ⁽¹⁾	-	-	-	-		
18	Reserved ⁽¹⁾	-	-	-	-		
19	l ² C	I ² C interrupts	0x00 8054	Yes	-		
20	LINUART	Tx complete/error	0x00 8058	-	-		
21	LINUART	Receive data full reg.	0x00 805C	-	-		
22	ADC	End of conversion	0x00 8060	-	-		
23	Timer 4	Update/overflow	0x00 8064	-	-		
24	EEPROM	End of Programming/ Write in not allowed area	0x00 8068	-	-		

Table 14. STM8A interrupt table

1. All reserved and unused interrupts must be initialized with 'IRET' for robust programming.

Option byte no.	Description
OPT12	TMU_KEY 5 [7:0]: Temporary unprotection key 4 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT13	TMU_KEY 6 [7:0]: Temporary unprotection key 5 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT14	TMU_KEY 7 [7:0]: Temporary unprotection key 6 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT15	TMU_KEY 8 [7:0]: Temporary unprotection key 7 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT16	TMU_MAXATT [7:0]: TMU access failure counter TMU_MAXATT can be initialized with the desired value only if TMU is disabled (TMU[3:0]=0101 in OPT6 option byte). When TMU is enabled, any attempt to temporary remove the readout protection by using wrong key values increments the counter. When the option byte value reaches 0x08, the Flash memory and data EEPROM are erased.
OPT17	BL [7:0]: Bootloader enable If this option byte is set to 0x55 (complementary value 0xAA) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0560).

Table 16. Option byte description (continued)

Symbol	Ratings	Max.	Unit
I _{VDDIO}	Total current into V_{DDIO} power lines (source) ⁽¹⁾⁽²⁾⁽³⁾	100	
I _{VSSIO}	Total current out of $V_{SS IO}$ ground lines (sink) ⁽¹⁾⁽²⁾⁽³⁾	100	
1.	Output current sunk by any I/O and control pin	20	mA
IIO	Output current source by any I/Os and control pin	-20	IIIA
I _{INJ(PIN)} ⁽⁴⁾	Injected current on any pin	±10	
I _{INJ(TOT)}	Sum of injected currents	50	

Table 18. Current characteristics

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.

- 2. The total limit applies to the sum of operation and injected currents.
- 3. V_{DDIO} includes the sum of the positive injection currents. V_{SSIO} includes the sum of the negative injection currents.
- 4. This condition is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current allowed and the corresponding V_{IN} maximum must always be respected.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
TJ	Maximum junction temperature	160	0

Table 20. Operating lifetime⁽¹⁾

Symbol	Ratings	Value	Unit
OLF	Conforming to AEC-Q100 rev G	-40 to 125 °C	Grade 1
	Conforming to AEC-Q 100 TeV G	-40 to 150 °C	Grade 0

1. For detailed mission profile analysis, please contact the nearest local ST Sales Office.

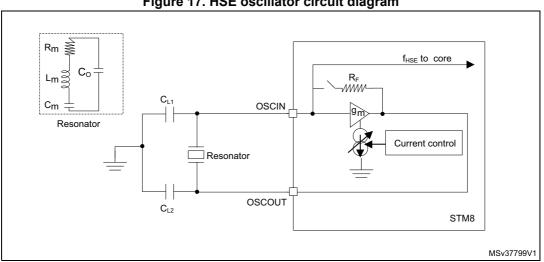


Figure 17. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

The crystal characteristics have to be checked with the following formula:

g_m » g_{mcrit}

where g_{mcrit} can be calculated with the crystal parameters as follows:

$$g_{mcrit} = (2 \times \Pi \times {}^{f}HSE)^{2} \times R_{m}(2Co + C)^{2}$$

R_m: Notional resistance (see crystal specification)

L_m: Notional inductance (see crystal specification)

C_m: Notional capacitance (see crystal specification)

Co: Shunt capacitance (see crystal specification)

 $C_{1,1} = C_{1,2} = C$: Grounded external capacitance

10.3.4 Internal clock sources and timing characteristics

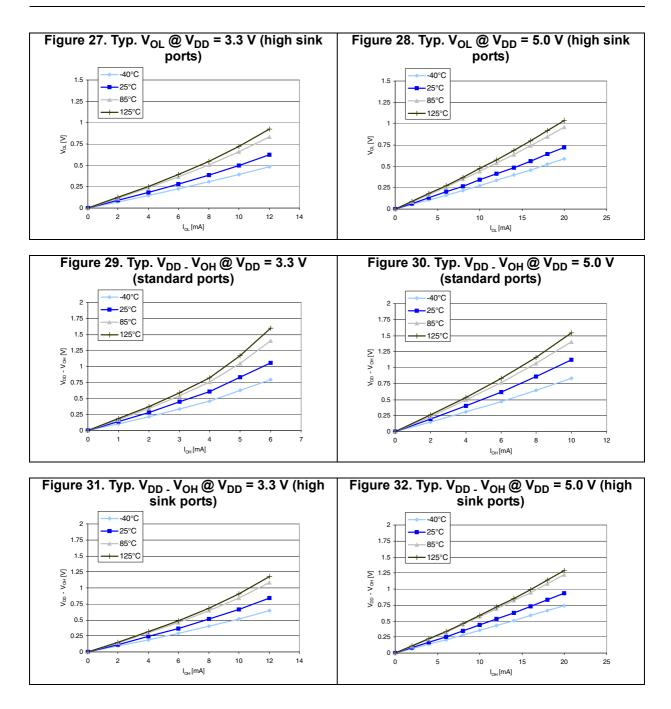
Subject to general operating conditions for V_{DD} and T_A.

High speed internal RC oscillator (HSI)

Table 30. HSI oscillator characteristics	Table 30.	HSI	oscillator	characteristics
--	-----------	-----	------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	-	-	16	-	MHz

10.3.6 I/O port pin characteristics


General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V_{IL}	Input low level voltage		-0.3 V	-	0.3 x V _{DD}	
V_{IH}	Input high level voltage	_	0.7 x V _{DD}	-	V _{DD} + 0.3 V	
V _{hys}	Hysteresis ⁽¹⁾		-	0.1 x V _{DD}	-	
M	Output high level voltage	Standard I/0, V _{DD} = 5 V, I = 3 mA	V _{DD} - 0.5 V	-	-	
V _{OH}	output high level voltage	Standard I/0, V _{DD} = 3 V, I = 1.5 mA	V _{DD} - 0.4 V	-	-	V
		High sink and true open drain I/0, V _{DD} = 5 V I = 8 mA	-	-	0.5	
V_{OL}	Output low level voltage	Standard I/0, V _{DD} = 5 V I = 3 mA	-	-	0.6	
		Standard I/0, V _{DD} = 3 V I = 1.5 mA	-	-	0.4	
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	35	50	65	kΩ
	Rise and fall time (10% - 90%)	Fast I/Os Load = 50 pF	-	-	35 ⁽²⁾	ns
		Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	
t _R , t _F		Fast I/Os Load = 20 pF	-	-	20 ⁽²⁾	
		Standard and high sink I/Os Load = 20 pF	-	-	50 ⁽²⁾	
l _{lkg}	Digital input pad leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA
1	Analog input pad leakage current	V _{SS} ≤ V _{IN} ≤ V _{DD} -40 °C < T _A < 125 °C	-	-	±250	nA
l _{lkg ana}		V _{SS} ≤ V _{IN} ≤ V _{DD} -40 °C < T _A < 150 °C	-	-	±500	
l _{lkg(inj)}	Leakage current in adjacent I/O ⁽³⁾	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA
I _{DDIO}	Total current on either V _{DDIO} or V _{SSIO}	Including injection currents	-	-	60	mA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

10.3.10 I²C interface characteristics

Symbol	Parameter	Standard	mode I ² C	Fast mode I ² C ⁽¹⁾		Unit	
Symbol		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} = 3 to 5.5 V)	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time (V _{DD} = 3 to 5.5 V)	-	300	-	300		
t _{h(STA)}	START condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-		
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-		
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 39. I²C characteristics

1. f_{MASTER} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz)

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

10.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T _A = 25 °C, f _{MASTER} = 16 MHz (HSI clock), Conforms to IEC 1000-4-2	3/B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = 25 °C, f _{MASTER} = 16 MHz (HSI clock), Conforms to IEC 1000-4-4	4/A

Table	12	EMC	data
rable	4Z.		uala

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

r								
	Conditions							
Symbol	General conditions frequency band 8 16	lax f _{CPU} ⁽¹⁾						
	General condition			-	16 MHz			
S _{EMI} Peak level EMI level		V _{DD} = 5 V,	0.1 MHz to 30 MHz	15	17			
		30 MHz to 130 MHz	18	22	dBµV			
		130 MHz to 1 GHz	-1	3	υυμν			
	EMI level	61967-2	-	2	2.5			

Table 4	13. E	EMI c	lata
---------	-------	-------	------

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

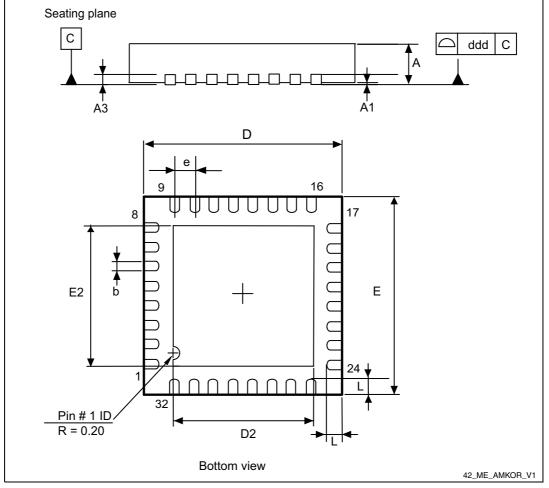
Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Table 44.	ESD abs	olute maximum	ratings
-----------	---------	---------------	---------

Symbol Ratings		Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	ЗA	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	$T_A = 25^{\circ}C$, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = 25°C, conforming to JESD22-A115	В	200	

1. Data based on characterization results, not tested in production



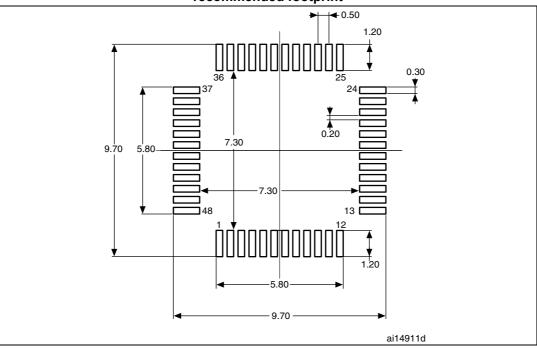
11 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

11.1 VFQFPN32 package information

Figure 42. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline

1. Drawing is not to scale.



Symbol		millimeters		inches ⁽¹⁾					
Symbol	Min	Тур	Мах	Min	Тур	Max			
А	-	-	1.600	-	-	0.0630			
A1	0.050	-	0.150	0.0020	-	0.0059			
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571			
b	0.170	0.220	0.270	0.0067	0.0087	0.0106			
С	0.090	-	0.200	0.0035	-	0.0079			
D	8.800	9.000	9.200	0.3465	0.3543	0.3622			
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835			
D3	-	5.500	-	-	0.2165	-			
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622			
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835			
E3	-	5.500	-	-	0.2165	-			
е	-	0.500	-	-	0.0197	-			
L	0.450	0.600	0.750	0.0177	0.0236	0.0295			
L1	-	1.000	-	-	0.0394	-			
k	0°	3.5°	7°	0°	3.5°	7°			
CCC	-	-	0.080	-	-	0.0031			

Table 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 46. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

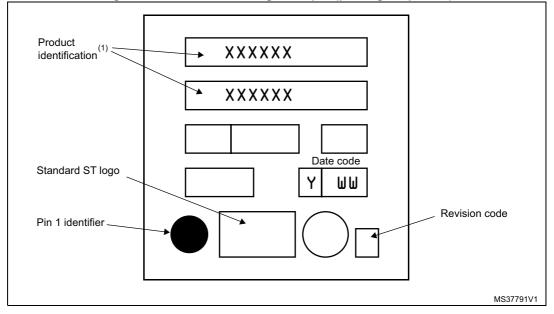


Figure 47. LQFP48 marking example (package top view)

12 Ordering information

Example:	STM8A	F	62	6	6	Т	т	D	xxx ⁽³⁾	١
Product class			Ī							1
8-bit automotive microcontroller										
Program memory type										
F = Flash + EEPROM										
P = FASTROM										
Device family										
62 = Silicon rev X and rev W, LIN only										
Program memory size 4 = 16 Kbyte										
4 = 16 Kbyte 6 = 32 Kbyte										
0 – 32 Kbyle										
Pin count										
6 = 32 pins										
8 = 48 pins										
HSI accuracy										
Blank = ± 5 %										
I = ± 2.5 %										
Package type										
T = LQFP										
U = VFQFPN										
Temperature range										
A = -40 to 85 °C								_		
C = -40 to 125 °C										
D = -40 to 150 °C										
Packing										
Y = Tray										
U = Tube										
X = Tape and reel compliant with EIA 48	1-C									

Figure 51. STM8AF6246/48/66/68 ordering information scheme^{(1) (2)}

 For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the nearest ST Sales Office.

- 2. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.
- Customer specific FASTROM code or custom device configuration. This field shows 'SSS' if the device contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed to be replaced later by the target silicon.

DocID14952 Rev 11

