

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6246ucy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		10.3.7	Reset pin characteristics
		10.3.8	TIM 1, 2, 3, and 4 timer specifications
		10.3.9	SPI serial peripheral interface69
		10.3.10	I ² C interface characteristics
		10.3.11	10-bit ADC characteristics
		10.3.12	EMC characteristics
11	Pack	age info	ormation
	11.1	VFQFP	N32 package information 78
	11.2	LQFP4	8 package information
	11.3	LQFP3	2 package information
	11.4	Therma	Il characteristics
		11.4.1	Reference document88
		11.4.2	Selecting the product temperature range
12	Orde	ring info	ormation
13	STM	8 develo	pment tools
	13.1	Emulati	on and in-circuit debugging tools
		13.1.1	STice key features
	13.2	Softwar	re tools
		13.2.1	STM8 toolset
		13.2.2	C and assembly toolchains92
	13.3	Prograr	nming tools
14	Revis	sion his [.]	tory
			-

5 **Product overview**

This section describes the family features that are implemented in the products covered by this datasheet.

For more detailed information on each feature please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

5.1 STM8A central processing unit (CPU)

The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.1.1 Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus with single cycle fetching for most instructions
- X and Y 16-bit index registers, enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter with 16-Mbyte linear memory space
- 16-bit stack pointer with access to a 64 Kbyte stack
- 8-bit condition code register with seven condition flags for the result of the last instruction.

5.1.2 Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for efficient implementation of local variables and parameter passing

5.1.3 Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

5.4.2 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

5.4.3 Protection of user boot code (UBC)

If the user chooses to update the Flash program memory using a specific boot code to perform in application programming (IAP), this boot code needs to be protected against unwanted modification.

In the STM8A a memory area of up to 32 Kbyte can be protected from overwriting at user option level. Other than the standard write protection, the UBC protection can exclusively be modified via the debug interface, the user software cannot modify the UBC protection status.

The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and NUBC option bytes (see Section 9: Option bytes on page 44).

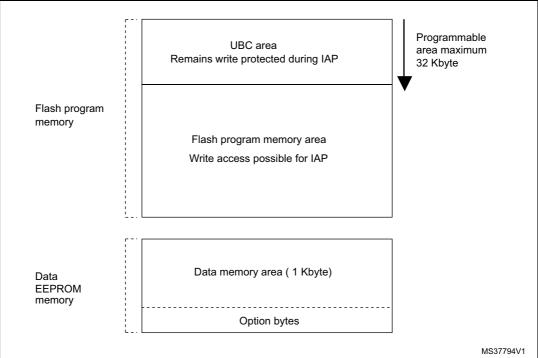


Figure 2. Flash memory organization of STM8AF6246/48/66/68

Pi num					Inpu	t		Out	put				
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЪР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
24		PE6/AIN9	I/O	Х	Х	Х	-	01	Х	Х	Port E7	Analog input 9	-
25	17	PE5/SPI_NSS	I/O	Х	Х	Х	-	01	Х	Х	Port E5	SPI master/slave select	-
26	18	PC1/TIM1_CH1	I/O	Х	Х	Х	HS	O3	Х	Х	Port C1	Timer 1 - channel 1	-
27	19	PC2/TIM1_CH2	I/O	Х	Х	Х	HS	O3	Х	Х	Port C2	Timer 1- channel 2	-
28	20	PC3/TIM1_CH3	I/O	Х	Х	Х	HS	O3	Х	Х	Port C3	Timer 1 - channel 3	-
29	21	PC4/TIM1_CH4	I/O	Х	Х	Х	HS	O3	Х	Х	Port C4	Timer 1 - channel 4	-
30	22	PC5/SPI_SCK	I/O	Х	Х	Х		O3	Х	Х	Port C5	SPI clock	-
31	-	V _{SSIO_2}	S	-	-	-	-	-	-	-	I/O groun	d	-
32	-	V _{DDIO_2}	S	-	-	-	-	-	-	-	I/O power	supply	-
33	23	PC6/SPI_MOSI	I/O	x	х	х	-	O3	х	х	Port C6	SPI master out/ slave in	-
34	24	PC7/SPI_MISO	I/O	Х	Х	Х	-	O3	Х	Х	Port C7	SPI master in/ slave out	-
35	-	PG0	I/O	Х	Х	-	-	01	Х	Х	Port G0	-	-
36	-	PG1	I/O	Х	Х	-	-	01	Х	Х	Port G1	-	-
37	-	PE3/TIM1_BKIN	I/O	Х	Х	Х	-	01	Х	Х	Port E3	Timer 1 - break input	-
38	-	PE2/I ² C_SDA	I/O	Χ	-	Х	-	01	T ⁽⁶⁾	-	Port E2	I ² C data	-
39	-	PE1/I ² C_SCL	I/O	Χ	-	Х	-	01	T ⁽⁶⁾	-	Port E1	I ² C clock	-
40	-	PE0/CLK_CCO	I/O	x	х	х	-	O3	х	х	Port E0	Configurable clock output	-
41	25	PD0/TIM3_CH2	I/O	x	x	х	HS	O3	x	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
42	26	PD1/SWIM ⁽⁷⁾	I/O	Х	X	Х	HS	O4	Х	Х	Port D1	SWIM data interface	-
43	27	PD2/TIM3_CH1	I/O	x	х	х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
44	28	PD3/TIM2_CH2	I/O	x	х	х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
45	29	PD4/TIM2_CH1/ BEEP	I/O	x	х	х	HS	O3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
46	30	PD5/ LINUART_TX	I/O	x	х	Х	-	01	х	х	Port D5	LINUART data transmit	-

Table 8. STM8AF6246/48/66/68 (32 Kbyte) microcontroller pin description ⁽¹⁾⁽²⁾ (conti
--

			raware register map (continued)	
Address	Block	Register label	Register label Register name	
0x00 5014		PE_ODR		
0x00 5015		PE_IDR	Port E input pin value register	0xXX ⁽¹⁾
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017) 5017 PE_		Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX ⁽¹⁾
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0xXX ⁽¹⁾
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022		PG_CR2	Port G control register 2	0x00

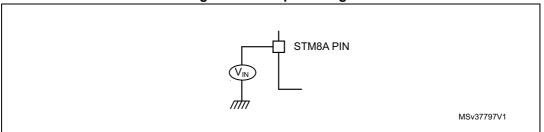
Table 10. I/O port hardware register map (continued)
--

1. Depends on the external circuitry.

Address	Block	Register label Register name		Reset status		
0x00 505A		FLASH_CR1	Flash control register 1	0x00		
0x00 505B		FLASH_CR2	Flash control register 2	0x00		
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF		
0x00 505D	Flash	FLASH_FPR	Flash protection register	0x00		
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF		
0x00 505F		FLASH_IAPSR	Flash in-application programming status register	0x40		
0x00 5060 to 0x00 5061		Reserved area (2 bytes)				
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00		
0x00 5063		Reserved area (1 byte)				
0x00 5064	Flash	lash FLASH_DUKR Data EEPROM unprotection register				
0x00 5065 to 0x00 509F		Flash FLASH_DUKR Data EEPROM unprotection register 0x00 Reserved area (59 bytes)				

Table 11. General hardware register map

A al al c	Option	Option			-	Optio	on bits	-			Factory
Addr.	name	byte no.	7								default setting
0x00 480B	TMU	OPT6		TMU[3:0]						0x00	
0x00 480C	TMO	NOPT6				NTM	1U[3:0]				0xFF
0x00 480D	Flash wait	OPT7				Reserve	d			WAIT STATE	0x00
0x00 480E	states	NOPT7		Reserved NWAIT STATE						0xFF	
0x00 480F						Reserved					
0x00 4810		OPT8		TMU_KEY 1 [7:0]						0x00	
0x00 4811		OPT9		TMU_KEY 2 [7:0]						0x00	
0x00 4812		OPT10		TMU_KEY 3 [7:0]						0x00	
0x00 4813		OPT11		TMU_KEY 4 [7:0]						0x00	
0x00 4814	TMU	OPT12		TMU_KEY 5 [7:0]						0x00	
0x00 4815		OPT13		TMU_KEY 6 [7:0]						0x00	
0x00 4816		OPT14		TMU_KEY 7 [7:0]						0x00	
0x00 4817		OPT15		TMU_KEY 8 [7:0]						0x00	
0x00 4818		OPT16		TMU_MAXATT [7:0]						0xC7	
0x00 4819 to 487D		·				Reserved					
0x00 487E	Boot-	OPT17				BL	[7:0]				0x00
0x00 487F	loader ⁽¹⁾	NOPT17				NB	L[7:0]				0xFF


Table 15. Option bytes (continued)

1. This option consists of two bytes that must have a complementary value in order to be valid. If the option is invalid, it has no effect on EMC reset.

10.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

Figure 7. Pin input voltage

10.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit	
V _{DDx} - V _{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	V	
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V	
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v	
V _{DDx} - V _{DD}	Variations between different power pins	-	50	mV	
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	IIIV	
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum ra (electrical sensitivity) o page 76		•	

Table 17. Voltage characteristics

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Symbol	Ratings	Max.	Unit
I _{VDDIO}	Total current into V_{DDIO} power lines (source) ⁽¹⁾⁽²⁾⁽³⁾	100	
I _{VSSIO}	Total current out of $V_{SS IO}$ ground lines (sink) ⁽¹⁾⁽²⁾⁽³⁾	100	
1.	Output current sunk by any I/O and control pin	20	mA
IIO	Output current source by any I/Os and control pin	-20	IIIA
I _{INJ(PIN)} ⁽⁴⁾	Injected current on any pin	±10	
I _{INJ(TOT)}	Sum of injected currents	50	

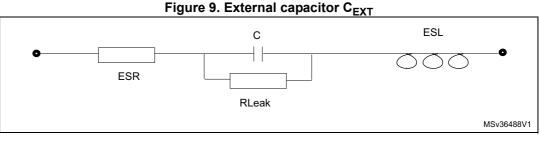
Table 18. Current characteristics

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.

- 2. The total limit applies to the sum of operation and injected currents.
- 3. V_{DDIO} includes the sum of the positive injection currents. V_{SSIO} includes the sum of the negative injection currents.
- 4. This condition is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current allowed and the corresponding V_{IN} maximum must always be respected.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
TJ	Maximum junction temperature	160	0

Table 20. Operating lifetime⁽¹⁾


Symbol	Ratings	Value	Unit
OLF	Conforming to AEC-Q100 rev G	-40 to 125 °C	Grade 1
		-40 to 150 °C	Grade 0

1. For detailed mission profile analysis, please contact the nearest local ST Sales Office.

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 21*. Care should be taken to limit the series inductance to less than 15 nH.

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 6 on page 49* and *Figure 7 on page 50*.

If not explicitly stated, general conditions of temperature and voltage apply.

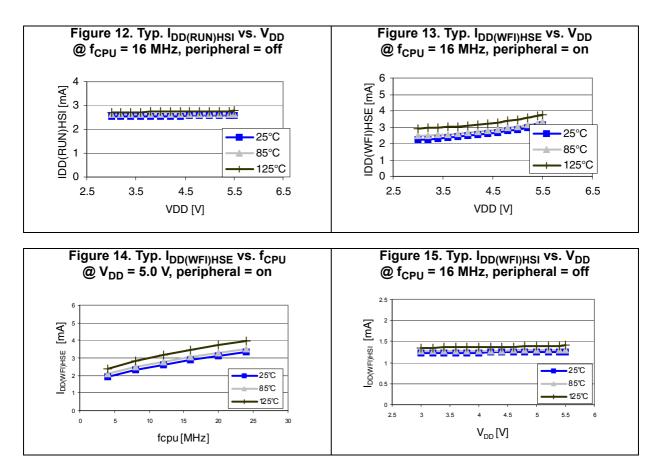

General conditions for v_{DD} apply, $I_A = -40$ to 150 °C							
Symbol	Parameter	Condi	Тур	Max	Unit		
		All peripherals	f _{CPU} = 16 MHz	7.4	14		
I _{DD(RUN)} ⁽¹⁾	Supply current in	clocked, code executed from Flash	f _{CPU} = 8 MHz	4.0	7.4 ⁽²⁾		
'DD(RUN)`	Run mode	program memory, HSE external clock	f _{CPU} = 4 MHz	2.4	4.1 ⁽²⁾		
		(without resonator)	f _{CPU} = 2 MHz	1.5	2.5		
		All peripherals	f _{CPU} = 16 MHz	3.7	5.0		
(1)	Supply current in Run mode	clocked, code executed from RAM and EEPROM, HSE external clock (without resonator)	f _{CPU} = 8 MHz	2.2	3.0 ⁽²⁾		
I _{DD(RUN)} ⁽¹⁾			f _{CPU} = 4 MHz	1.4	2.0 ⁽²⁾		
			f _{CPU} = 2 MHz	1.0	1.5	mA	
	Supply current in Wait mode	nt in peripherals off, HSE	f _{CPU} = 16 MHz	1.65	2.5		
I _{DD(WFI)} ⁽¹⁾			f _{CPU} = 8 MHz	1.15	1.9 ⁽²⁾		
'DD(WFI)`´			f _{CPU} = 4 MHz	0.90	1.6 ⁽²⁾		
			f _{CPU} = 2 MHz	0.80	1.5		
(1)	Supply f _{CPU} scaled down, all peripherals off,		Ext. clock 16 MHz f _{CPU} = 125 kHz	1.50	1.95		
I _{DD(SLOW)} ⁽¹⁾	current in Slow mode	code executed from RAM	LSI internal RC f _{CPU} = 128 kHz	1.50	1.80 ⁽²⁾		

Table 23. Total current consumption in Run, Wait and Slow mode. General conditions for V_{DD} apply, $T_A = -40$ to 150 °C

1. The current due to I/O utilization is not taken into account in these values.

2. Values not tested in production. Design guidelines only.

10.3.3 External clock sources and timing characteristics

HSE user external clock

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HSE_ext}	User external clock source frequency	T _A is -40 to 150 °C	0 ⁽¹⁾	-	16	MHz	
V_{HSEdHL}	Comparator hysteresis	-	$0.1 \times V_{DD}$	-	-		
V _{HSEH}	OSCIN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD}	V	
V _{HSEL}	OSCIN input pin low level voltage	-	V _{SS}	-	0.3 x V _{DD}		
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	-	+1	μA	

Table 28. HSE user external clock characteristics

1. In CSS is used, the external clock must have a frequency above 500 kHz.

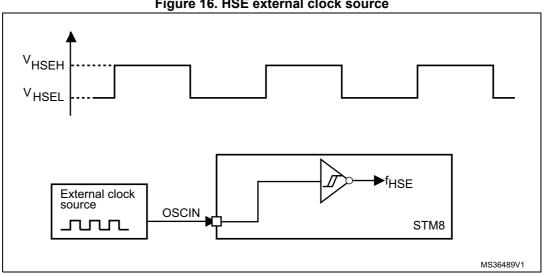


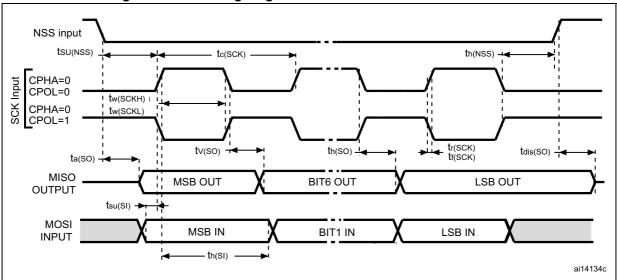
Figure 16. HSE external clock source

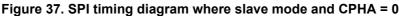
HSE crystal/ceramic resonator oscillator

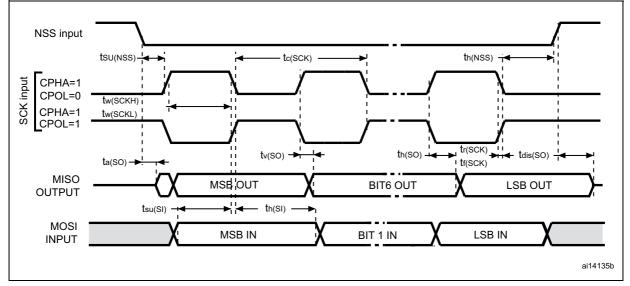
The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 16 MHz. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Table 29. HSE oscillator	characteristics
--------------------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _F	Feedback resistor	-	-	220	-	kΩ
$C_{L1}/C_{L2}^{(1)}$	Recommended load capacitance	-	-	-	20	pF
9 _m	Oscillator transconductance	-	5	-	-	mA/V
t _{SU(HSE)} ⁽²⁾	Startup time	V _{DD} is stabilized	-	2.8	-	ms


1. The oscillator needs two load capacitors, C_{L1} and C_{L2} , to act as load for the crystal. The total load capacitance (C_{load}) is $(C_{L1} * C_{L2})/(C_{L1} + C_{L2})$. If $C_{L1} = C_{L2}$, $C_{load} = C_{L1} / 2$. Some oscillators have built-in load capacitors, C_{L1} and C_{L2} .


2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 16 MHz oscillation is reached. It can vary with the crystal type that is used.


Electrical characteristics

- 3. Values based on design simulation and/or characterization results, and not tested in production.
- 4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
- 5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

Figure 38. SPI timing diagram where slave mode and CPHA = 1

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

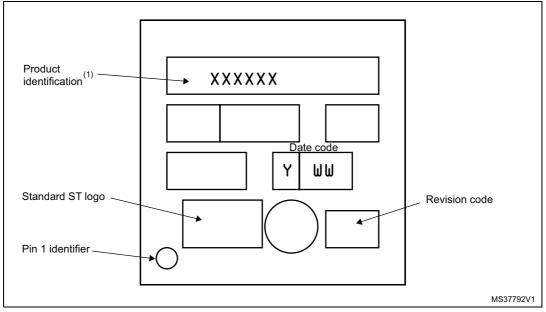
10.3.10 I²C interface characteristics

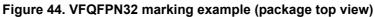
Symbol	Parameter	Standard	mode I ² C	Fast mod	Unit		
Symbol	Falameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾ 900 ⁽³⁾			
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time - 1000 - (V _{DD} = 3 to 5.5 V) - 1000 -		300	ns			
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time (V _{DD} = 3 to 5.5 V)	-	300	-	300	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-		
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-		
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 39. I²C characteristics

1. f_{MASTER} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz)

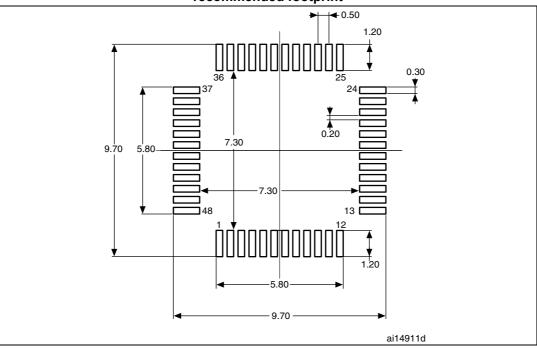
2. Data based on standard I²C protocol requirement, not tested in production


3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time


4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.


11.2 LQFP48 package information

SEATING PLANE A2 ŨŦŨŦŨŦŨŦĬĦŮŸŨŦŨŦŨŦŨŦŎŹ F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b Œ <u>ш</u> ш Ē ----------£ 48 13 12 e 5B_ME_V2

Figure 45. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Figure 46. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

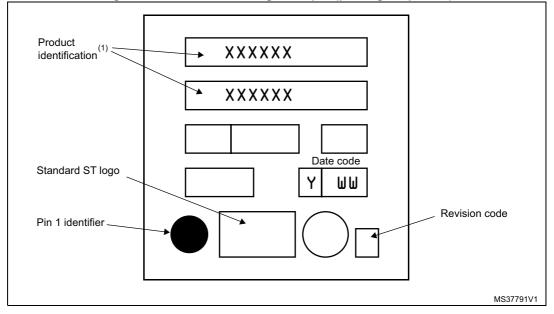


Figure 47. LQFP48 marking example (package top view)

12 Ordering information

Example:	STM8A	F	62	6	6	Т	т	D	xxx ⁽³⁾	١
Product class			Ī							1
8-bit automotive microcontroller										
Program memory type										
F = Flash + EEPROM										
P = FASTROM										
Device family										
62 = Silicon rev X and rev W, LIN only										
Program memory size 4 = 16 Kbyte										
4 = 16 Kbyte 6 = 32 Kbyte										
0 – 52 Kbyle										
Pin count										
6 = 32 pins										
8 = 48 pins										
HSI accuracy										
Blank = ± 5 %										
I = ± 2.5 %										
Package type										
T = LQFP										
U = VFQFPN										
Temperature range										
A = -40 to 85 °C								_		
C = -40 to 125 °C										
D = -40 to 150 °C										
Packing										
Y = Tray										
U = Tube										
X = Tape and reel compliant with EIA 48	1-C									

Figure 51. STM8AF6246/48/66/68 ordering information scheme^{(1) (2)}

 For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the nearest ST Sales Office.

- 2. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.
- Customer specific FASTROM code or custom device configuration. This field shows 'SSS' if the device contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed to be replaced later by the target silicon.

Date	Revision	Changes
31-Jan-2011	5	 Modified references to reference manual, and Flash programming manual in the whole document. Added reference to AEC Q100 standard on cover page. Renamed timer types as follows: Auto-reload timer to general purpose timer Multipurpose timer to advanced control timer System timer to basic timer Introduced concept of medium density Flash program memory. Updated timer names in <i>Figure: STM8A block diagram</i>. Added TMU brief description in <i>Section: Flash program and data EEPROM</i>, and updated TMU_MAXATT description in <i>Table: Option byte description</i>. Updated clock sources in clock controller features. Changed 16MHZTRIM0 to HSITRIM bit in <i>Section: User trimming</i>. Added Table: Peripheral clock gating bits. Updated Section: Low-power operating modes. Added Table: ADC naming and Table: Communication peripheral naming correspondence. Added Note 1 related AIN12 pin in Section: Analog-to-digital converter (ADC) and Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin description. Updated SPI data rate to 10 Mbit/s or f_{MASTER}/2 in Section: Serial peripheral interface (SPI). Added reset state in Table: Legend/abbreviation. Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin description: added Note 7 related to PD1/SWIM, modified Note 6, corrected wpu input for PE1 and PE2, and renamed TIMn_CCx and TIMn_NCCx to TIMn_CHx and TIMn_CHxN, respectively. Section: Register map: Replaced tables describing register maps and reset values for nonvolatile memory, global configuration, reset status, clock controller, interrupt controller, timers, communication interfaces, and ADC, by Table: General hardware register map.

Table 50. Document revision history (continued)

Date	Revision	Changes
18-Jul-2012	6 (continued)	 Section: Reset pin characteristics: updated text below Figure: Typical NRST pull-up current Ipu vs VDD. Figure: Recommended reset pin protection: updated unit of capacitor. Table: SPI characteristics: updated SCK high and low time conditions and values. Figure: SPI timing diagram - master mode: replaced 'SCK input' signals with 'SCK output' signals. Updated Table: VFQFPN 32-lead very thin fine pitch quad flat no-lead package mechanical data, Table: LQFP 48-pin low profile quad flat package mechanical data. Replaced Figure: LQFP 48-pin low profile quad flat package (7 x 7) and Figure: LQFP 32-pin low profile quad flat package (7 x 7). Added Figure: LQFP 48-pin recommended footprint and Figure: LQFP 32-pin recommended footprint. Figure: Ordering information scheme(1): added footnote 1, added "xxx" and footnote 2, updated example and device family; added FASTROM. Section: C and assembly toolchains: added www.iar.com
04-Apr-2014	7	 Updated: Table: Device summary, Table: STM8AF62xx product line-up, Table: STM8AF/H61xx product line-up. SPI description in Features. The typical and maximum values for t_{TEMP} reset release delay in <i>Table: Operating conditions at power-up/power-down.</i> The symbol for NRST Input not filtered pulse duration in <i>Table: NRST pin characteristics</i> The address and comment of Reset interrupt in <i>Table: STM8A interrupt table.</i> Added the three footnotes to <i>Figure VFQFPN 32-lead very thin fine pitch quad flat no-lead package (5 x 5).</i>
24-Jun-2014	8	Updated <i>Table: HSI oscillator characteristics.</i> Added HSI accuracy and removed temperature range B in <i>Figure:</i> <i>Ordering information scheme(1).</i>
12-Nov-2014	9	Updates in <i>Table: HSI oscillator characteristics</i> (HSI oscillator accuracy (factory calibrated) values) and <i>Figure: Ordering information scheme(1)</i> (changed the value for I).

Table 50. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

