

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6246ucx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.4.2 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

5.4.3 Protection of user boot code (UBC)

If the user chooses to update the Flash program memory using a specific boot code to perform in application programming (IAP), this boot code needs to be protected against unwanted modification.

In the STM8A a memory area of up to 32 Kbyte can be protected from overwriting at user option level. Other than the standard write protection, the UBC protection can exclusively be modified via the debug interface, the user software cannot modify the UBC protection status.

The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and NUBC option bytes (see Section 9: Option bytes on page 44).

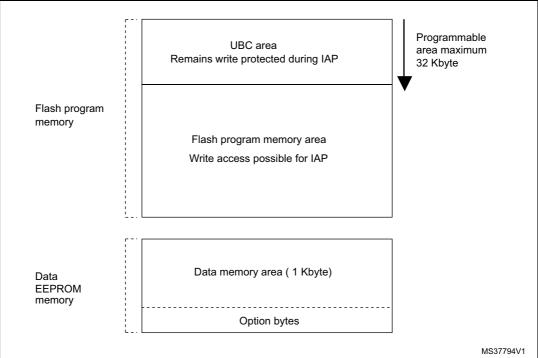


Figure 2. Flash memory organization of STM8AF6246/48/66/68

Independent watchdog timer

The independent watchdog peripheral can be used to resolve malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure. If the hardware watchdog feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and generates a reset unless the key register is written by software before the counter reaches the end of count.

5.7.2 Auto-wakeup counter

This counter is used to cyclically wakeup the device in Active-halt mode. It can be clocked by the internal 128 kHz internal low-frequency RC oscillator or external clock.

LSI clock can be internally connected to TIM3 input capture channel 1 for calibration.

5.7.3 Beeper

This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be output on a pin. This is useful when audible sounds without interference need to be generated for use in the application.

5.7.4 Advanced control and general purpose timers

STM8A devices described in this datasheet, contain up to three 16-bit advanced control and general purpose timers providing nine CAPCOM channels in total. A CAPCOM channel can be used either as input compare, output compare or PWM channel. These timers are named TIM1, TIM2 and TIM3.

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM1	16-bit	Up/down	1 to 65536	4	3	Yes	Yes	Yes	Yes
TIM2	16-bit	Up	2 ⁿ n = 0 to 15	3	None	No	No	No	No
TIM3	16-bit	Up	2 ⁿ n = 0 to 15	2	None	No	No	No	No

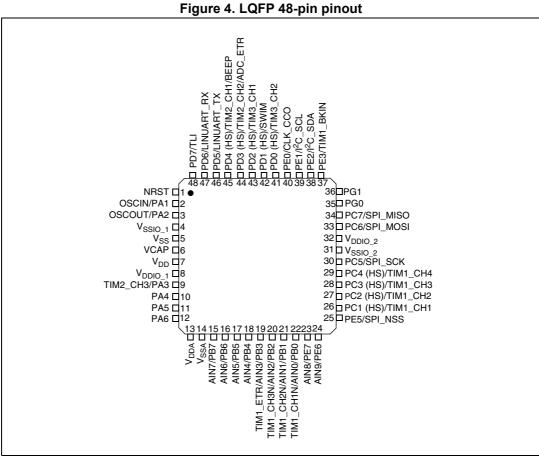
Table 3. Advanced control and general purpose timers

UART mode

- Full duplex, asynchronous communications NRZ standard format (mark/space)
- High-precision baud rate generator
 - A common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits) 1 or 2 stop bits parity control
- Separate enable bits for transmitter and receiver
- Error detection flags
- Reduced power consumption mode
- Multi-processor communication enter mute mode if address match does not occur
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.10 Input/output specifications

The product features four different I/O types:


- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

2. (HS) high sink capability.

Table 7. Legend/abbreviation

Туре	I= input, O	I= input, O = output, S = power supply						
Level	Input	CM = CMOS (standard for all I/Os)						
	Output	Dutput HS = High sink (8 mA)						
Output speed	O1 = Standard (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset							
Port and control	Input	float = floating, wpu = weak pull-up						
configuration	Output	T = true open drain, OD = open drain, PP = push pull						
Reset state	Unless othe	state after reset release). rwise specified, the pin state is the same during the reset phase (i.e. ") and after internal reset release (i.e. at reset state).						

Pi	-						•		,				
num					Inpu	t		Out	put		_		
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	wpu	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	NRST	I/O	-	Х	-	-	-	-	-	Reset	•	-
2	2	PA1/OSCIN ⁽³⁾	I/O	X	Х	-	-	01	Х	Х	Port A1	Resonator/crystal in	-
3	3	PA2/OSCOUT	I/O	X	Х	Х	-	01	Х	Х	Port A2	Resonator/crystal out	-
4	-	V _{SSIO_1}	S	-	-	-	-	-	-	-	I/O groun	d	-
5	4	V _{SS}	S	-	-	-	-	-	-	-	Digital gro	bund	-
6	5	VCAP	S	-	-	-	-	-	-	-	1.8 V reg	ulator capacitor	-
7	6	V _{DD}	S	-	-	-	-	-	-	-	Digital po	wer supply	-
8	7	V _{DDIO_1}	S	-	-	-	-	-	-	-	I/O power	supply	-
-	8	PF4/AIN12 ⁽⁴⁾⁽⁵⁾	I/O	X	Х		-	01	Х	Х	Port F4	Analog input 12	-
9	-	PA3/TIM2_CH3	I/O	x	х	Х	-	01	х	х	Port A3	Timer 2 - channel 3	TIM3_CH1 [AFR1]
10	-	PA4	I/O	Х	Х	Х	-	O3	Х	Х	Port A4		-
11	-	PA5	I/O	Х	Х	Х	-	O3	Х	Х	Port A5		-
12	-	PA6	I/O	Х	Х	Х	-	O3	Х	Х	Port A6		-
13	9	V _{DDA}	S	-	-	-	-	-	-	-	Analog po	ower supply	-
14	10	V _{SSA}	S	-	-	-	-	-	-	-	Analog gr	ound	-
15	-	PB7/AIN7	I/O	Х	Х	Х	-	01	Х	Х	Port B7	Analog input 7	-
16	-	PB6/AIN6	I/O	Х	Х	Х	-	01	Х	Х	Port B6	Analog input 6	-
17	11	PB5/AIN5	I/O	x	х	Х	-	01	х	х	Port B5	Analog input 5	I ² C_SDA [AFR6]
18	12	PB4/AIN4	I/O	x	х	х	-	01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]
19	13	PB3/AIN3	I/O	x	х	х	I	01	х	х	Port B3	Analog input 3	TIM1_ETR [AFR5]
20	14	PB2/AIN2	I/O	x	х	х	-	01	х	х	Port B2	Analog input	TIM1_NCC3 [AFR5]
21	15	PB1/AIN1	I/O	x	х	Х	-	01	х	х	Port B1	Analog input 1	TIM1_NCC2 [AFR5]
22	16	PB0/AIN0	I/O	x	х	х	-	01	х	х	Port B0	Analog input 0	TIM1_NCC1 [AFR5]
23	-	PE7/AIN8	I/O	X	Х		-	01	Х	Х	Port E7	Analog input 8	-

Table 8. STM8AF6246/48/66/68 ((32 Kbv	vte) micro	ocontroller	pin descri	ption ⁽¹⁾⁽²⁾
				pin acour	puon

			wale legister map (continued)		
Address	Block	Register label	Register name	Reset status	
0x00 5014		PE_ODR	Port E data output latch register	0x00	
0x00 5015		PE_IDR	Port E input pin value register	0xXX ⁽¹⁾	
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00	
0x00 5017		PE_CR1	Port E control register 1	0x00	
0x00 5018	D18 PE_CR2 Port E control regis		Port E control register 2	0x00	
0x00 5019		PF_ODR	Port F data output latch register	0x00	
0x00 501A		PF_IDR	Port F input pin value register	0xXX ⁽¹⁾	
0x00 501B	Port F	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00	
0x00 501D		PF_CR2	Port F control register 2	0x00	
0x00 501E		PG_ODR	Port G data output latch register	0x00	
0x00 501F		PG_IDR	Port G input pin value register	0xXX ⁽¹⁾	
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00	
0x00 5021		PG_CR1	Port G control register 1	0x00	
0x00 5022		PG_CR2	Port G control register 2	0x00	

Table 10. I/O port hardware register map (continued)
--

1. Depends on the external circuitry.

Address	Block	Register label	Register name	Reset status				
0x00 505A		FLASH_CR1	Flash control register 1	0x00				
0x00 505B		FLASH_CR2	Flash control register 2	0x00				
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF				
0x00 505D	Flash	FLASH_FPR	Flash protection register	0x00				
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF				
0x00 505F		FLASH_IAPSR	ASH_IAPSR Flash in-application programming status register					
0x00 5060 to 0x00 5061		R	eserved area (2 bytes)					
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00				
0x00 5063		F	Reserved area (1 byte)					
0x00 5064	Flash	FLASH_DUKR	Data EEPROM unprotection register	0x00				
0x00 5065 to 0x00 509F		Reserved area (59 bytes)						

Table 11. General hardware register map

DocID14952 Rev 11

A al al c	Option	Option	10	Option bits 7 6 5 4 3 2 1 0								
Addr.	name	byte no.	7									
0x00 480B	TMU	OPT6				TM	U[3:0]				0x00	
0x00 480C	TMO	NOPT6		NTMU[3:0]								
0x00 480D	Flash wait	OPT7		Reserved WAIT STATE								
0x00 480E	states	NOPT7				Reserve	d			NWAIT STATE	0xFF	
0x00 480F						Reserved						
0x00 4810		OPT8				TMU_K	EY 1 [7:0]				0x00	
0x00 4811		OPT9				TMU_K	EY 2 [7:0]				0x00	
0x00 4812		OPT10		TMU_KEY 3 [7:0]								
0x00 4813		OPT11		TMU_KEY 4 [7:0]							0x00	
0x00 4814	TMU	OPT12		TMU_KEY 5 [7:0]							0x00	
0x00 4815		OPT13		TMU_KEY 6 [7:0]							0x00	
0x00 4816		OPT14				TMU_K	EY 7 [7:0]				0x00	
0x00 4817		OPT15		TMU_KEY 8 [7:0]								
0x00 4818		OPT16		TMU_MAXATT [7:0]								
0x00 4819 to 487D	Reserved											
0x00 487E	Boot-	OPT17				BL	[7:0]				0x00	
0x00 487F	loader ⁽¹⁾	NOPT17				NB	L[7:0]				0xFF	

Table 15. Option bytes (continued)

1. This option consists of two bytes that must have a complementary value in order to be valid. If the option is invalid, it has no effect on EMC reset.

Option byte no.	Description
	HSITRIM: Trimming option for 16 MHz internal RC oscillator
	0: 3-bit on-the-fly trimming (compatible with devices based on the 128K silicon)
	1: 4-bit on-the-fly trimming
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
OPT3	IWDG_HW: Independent watchdog
UF 13	0: IWDG independent watchdog activated by software1: IWDG independent watchdog activated by hardware
	WWDG_HW: Window watchdog activation
	0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on Halt
	0: No reset generated on Halt if WWDG active 1: Reset generated on Halt if WWDG active
	EXTCLK: External clock selection
	0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
	CKAWUSEL: Auto-wakeup unit/clock
OPT4	0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0]: AWU clock prescaler
	00: Reserved 01: 16 MHz to 128 kHz prescaler
	10: 8 MHz to 128 kHz prescaler
	11: 4 MHz to 128 kHz prescaler
0.075	HSECNT[7:0]: HSE crystal oscillator stabilization time
OPT5	This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00.
0.770	TMU[3:0]: Enable temporary memory unprotection
OPT6	0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
OPT7	Reserved
OPT8	TMU_KEY 1 [7:0]: Temporary unprotection key 0 Temporary unprotection key: Must be different from 0x00 or 0xFF
	TMU_KEY 2 [7:0]: Temporary unprotection key 1
OPT9	Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT10	TMU_KEY 3 [7:0]: Temporary unprotection key 2 Temporary unprotection key: Must be different from 0x00 or 0xFF
	TMU_KEY 4 [7:0]: Temporary unprotection key 3
OPT11	Temporary unprotection key: Must be different from 0x00 or 0xFF

Table 16. Option byte description (continued)

Option byte no.	Description					
OPT12	TMU_KEY 5 [7:0]: Temporary unprotection key 4 Temporary unprotection key: Must be different from 0x00 or 0xFF					
OPT13	TMU_KEY 6 [7:0]: Temporary unprotection key 5 Temporary unprotection key: Must be different from 0x00 or 0xFF					
OPT14	TMU_KEY 7 [7:0]: Temporary unprotection key 6 Temporary unprotection key: Must be different from 0x00 or 0xFF					
OPT15	TMU_KEY 8 [7:0]: Temporary unprotection key 7 Temporary unprotection key: Must be different from 0x00 or 0xFF					
OPT16	TMU_MAXATT [7:0]: TMU access failure counter TMU_MAXATT can be initialized with the desired value only if TMU is disabled (TMU[3:0]=0101 in OPT6 option byte). When TMU is enabled, any attempt to temporary remove the readout protection by using wrong key values increments the counter. When the option byte value reaches 0x08, the Flash memory and data EEPROM are erased.					
OPT17	BL [7:0]: Bootloader enable If this option byte is set to 0x55 (complementary value 0xAA) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0560).					

Table 16. Option byte description (continued)

r	General conditions for v_{DD} apply, $T_A = -40$ to 55 °C							
			Conditi					
Symbol	Parameter	Main voltage Flash regulator mode ⁽²⁾ (MVR) ⁽¹⁾		Clock source and specific temperature condition	Тур	Мах	Unit	
			Power-	Clocks stopped	5	35 ⁽³⁾		
I _{DD(H)}	Supply current in Halt mode	Off	down	Clocks stopped, T _A = 25 °C	5	25		
	Supply current in Active-halt	On	Power- down	Ext. clock 16 MHz f _{MASTER} = 125 kHz	770 900 ⁽³⁾		μA	
	mode with regulator on		down	LSI clock 128 kHz	150	230 ⁽³⁾		
I _{DD(AH)}	Supply current in Active-halt		Power-	LSI clock 128 kHz	25	42 ⁽³⁾		
	mode with regulator off	Off	down	LSI clock 128 kHz, T _A = 25 °C	25	30		
t	Wakeup time from Active- halt mode with regulator on	On	Operating	T _A = -40 to 150 °C	10	30 ⁽³⁾	μs	
t _{WU(AH)}	Wakeup time from Active- halt mode with regulator off	Off	mode	i _A = -το το 150° Ο	50	80 ⁽³⁾	μο	

Table 24. Total current consumption in Halt and Active-halt modes. General conditions for V_{DD} apply, $T_A = -40$ to 55 °C

1. Configured by the REGAH bit in the CLK_ICKR register.

2. Configured by the AHALT bit in the FLASH_CR1 register.

3. Data based on characterization results. Not tested in production.

Current consumption for on-chip peripherals

Table 25. Oscillator	current consumption
----------------------	---------------------

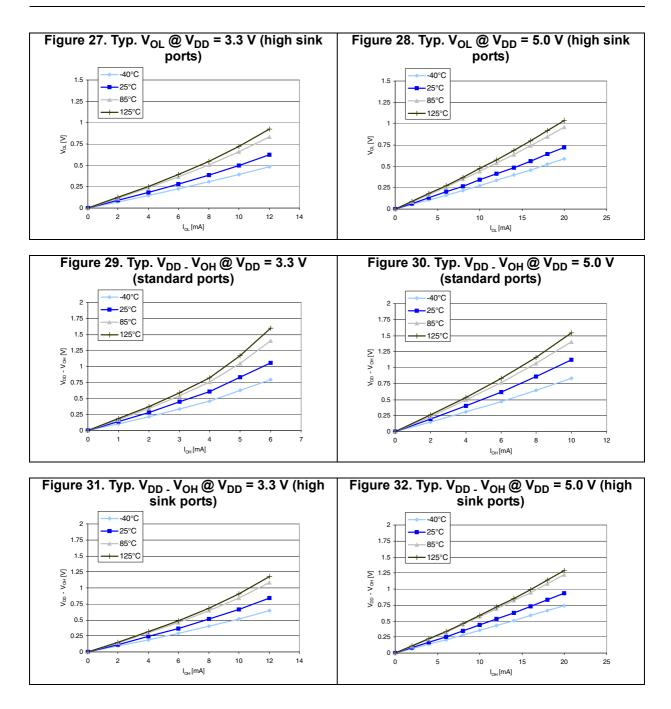
Symbol	Parameter	Con	ditions	Тур	Max ⁽¹⁾	Unit		
	Quartz or		f _{OSC} = 24 MHz	1	2.0 ⁽³⁾			
		ceramic resonator,			f _{OSC} = 16 MHz	0.6	-	
	CL = 33 pF HSE oscillator current	f _{OSC} = 8 MHz	0.57	-	mA			
IDD(OSC)	consumption ⁽²⁾	nption ⁽²⁾ Quartz or	f _{OSC} = 24 MHz	0.5	1.0 ⁽³⁾	ШA		
	ceramic resonator, CL = 33 pF V _{DD} = 3.3 V	f _{OSC} = 16 MHz	0.25	-				
		CL = 33 pF V _{DD} = 3.3 V	f _{OSC} = 8 MHz	0.18	-			

1. During startup, the oscillator current consumption may reach 6 mA.

2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Informative data.

10.3.6 I/O port pin characteristics


General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V_{IL}	Input low level voltage		-0.3 V	-	0.3 x V _{DD}	
V _{IH}	Input high level voltage	_	0.7 x V _{DD}	-	V _{DD} + 0.3 V	
V _{hys}	Hysteresis ⁽¹⁾		-	0.1 x V _{DD}	-	
M	Output high level voltage	Standard I/0, V _{DD} = 5 V, I = 3 mA	V _{DD} - 0.5 V	-	-	
V _{OH}	output high level voltage	Standard I/0, V _{DD} = 3 V, I = 1.5 mA	V _{DD} - 0.4 V	-	-	V
		High sink and true open drain I/0, V _{DD} = 5 V I = 8 mA	-	-	0.5	
V_{OL}	Output low level voltage	Standard I/0, V _{DD} = 5 V I = 3 mA	-	-	0.6	
		Standard I/0, V _{DD} = 3 V I = 1.5 mA	-	-	0.4	
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	35	50	65	kΩ
	Rise and fall time (10% - 90%)	Fast I/Os Load = 50 pF	-	-	35 ⁽²⁾	
		Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	ns
ι _R , ι _F		Fast I/Os Load = 20 pF	-	-	20 ⁽²⁾	115
		Standard and high sink I/Os Load = 20 pF	-	-	50 ⁽²⁾	
l _{lkg}	Digital input pad leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA
1	Analog input pad leakage	V _{SS} ≤ V _{IN} ≤ V _{DD} -40 °C < T _A < 125 °C	-	-	±250	~
l _{Ikg ana}	current	V _{SS} ≤ V _{IN} ≤ V _{DD} -40 °C < T _A < 150 °C	-	-	±500	nA
l _{lkg(inj)}	Leakage current in adjacent I/O ⁽³⁾	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA
I _{DDIO}	Total current on either V _{DDIO} or V _{SSIO}	Including injection currents	-	-	60	mA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

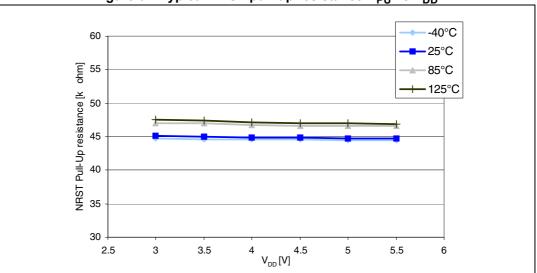
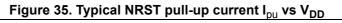
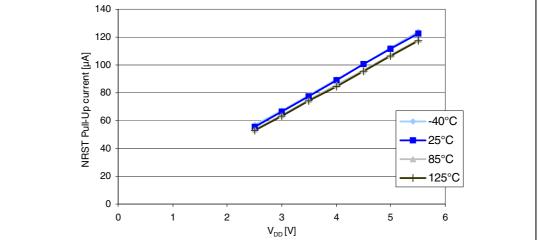




Figure 34. Typical NRST pull-up resistance R_{PU} vs V_{DD}

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below $V_{IL(NRST)}$ max (see *Table 36: NRST pin characteristics*), otherwise the reset is not taken into account internally.

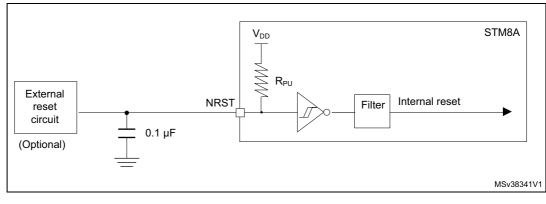


Figure 36. Recommended reset pin protection

DocID14952 Rev 11

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

			Conditions			
Symbol	Parameter		Monitored	Max f _{CPU} ⁽¹⁾		Unit
		General conditions	frequency band	8 MHz	16 MHz	
		V _{DD} = 5 V,	0.1 MHz to 30 MHz	15	17	
e	Peak level	T _A = 25 °C, LQFP80 package	30 MHz to 130 MHz	18	22	dBµV
SEMI	S _{EMI} LQFP80 package conforming to IEC	130 MHz to 1 GHz	-1	3	ubμv	
	EMI level	61967-2	-	2	2.5	

Table 4	13. E	EMI c	lata
---------	-------	-------	------

1. Data based on characterization results, not tested in production.

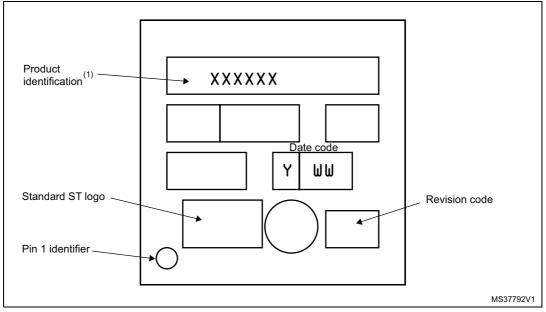
Absolute maximum ratings (electrical sensitivity)

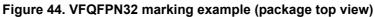
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Table 44.	ESD	absolute	maximum	ratings
-----------	-----	----------	---------	---------

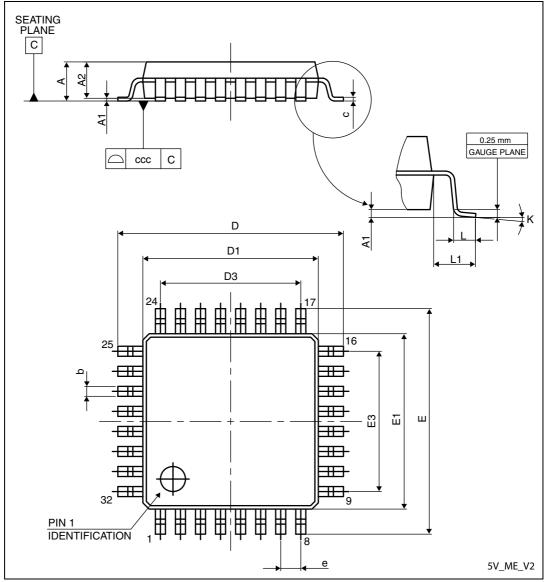

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	ЗA	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	$T_A = 25^{\circ}C$, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = 25°C, conforming to JESD22-A115	В	200	


1. Data based on characterization results, not tested in production

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Currence of		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031


Table 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

11.3 LQFP32 package information

Figure 48. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Currence of		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

Table 48. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

12 Ordering information

Example:	STM8A	F	62	6	6	Т	т	D	xxx ⁽³⁾	١
Product class			I							1
8-bit automotive microcontroller										
Program memory type										
F = Flash + EEPROM										
P = FASTROM										
Device family										
62 = Silicon rev X and rev W, LIN only										
Program memory size 4 = 16 Kbyte										
4 = 16 Kbyte 6 = 32 Kbyte										
0 – 32 Kbyle										
Pin count										
6 = 32 pins										
8 = 48 pins										
HSI accuracy										
Blank = ± 5 %										
I = ± 2.5 %										
Package type										
T = LQFP										
U = VFQFPN										
Temperature range										
A = -40 to 85 °C								_		
C = -40 to 125 °C										
D = -40 to 150 °C										
Packing										
Y = Tray										_
U = Tube										
X = Tape and reel compliant with EIA 48	1-C									

Figure 51. STM8AF6246/48/66/68 ordering information scheme^{(1) (2)}

 For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the nearest ST Sales Office.

- 2. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.
- Customer specific FASTROM code or custom device configuration. This field shows 'SSS' if the device contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed to be replaced later by the target silicon.

DocID14952 Rev 11

13 STM8 development tools

Development tools for the STM8A microcontrollers include the

- STice emulation system offering tracing and code profiling
- STVD high-level language debugger including assembler and visual development environment seamless integration of third party C compilers.
- STVP Flash programming software

In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

13.1 Emulation and in-circuit debugging tools

The STM8 tool line includes the STice emulation system offering a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8A application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full-featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including tracing, profiling and code coverage analysis to help detect execution bottlenecks and dead code.

In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows users to order exactly what they need to meet their development requirements and to adapt their emulation system to support existing and future ST microcontrollers.

13.1.1 STice key features

- Program and data trace recording up to 128 K records
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Real-time read/write of all device resources during emulation
- Occurrence and time profiling and code coverage analysis (new features)
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- USB 2.0 high speed interface to host PC
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows users to specify the components they need to meet their development requirements and adapt to future requirements.
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

