



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                   |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | STM8A                                                                 |
| Core Size                  | 8-Bit                                                                 |
| Speed                      | 16MHz                                                                 |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                             |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                 |
| Number of I/O              | 25                                                                    |
| Program Memory Size        | 32KB (32K x 8)                                                        |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | 1K x 8                                                                |
| RAM Size                   | 2K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                             |
| Data Converters            | A/D 7x10b                                                             |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 32-LQFP                                                               |
| Supplier Device Package    | 32-LQFP (7x7)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6266tax |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# List of figures

| Figure 1.  | STM8AF6246/48/66/68 block diagram                                                            | 12 |
|------------|----------------------------------------------------------------------------------------------|----|
| Figure 2.  | Flash memory organization of STM8AF6246/48/66/68                                             |    |
| Figure 3.  | VFQFPN/LQFP 32-pin pinout                                                                    |    |
| Figure 4.  | LQFP 48-pin pinout.                                                                          |    |
| Figure 5.  | Register and memory map of STM8A products                                                    |    |
| Figure 6.  | Pin loading conditions.                                                                      |    |
| Figure 7.  | Pin input voltage                                                                            |    |
| Figure 8.  | f <sub>CPUmax</sub> versus V <sub>DD</sub>                                                   |    |
| Figure 9.  | External capacitor C <sub>FXT</sub>                                                          |    |
| Figure 10. | Typ. I <sub>DD(RUN)HSE</sub> vs. V <sub>DD</sub> @f <sub>CPU</sub> = 16 MHz, peripheral = on | 56 |
| Figure 11. | Typ. $I_{DD(RUN)HSE}$ vs. $f_{CPU}$ @ $V_{DD}$ = 5.0 V, peripheral = on                      | 56 |
| Figure 12. | Typ. $I_{DD(RUN)HSI}$ vs. $V_{DD}$ @ $f_{CPU}$ = 16 MHz, peripheral = off                    | 57 |
| Figure 13. | Typ. $I_{DD(WFI)HSE}$ vs. $V_{DD}$ @ $f_{CPU}$ = 16 MHz, peripheral = on                     | 57 |
| Figure 14. | Typ. $I_{DD(WFI)HSE}$ vs. $f_{CPU}$ @ $V_{DD}$ = 5.0 V, peripheral = on                      | 57 |
| Figure 15. | Typ. $I_{DD(WFI)HSI}$ vs. $V_{DD}$ @ $f_{CPU}$ = 16 MHz, peripheral = off                    | 57 |
| Figure 16. | HSE external clock source                                                                    | 58 |
| Figure 17. | HSE oscillator circuit diagram                                                               |    |
| Figure 18. | Typical HSI frequency vs V <sub>DD</sub>                                                     |    |
| Figure 19. | Typical LSI frequency vs V <sub>DD</sub>                                                     |    |
| Figure 20. | Typical V <sub>IL</sub> and V <sub>IH</sub> vs V <sub>DD</sub> @ four temperatures           |    |
| Figure 21. | Typical pull-up resistance R <sub>PU</sub> vs V <sub>DD</sub> @ four temperatures            |    |
| Figure 22. | Typical pull-up current I <sub>pu</sub> vs V <sub>DD</sub> @ four temperatures               |    |
| Figure 23. | Typ. $V_{OL} @ V_{DD} = 3.3 V$ (standard ports).                                             |    |
| Figure 24. | Typ. $V_{OL} @ V_{DD} = 5.0 V$ (standard ports).                                             |    |
| Figure 25. | Typ. $V_{OL} @ V_{DD} = 3.3 V$ (true open drain ports)                                       |    |
| Figure 26. | Typ. $V_{OL} @ V_{DD} = 5.0 V$ (true open drain ports)                                       |    |
| Figure 27. | Typ. $V_{OL} @ V_{DD} = 3.3 V$ (high sink ports)                                             |    |
| Figure 28. | Typ. $V_{OL} @ V_{DD} = 5.0 V$ (high sink ports)                                             |    |
| Figure 29. | Typ. $V_{DD} - V_{OH} @ V_{DD} = 3.3 V$ (standard ports).                                    |    |
| Figure 30. | Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (standard ports).                                    |    |
| Figure 31. | Typ. $V_{DD} - V_{OH} @ V_{DD} = 3.3 V$ (high sink ports)                                    |    |
| Figure 32. | Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (high sink ports)                                    |    |
| Figure 33. | Typical NRST V <sub>IL</sub> and V <sub>IH</sub> vs V <sub>DD</sub> @ four temperatures      |    |
| Figure 34. | Typical NRST pull-up resistance R <sub>PU</sub> vs V <sub>DD</sub>                           |    |
| Figure 35. | Typical NRST pull-up current I <sub>pu</sub> vs V <sub>DD</sub>                              |    |
| Figure 36. | Recommended reset pin protection                                                             |    |
| Figure 37. | SPI timing diagram where slave mode and CPHA = 0                                             |    |
| Figure 38. | SPI timing diagram where slave mode and CPHA = 1                                             | 70 |
| Figure 39. | SPI timing diagram - master mode                                                             |    |
| Figure 40. | Typical application with ADC                                                                 | 73 |
| Figure 41. | ADC accuracy characteristics                                                                 | 74 |
| Figure 42. | VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad                    |    |
| U          | flat package outline                                                                         | 78 |
| Figure 43. | VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad                    |    |
| -          | flat package recommended footprint                                                           | 80 |
| Figure 44. | VFQFPN32 marking example (package top view)                                                  | 81 |
| Figure 45. | LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline                              |    |
| Figure 46. | LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package                                      |    |



### 5.4.2 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

### 5.4.3 Protection of user boot code (UBC)

If the user chooses to update the Flash program memory using a specific boot code to perform in application programming (IAP), this boot code needs to be protected against unwanted modification.

In the STM8A a memory area of up to 32 Kbyte can be protected from overwriting at user option level. Other than the standard write protection, the UBC protection can exclusively be modified via the debug interface, the user software cannot modify the UBC protection status.

The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and NUBC option bytes (see Section 9: Option bytes on page 44).

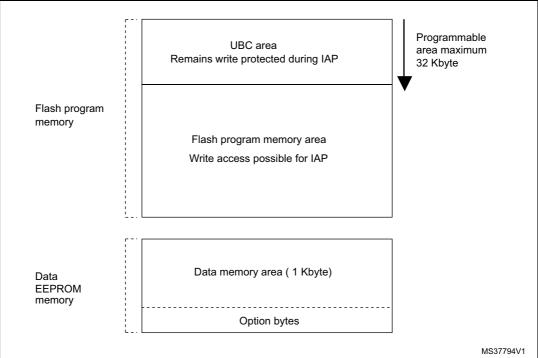



Figure 2. Flash memory organization of STM8AF6246/48/66/68



### 5.4.4 Read-out protection (ROP)

The STM8A provides a read-out protection of the code and data memory which can be activated by an option byte setting (see the ROP option byte in section 10).

The read-out protection prevents reading and writing Flash program memory, data memory and option bytes via the debug module and SWIM interface. This protection is active in all device operation modes. Any attempt to remove the protection by overwriting the ROP option byte triggers a global erase of the program and data memory.

The ROP circuit may provide a temporary access for debugging or failure analysis. The temporary read access is protected by a user defined, 8-byte keyword stored in the option bytes area. This keyword must be entered via the SWIM interface to temporarily unlock the device.

If desired, the temporary unlock mechanism can be permanently disabled by the user through OPT6/NOPT6 option bytes.

## 5.5 Clock controller

The clock controller distributes the system clock coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.

### 5.5.1 Features

### Clock sources

- 16 MHz high-speed internal RC oscillator (HSI)
- 128 kHz low-speed internal RC (LSI)
- 1-16 MHz high-speed external crystal (HSE)
- Up to 16 MHz high-speed user-external clock (HSE user-ext)
- Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock (16 MHz/8). The clock source and speed can be changed by the application program as soon as the code execution starts.
- **Safe clock switching**: Clock sources can be changed safely on the fly in Run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management**: To reduce power consumption, the clock controller can stop the clock to the core or individual peripherals.
- Wakeup: In case the device wakes up from low-power modes, the internal RC oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device switches to the clock source that was selected before Halt mode was entered.
- Clock security system (CSS): The CSS permits monitoring of external clock sources and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
- **Configurable main clock output (CCO)**: This feature permits to output a clock signal for use by the application.



### 5.5.3 128 kHz low-speed internal RC oscillator (LSI)

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.

In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI\_EN).

### 5.5.4 16 MHz high-speed external crystal oscillator (HSE)

The external high-speed crystal oscillator can be selected to deliver the main clock in normal Run mode. It operates with quartz crystals and ceramic resonators.

- Frequency range: 1 MHz to 16 MHz
- Crystal oscillation mode: preferred fundamental
- I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

### 5.5.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 16 MHz.

### 5.5.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.

In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).

| Bit     | Periphera<br>I clock | Bit     | Peripheral<br>clock | Bit     | Peripheral<br>clock | Bit     | Peripheral<br>clock |
|---------|----------------------|---------|---------------------|---------|---------------------|---------|---------------------|
| PCKEN17 | TIM1                 | PCKEN13 | LINUART             | PCKEN27 | Reserved            | PCKEN23 | ADC                 |
| PCKEN16 | TIM3                 | PCKEN12 | Reserved            | PCKEN26 | Reserved            | PCKEN22 | AWU                 |
| PCKEN15 | TIM2                 | PCKEN11 | SPI                 | PCKEN25 | Reserved            | PCKEN21 | Reserved            |
| PCKEN14 | TIM4                 | PCKEN10 | l <sup>2</sup> C    | PCKEN24 | Reserved            | PCKEN20 | Reserved            |

#### Table 2. Peripheral clock gating bit assignments in CLK\_PCKENR1/2 registers



### Independent watchdog timer

The independent watchdog peripheral can be used to resolve malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure. If the hardware watchdog feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and generates a reset unless the key register is written by software before the counter reaches the end of count.

### 5.7.2 Auto-wakeup counter

This counter is used to cyclically wakeup the device in Active-halt mode. It can be clocked by the internal 128 kHz internal low-frequency RC oscillator or external clock.

LSI clock can be internally connected to TIM3 input capture channel 1 for calibration.

### 5.7.3 Beeper

This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be output on a pin. This is useful when audible sounds without interference need to be generated for use in the application.

### 5.7.4 Advanced control and general purpose timers

STM8A devices described in this datasheet, contain up to three 16-bit advanced control and general purpose timers providing nine CAPCOM channels in total. A CAPCOM channel can be used either as input compare, output compare or PWM channel. These timers are named TIM1, TIM2 and TIM3.

| Timer | Counter<br>width | Counter<br>type | Prescaler<br>factor           | Channels | Inverted outputs | Repetition counter | trigger<br>unit | External trigger | Break<br>input |
|-------|------------------|-----------------|-------------------------------|----------|------------------|--------------------|-----------------|------------------|----------------|
| TIM1  | 16-bit           | Up/down         | 1 to 65536                    | 4        | 3                | Yes                | Yes             | Yes              | Yes            |
| TIM2  | 16-bit           | Up              | 2 <sup>n</sup><br>n = 0 to 15 | 3        | None             | No                 | No              | No               | No             |
| TIM3  | 16-bit           | Up              | 2 <sup>n</sup><br>n = 0 to 15 | 2        | None             | No                 | No              | No               | No             |

#### Table 3. Advanced control and general purpose timers



# 5.8 Analog-to-digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

The ADC name differs between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 5*).

| Peripheral name in datasheet | Peripheral name in reference manual<br>(RM0016) |
|------------------------------|-------------------------------------------------|
| ADC                          | ADC1                                            |

### **ADC** features

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f<sub>MASTER</sub> divided by 2 to 18
- Conversion trigger on timer events and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result register
- Shadow registers for data consistency
- ADC input range:  $V_{SSA} \le V_{IN} \le V_{DDA}$
- Analog watchdog
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption
- Scan mode (single and continuous)
- Dedicated result register for each conversion channel
- Buffer mode for continuous conversion

Note: An additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC\_DRH/ADC\_DRL registers.

# 5.9 Communication interfaces

The following sections give a brief overview of the communication peripheral. Some peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 6*).

| Table 6. Communication | peripheral n | naming correspondence |
|------------------------|--------------|-----------------------|
|------------------------|--------------|-----------------------|

| Peripheral name in datasheet | Peripheral name in reference manual<br>(RM0016) |
|------------------------------|-------------------------------------------------|
| LINUART                      | UART2                                           |



| Flash program<br>memory size | Flash program<br>memory end<br>address | RAM size | RAM end<br>address | Stack roll-over<br>address |
|------------------------------|----------------------------------------|----------|--------------------|----------------------------|
| 32K                          | 0x00 0FFFF                             | 2K       | 0x00 07FF          | 0x00 0600                  |
| 16K                          | 0x00 0BFFF                             | 21       | 0x00 0777          | 0000 0000                  |

 Table 9. Memory model for the devices covered in this datasheet

# 7.2 Register map

Г

Т

In this section the memory and register map of the devices covered by this datasheet is described. For a detailed description of the functionality of the registers, refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016.

| Address   | Block  | Register label | Register name                     | Reset<br>status     |
|-----------|--------|----------------|-----------------------------------|---------------------|
| 0x00 5000 |        | PA_ODR         | Port A data output latch register | 0x00                |
| 0x00 5001 |        | PA_IDR         | Port A input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 5002 | Port A | PA_DDR         | Port A data direction register    | 0x00                |
| 0x00 5003 |        | PA_CR1         | Port A control register 1         | 0x00                |
| 0x00 5004 |        | PA_CR2         | Port A control register 2         | 0x00                |
| 0x00 5005 |        | PB_ODR         | Port B data output latch register | 0x00                |
| 0x00 5006 |        | PB_IDR         | Port B input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 5007 | Port B | PB_DDR         | Port B data direction register    | 0x00                |
| 0x00 5008 |        | PB_CR1         | Port B control register 1         | 0x00                |
| 0x00 5009 |        | PB_CR2         | Port B control register 2         | 0x00                |
| 0x00 500A |        | PC_ODR         | Port C data output latch register | 0x00                |
| 0x00 500B |        | PB_IDR         | Port C input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 500C | Port C | PC_DDR         | Port C data direction register    | 0x00                |
| 0x00 500D |        | PC_CR1         | Port C control register 1         | 0x00                |
| 0x00 500E |        | PC_CR2         | Port C control register 2         | 0x00                |
| 0x00 500F |        | PD_ODR         | Port D data output latch register | 0x00                |
| 0x00 5010 |        | PD_IDR         | Port D input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 5011 | Port D | PD_DDR         | Port D data direction register    | 0x00                |
| 0x00 5012 |        | PD_CR1         | Port D control register 1         | 0x02                |
| 0x00 5013 |        | PD_CR2         | Port D control register 2         | 0x00                |

Table 10. I/O port hardware register map



٦

Т

|                           | Table 1 | . General hardw | /are register map (continued)             |                 |
|---------------------------|---------|-----------------|-------------------------------------------|-----------------|
| Address                   | Block   | Register label  | Register name                             | Reset<br>status |
| 0x00 5240                 |         | UART2_SR        | LINUART status register                   | 0xC0            |
| 0x00 5241                 |         | UART2_DR        | LINUART data register                     | 0xXX            |
| 0x00 5242                 |         | UART2_BRR1      | LINUART baud rate register 1              | 0x00            |
| 0x00 5243                 |         | UART2_BRR2      | LINUART baud rate register 2              | 0x00            |
| 0x00 5244                 |         | UART2_CR1       | LINUART control register 1                | 0x00            |
| 0x00 5245                 | LINUART | UART2_CR2       | LINUART control register 2                | 0x00            |
| 0x00 5246                 |         | UART2_CR3       | LINUART control register 3                | 0x00            |
| 0x00 5247                 |         | UART2_CR4       | LINUART control register 4                | 0x00            |
| 0x00 5248                 |         |                 | Reserved                                  |                 |
| 0x00 5249                 |         | UART2_CR6       | LINUART control register 6                | 0x00            |
| 0x00 524A to<br>0x00 524F |         | R               | eserved area (6 bytes)                    |                 |
| 0x00 5250                 |         | TIM1_CR1        | TIM1 control register 1                   | 0x00            |
| 0x00 5251                 |         | TIM1_CR2        | TIM1 control register 2                   | 0x00            |
| 0x00 5252                 |         | TIM1_SMCR       | TIM1 slave mode control register          | 0x00            |
| 0x00 5253                 |         | TIM1_ETR        | TIM1 external trigger register            | 0x00            |
| 0x00 5254                 |         | TIM1_IER        | TIM1 Interrupt enable register            | 0x00            |
| 0x00 5255                 |         | TIM1_SR1        | TIM1 status register 1                    | 0x00            |
| 0x00 5256                 |         | TIM1_SR2        | TIM1 status register 2                    | 0x00            |
| 0x00 5257                 |         | TIM1_EGR        | TIM1 event generation register            | 0x00            |
| 0x00 5258                 |         | TIM1_CCMR1      | TIM1 capture/compare mode register 1      | 0x00            |
| 0x00 5259                 |         | TIM1_CCMR2      | TIM1 capture/compare mode register 2      | 0x00            |
| 0x00 525A                 |         | TIM1_CCMR3      | TIM1 capture/compare mode register 3      | 0x00            |
| 0x00 525B                 | TIM1    | TIM1_CCMR4      | TIM1 capture/compare mode register 4      | 0x00            |
| 0x00 525C                 |         | TIM1_CCER1      | TIM1 capture/compare enable register<br>1 | 0x00            |
| 0x00 525D                 |         | TIM1_CCER2      | TIM1 capture/compare enable register 2    | 0x00            |
| 0x00 525E                 |         | TIM1_CNTRH      | TIM1 counter high                         | 0x00            |
| 0x00 525F                 |         | TIM1_CNTRL      | TIM1 counter low                          | 0x00            |
| 0x00 5260                 |         | TIM1_PSCRH      | TIM1 prescaler register high              | 0x00            |
| 0x00 5261                 |         | TIM1_PSCRL      | TIM1 prescaler register low               | 0x00            |
| 0x00 5262                 |         | TIM1_ARRH       | TIM1 auto-reload register high            | 0xFF            |
| 0x00 5263                 |         | TIM1_ARRL       | TIM1 auto-reload register low             | 0xFF            |
| 0x00 5264                 |         | TIM1_RCR        | TIM1 repetition counter register          | 0x00            |

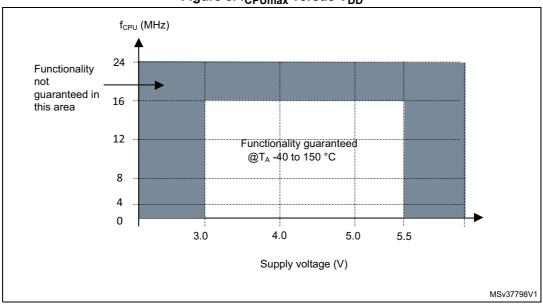
 Table 11. General hardware register map (continued)



| Option byte no. | Description                                                                                                                                     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | HSITRIM: Trimming option for 16 MHz internal RC oscillator                                                                                      |
|                 | 0: 3-bit on-the-fly trimming (compatible with devices based on the 128K silicon)                                                                |
|                 | 1: 4-bit on-the-fly trimming                                                                                                                    |
|                 | LSI_EN: Low speed internal clock enable<br>0: LSI clock is not available as CPU clock source<br>1: LSI clock is available as CPU clock source   |
| OPT3            | IWDG_HW: Independent watchdog                                                                                                                   |
| UF 13           | <ul><li>0: IWDG independent watchdog activated by software</li><li>1: IWDG independent watchdog activated by hardware</li></ul>                 |
|                 | WWDG_HW: Window watchdog activation                                                                                                             |
|                 | <ul><li>0: WWDG window watchdog activated by software</li><li>1: WWDG window watchdog activated by hardware</li></ul>                           |
|                 | WWDG_HALT: Window watchdog reset on Halt                                                                                                        |
|                 | 0: No reset generated on Halt if WWDG active<br>1: Reset generated on Halt if WWDG active                                                       |
|                 | EXTCLK: External clock selection                                                                                                                |
|                 | 0: External crystal connected to OSCIN/OSCOUT<br>1: External clock signal on OSCIN                                                              |
|                 | CKAWUSEL: Auto-wakeup unit/clock                                                                                                                |
| OPT4            | 0: LSI clock source selected for AWU<br>1: HSE clock with prescaler selected as clock source for AWU                                            |
|                 | PRSC[1:0]: AWU clock prescaler                                                                                                                  |
|                 | 00: Reserved<br>01: 16 MHz to 128 kHz prescaler                                                                                                 |
|                 | 10: 8 MHz to 128 kHz prescaler                                                                                                                  |
|                 | 11: 4 MHz to 128 kHz prescaler                                                                                                                  |
|                 | HSECNT[7:0]: HSE crystal oscillator stabilization time                                                                                          |
| OPT5            | This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00. |
| 0.770           | TMU[3:0]: Enable temporary memory unprotection                                                                                                  |
| OPT6            | 0101: TMU disabled (permanent ROP).<br>Any other value: TMU enabled.                                                                            |
| OPT7            | Reserved                                                                                                                                        |
| OPT8            | TMU_KEY 1 [7:0]: Temporary unprotection key 0<br>Temporary unprotection key: Must be different from 0x00 or 0xFF                                |
|                 | TMU_KEY 2 [7:0]: Temporary unprotection key 1                                                                                                   |
| OPT9            | Temporary unprotection key: Must be different from 0x00 or 0xFF                                                                                 |
| OPT10           | TMU_KEY 3 [7:0]: Temporary unprotection key 2<br>Temporary unprotection key: Must be different from 0x00 or 0xFF                                |
|                 | TMU_KEY 4 [7:0]: Temporary unprotection key 3                                                                                                   |
| OPT11           | Temporary unprotection key: Must be different from 0x00 or 0xFF                                                                                 |

Table 16. Option byte description (continued)




# 10.3 Operating conditions

| Table 21. General operating conditions |                                                      |                              |     |      |      |  |  |
|----------------------------------------|------------------------------------------------------|------------------------------|-----|------|------|--|--|
| Symbol                                 | Parameter                                            | Conditions                   | Min | Мах  | Unit |  |  |
| f <sub>CPU</sub>                       | Internal CPU clock frequency                         | $T_A$ = -40 °C to 150 °C     | 0   | 16   | MHz  |  |  |
| V <sub>DD/</sub> V <sub>DDIO</sub>     | Standard operating voltage                           | Standard operating voltage - |     | 5.5  | V    |  |  |
| (1)                                    | C <sub>EXT</sub> : capacitance of external capacitor | -                            | 470 | 3300 | nF   |  |  |
| $V_{CAP}^{(1)}$                        | ESR of external capacitor                            | at 1 MHz <sup>(2)</sup>      | -   | 0.3  | Ω    |  |  |
|                                        | ESL of external capacitor                            |                              | -   | 15   | nH   |  |  |
|                                        | Power dissipation (all temperature ranges)           | LQFP32                       | -   | 85   |      |  |  |
| PD                                     |                                                      | VFQFPN32                     | -   | 200  | mW   |  |  |
|                                        |                                                      | LQFP48                       | -   | 88   |      |  |  |
|                                        |                                                      | Suffix A                     |     | 85   |      |  |  |
| T <sub>A</sub>                         | Ambient temperature                                  | Suffix C                     | 40  | 125  | °C   |  |  |
| TJ                                     |                                                      | Suffix D                     |     | 150  |      |  |  |
|                                        |                                                      | Suffix A                     |     | 90   |      |  |  |
|                                        | Junction temperature range                           | Suffix C                     |     | 130  |      |  |  |
|                                        |                                                      | Suffix D                     |     | 155  |      |  |  |

Table 21. General operating conditions

1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

2. This frequency of 1 MHz as a condition for  $V_{CAP}$  parameters is given by design of internal regulator.



## Figure 8. f<sub>CPUmax</sub> versus V<sub>DD</sub>



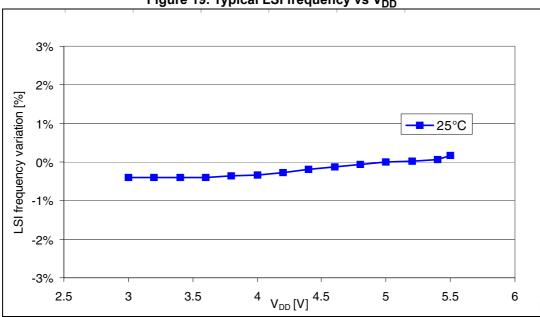



Figure 19. Typical LSI frequency vs V<sub>DD</sub>



## 10.3.5 Memory characteristics

### Flash program memory/data EEPROM memory

General conditions:  $T_A = -40$  to 150 °C.

### Table 32. Flash program memory/data EEPROM memory

|                    |                                                                                                  |                                              |     | -   |     |      |
|--------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|-----|-----|-----|------|
| Symbol             | Parameter                                                                                        | Conditions                                   | Min | Тур | Max | Unit |
| $V_{DD}$           | Operating voltage<br>(all modes, execution/write/erase)                                          | f <sub>CPU</sub> is 0 to 16 MHz<br>with 0 ws | 3.0 | -   | 5.5 | V    |
| $V_{DD}$           | Operating voltage<br>(code execution)                                                            | f <sub>CPU</sub> is 0 to 16 MHz<br>with 0 ws | 2.6 | -   | 5.5 | v    |
| t <sub>prog</sub>  | Standard programming time (including<br>erase) for byte/word/block<br>(1 byte/4 bytes/128 bytes) | -                                            | -   | 6   | 6.6 |      |
| 1.2                | Fast programming time for 1 block (128 bytes)                                                    | -                                            | -   | 3   | 3.3 | ms   |
| t <sub>erase</sub> | Erase time for 1 block (128 bytes)                                                               | -                                            | -   | 3   | 3.3 |      |

#### Table 33. Flash program memory

| Symbol           | Parameter                                                          | Condition              | Min  | Мах | Unit   |
|------------------|--------------------------------------------------------------------|------------------------|------|-----|--------|
| T <sub>WE</sub>  | Temperature for writing and erasing                                | -                      | -40  | 150 | °C     |
| N <sub>WE</sub>  | Flash program memory endurance (erase/write cycles) <sup>(1)</sup> | T <sub>A</sub> = 25 °C | 1000 | -   | cycles |
| +                | Data retention time                                                | T <sub>A</sub> = 25 °C | 40   | -   | voare  |
| t <sub>RET</sub> |                                                                    | T <sub>A</sub> = 55 °C | 20   | -   | years  |

 The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

| Table 34. | Data | memory |
|-----------|------|--------|
|-----------|------|--------|

| Symbol             | Parameter                            | Condition                      | Min                  | Max | Unit   |
|--------------------|--------------------------------------|--------------------------------|----------------------|-----|--------|
| T <sub>WE</sub>    | Temperature for writing and erasing  | -                              | -40                  | 150 | °C     |
| N                  | Data memory endurance <sup>(1)</sup> | T <sub>A</sub> = 25 °C         | 300 k                | -   | cycles |
| INWE               | N <sub>WE</sub> (erase/write cycles) | $T_A = -40^{\circ}C$ to 125 °C | 100 k <sup>(2)</sup> | -   | Cycles |
|                    | Data ratantian time                  | T <sub>A</sub> = 25 °C         | 40 <sup>(2)(3)</sup> | -   |        |
| t <sub>RET</sub> D | Data retention time                  | T <sub>A</sub> = 55 °C         | 20 <sup>(2)(3)</sup> | -   | years  |

1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.

3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.



## 10.3.6 I/O port pin characteristics

### **General characteristics**

Subject to general operating conditions for  $V_{DD}$  and  $T_A$  unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

| Symbol                          | Parameter                                                         | Conditions                                                                              | Min                     | Тур                      | Мах                     | Unit |  |
|---------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|--------------------------|-------------------------|------|--|
| $V_{IL}$                        | Input low level voltage                                           |                                                                                         | -0.3 V                  | -                        | 0.3 x V <sub>DD</sub>   |      |  |
| V <sub>IH</sub>                 | Input high level voltage                                          | _                                                                                       | 0.7 x V <sub>DD</sub>   | -                        | V <sub>DD</sub> + 0.3 V |      |  |
| V <sub>hys</sub>                | Hysteresis <sup>(1)</sup>                                         |                                                                                         | -                       | 0.1 x<br>V <sub>DD</sub> | -                       |      |  |
| M                               | Output high level voltage                                         | Standard I/0, V <sub>DD</sub> = 5 V,<br>I = 3 mA                                        | V <sub>DD</sub> - 0.5 V | -                        | -                       |      |  |
| V <sub>OH</sub>                 | output high level voltage                                         | Standard I/0, V <sub>DD</sub> = 3 V,<br>I = 1.5 mA                                      | V <sub>DD</sub> - 0.4 V | -                        | -                       | V    |  |
|                                 |                                                                   | High sink and true open<br>drain I/0, V <sub>DD</sub> = 5 V<br>I = 8 mA                 | -                       | -                        | 0.5                     |      |  |
| $V_{OL}$                        | Output low level voltage                                          | Standard I/0, V <sub>DD</sub> = 5 V<br>I = 3 mA                                         | -                       | -                        | 0.6                     |      |  |
|                                 |                                                                   | Standard I/0, V <sub>DD</sub> = 3 V<br>I = 1.5 mA                                       | -                       | -                        | 0.4                     |      |  |
| R <sub>pu</sub>                 | Pull-up resistor                                                  | $V_{DD}$ = 5 V, $V_{IN}$ = $V_{SS}$                                                     | 35                      | 50                       | 65                      | kΩ   |  |
|                                 |                                                                   | Fast I/Os<br>Load = 50 pF                                                               | -                       | -                        | 35 <sup>(2)</sup>       |      |  |
|                                 | Rise and fall time                                                | Standard and high sink I/Os<br>Load = 50 pF                                             | -                       | -                        | 125 <sup>(2)</sup>      | ns   |  |
| t <sub>R</sub> , t <sub>F</sub> | (10% - 90%)                                                       | Fast I/Os<br>Load = 20 pF                                                               | -                       | -                        | 20 <sup>(2)</sup>       | 115  |  |
|                                 |                                                                   | Standard and high sink I/Os<br>Load = 20 pF                                             | -                       | -                        | 50 <sup>(2)</sup>       |      |  |
| l <sub>lkg</sub>                | Digital input pad leakage current                                 | $V_{SS} \leq V_{IN} \leq V_{DD}$                                                        | -                       | -                        | ±1                      | μA   |  |
| 1                               | Analog input pad leakage                                          | V <sub>SS</sub> ≤ V <sub>IN</sub> ≤ V <sub>DD</sub><br>-40 °C < T <sub>A</sub> < 125 °C | -                       | -                        | ±250                    | ~    |  |
| l <sub>Ikg ana</sub>            | current                                                           | V <sub>SS</sub> ≤ V <sub>IN</sub> ≤ V <sub>DD</sub><br>-40 °C < T <sub>A</sub> < 150 °C | -                       | -                        | ±500                    | nA   |  |
| l <sub>lkg(inj)</sub>           | Leakage current in<br>adjacent I/O <sup>(3)</sup>                 | Injection current ±4 mA                                                                 | -                       | -                        | ±1 <sup>(3)</sup>       | μA   |  |
| I <sub>DDIO</sub>               | Total current on either<br>V <sub>DDIO</sub> or V <sub>SSIO</sub> | Including injection currents                                                            | -                       | -                        | 60                      | mA   |  |

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.



### **Electromagnetic interference (EMI)**

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

| Symbol           |            | Conditions                          |                   |                                     |           |      |  |
|------------------|------------|-------------------------------------|-------------------|-------------------------------------|-----------|------|--|
|                  | Parameter  |                                     | Monitored         | Max f <sub>CPU</sub> <sup>(1)</sup> |           | Unit |  |
|                  |            | General conditions                  | frequency band    | 8<br>MHz                            | 16<br>MHz |      |  |
|                  |            |                                     | 0.1 MHz to 30 MHz | 15                                  | 17        |      |  |
| e                | Peak level |                                     | 30 MHz to 130 MHz | 18                                  | 22        | dBµV |  |
| S <sub>EMI</sub> |            | LQFP80 package<br>conforming to IEC | 130 MHz to 1 GHz  | -1                                  | 3         | ubμv |  |
|                  | EMI level  | 61967-2                             | -                 | 2                                   | 2.5       |      |  |

| Table 4 | 13. E | EMI c | lata |
|---------|-------|-------|------|
|---------|-------|-------|------|

1. Data based on characterization results, not tested in production.

### Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

### Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts\*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

| Table 44. | ESD | absolute | maximum | ratings |
|-----------|-----|----------|---------|---------|
|-----------|-----|----------|---------|---------|

| Symbol                | Ratings                                               | Conditions                                          | Class | Maximum<br>value <sup>(1)</sup> | Unit |
|-----------------------|-------------------------------------------------------|-----------------------------------------------------|-------|---------------------------------|------|
| V <sub>ESD(HBM)</sub> | Electrostatic discharge voltage<br>(Human body model) | $T_A = 25^{\circ}C$ , conforming to JESD22-A114     | ЗA    | 4000                            |      |
| V <sub>ESD(CDM)</sub> | Electrostatic discharge voltage (Charge device model) | $T_A = 25^{\circ}C$ , conforming to JESD22-C101     | 3     | 500                             | V    |
| V <sub>ESD(MM)</sub>  | Electrostatic discharge voltage (Machine model)       | T <sub>A</sub> = 25°C, conforming to<br>JESD22-A115 | В     | 200                             |      |

1. Data based on characterization results, not tested in production



### Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

| Symbol | Parameter             | Conditions              | Class <sup>(1)</sup> |
|--------|-----------------------|-------------------------|----------------------|
|        |                       | $T_A = 25 \ ^\circ C$   |                      |
|        | Static lateb up along | T <sub>A</sub> = 85 °C  | ٨                    |
| LU     | Static latch-up class | T <sub>A</sub> = 125 °C | A                    |
|        |                       | T <sub>A</sub> = 150 °C |                      |

| Table 4 | 5. Electrical | sensitivities |
|---------|---------------|---------------|
|---------|---------------|---------------|

 Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).



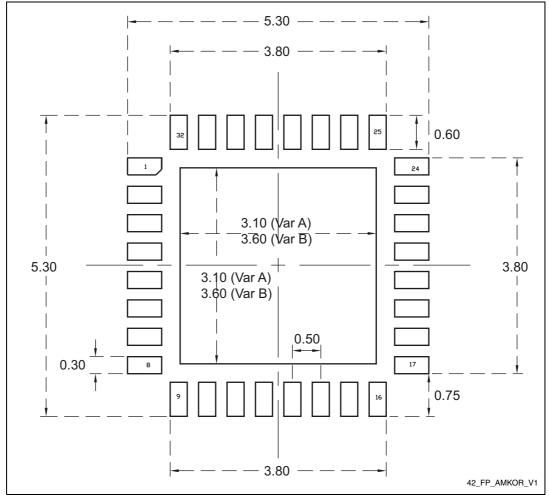



Figure 43. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.



# **12** Ordering information

| Example:                                | STM8A | F | 62 | 6 | 6 | Т | т | D | xxx <sup>(3)</sup> | ١ |
|-----------------------------------------|-------|---|----|---|---|---|---|---|--------------------|---|
| Product class                           |       |   | Ĩ  |   |   |   |   |   |                    | 1 |
| 8-bit automotive microcontroller        |       |   |    |   |   |   |   |   |                    |   |
|                                         |       |   |    |   |   |   |   |   |                    |   |
| Program memory type                     |       |   |    |   |   |   |   |   |                    |   |
| F = Flash + EEPROM                      |       |   |    |   |   |   |   |   |                    |   |
| P = FASTROM                             |       |   |    |   |   |   |   |   |                    |   |
| Device family                           |       |   |    |   |   |   |   |   |                    |   |
| 62 = Silicon rev X and rev W, LIN only  |       |   |    |   |   |   |   |   |                    |   |
|                                         |       |   |    |   |   |   |   |   |                    |   |
| Program memory size<br>4 = 16 Kbyte     |       |   |    |   |   |   |   |   |                    |   |
| 4 = 16 Kbyte<br>6 = 32 Kbyte            |       |   |    |   |   |   |   |   |                    |   |
| 0 – 52 Kbyle                            |       |   |    |   |   |   |   |   |                    |   |
| Pin count                               |       |   |    |   |   |   |   |   |                    |   |
| 6 = 32 pins                             |       |   |    |   |   |   |   |   |                    |   |
| 8 = 48 pins                             |       |   |    |   |   |   |   |   |                    |   |
| HSI accuracy                            |       |   |    |   |   |   |   |   |                    |   |
| Blank = ± 5 %                           |       |   |    |   |   |   |   |   |                    |   |
| I = ± 2.5 %                             |       |   |    |   |   |   |   |   |                    |   |
| Package type                            |       |   |    |   |   |   |   |   |                    |   |
| T = LQFP                                |       |   |    |   |   |   |   |   |                    |   |
| U = VFQFPN                              |       |   |    |   |   |   |   |   |                    |   |
| Temperature range                       |       |   |    |   |   |   |   |   |                    |   |
| A = -40 to 85 °C                        |       |   |    |   |   |   |   | _ |                    |   |
| C = -40 to 125 °C                       |       |   |    |   |   |   |   |   |                    |   |
| D = -40 to 150 °C                       |       |   |    |   |   |   |   |   |                    |   |
| Packing                                 |       |   |    |   |   |   |   |   |                    |   |
| Y = Tray                                |       |   |    |   |   |   |   |   |                    |   |
| U = Tube                                |       |   |    |   |   |   |   |   |                    |   |
| X = Tape and reel compliant with EIA 48 | 1-C   |   |    |   |   |   |   |   |                    |   |

### Figure 51. STM8AF6246/48/66/68 ordering information scheme<sup>(1) (2)</sup>

 For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the nearest ST Sales Office.

- 2. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.
- Customer specific FASTROM code or custom device configuration. This field shows 'SSS' if the device contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed to be replaced later by the target silicon.

DocID14952 Rev 11



# **13.3 Programming tools**

During the development cycle, STice provides in-circuit programming of the STM8A Flash microcontroller on the user application board via the SWIM protocol. Additional tools are used to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the user STM8A.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.



# 14 Revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22-Aug-2008 | 1        | Initial release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10-Aug-2009 | 2        | Document revised as the following:<br>Updated <i>Features</i> ;<br>Updated <i>Table: Device summary</i> ;<br>Updated <i>Section: Product line-up</i> ;<br>Changed <i>Section: Product overview</i> ;<br>Updated <i>Section: Pinouts and pin description</i> ;<br>Changed <i>Section: Register map</i> ;<br>Updated <i>Section: Register map</i> ;<br>Updated <i>Section: Interrupt table</i> ;<br>Updated <i>Section: Option bytes</i> ;<br>Updated <i>Section: Electrical characteristics</i> ;<br>Updated <i>Section: Package information</i> ;<br>Updated <i>Section: Ordering information</i> ;<br>Added <i>Section: STM8 development tools</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22-Oct-2009 | 3        | Adapted Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin<br>description.<br>Added Section: LIN header error when automatic resynchronization<br>is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 08-Jul-2010 | 4        | Updated title on cover page.<br>Added VFQFPN32 5x 5 mm package.<br>Added STM8AF62xx devices, and modified cover page header to<br>clarify the part numbers covered by the datasheets. Updated <i>Note 1</i><br>below <i>Table: Device summary.</i><br>Updated D temperature range to -40 to 150°C.<br>Content of <i>Section: Product overview</i> reorganized.<br>Renamed <i>Section: Memory and register map</i> , and content merged<br>with Register map section.<br>Renamed BL_EN and NBL_EN, BL and NBL, respectively, in <i>Table:</i><br><i>Option bytes.</i><br>Added <i>Table: Operating lifetime.</i><br>Added CEXT and P <sub>D</sub> (power dissipation) in <i>Table: General operating</i><br><i>conditions</i> , and <i>Section: VCAP external capacitor.</i><br>Suffix D maximum junction temperature (T <sub>J</sub> ) updated in <i>Table:</i><br><i>General operating conditions.</i><br>Update tvDD in <i>Table: Operating conditions at power-up/power-down.</i><br>Moved <i>Table: Typical peripheral current consumption VDD = 5.0 V</i> to<br><i>Section: Current consumption for on-chip peripherals</i> and removed<br>I <sub>DD(CAN)</sub> .<br>Updated <i>Section: STM8 development tools.</i> |

### Table 50. Document revision history



| Date        | Revision         | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date        | 1764121011       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 31-Jan-2011 | 5<br>(continued) | Renamed Fast Active Halt mode to Active-halt mode with regulator<br>on, and Slow Active Halt mode to Active-halt mode with regulator off.<br>Updated <i>Table: Total current consumption in Halt and Active-halt</i><br><i>modes. General conditions for VDD apply, TA</i> = -40 to 55 °C, in<br>particular I <sub>DD(FAH)</sub> and I <sub>DD(SAH)</sub> renamed I <sub>DD(AH)</sub> ; t <sub>WU(FAH)</sub> and<br>t <sub>WU(SAH)</sub> renamed t <sub>WU(AH)</sub> , and temperature condition added.<br>Removed I <sub>DD(USART)</sub> from <i>Table: Typical peripheral current</i><br><i>consumption VDD</i> = 5.0 V. |  |
|             |                  | Updated general conditions in <i>Section: Memory characteristics</i> .<br>Modified $T_{WE}$ maximum value in <i>Table: Flash program memory</i> and <i>Table: Data memory</i> .<br>Update $I_{lkg ana}$ maximum value for $T_A$ ranging from -40 to 150 °C in                                                                                                                                                                                                                                                                                                                                                              |  |
|             |                  | Table: I/O static characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|             |                  | Added $t_{IFP(NRST)}$ and renamed $V_{F(NRST)} t_{IFP}$ in <i>Table: NRST pin characteristics</i> . Added recommendations concerning NRST pin level above <i>Figure: Recommended reset pin protection,</i> and updated external capacitor value.                                                                                                                                                                                                                                                                                                                                                                           |  |
|             |                  | Added Raisonance compiler in Section: Software tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|             |                  | Moved know limitations to separate errata sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | 6                | Updated wildcards of document part numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                  | <i>Table: Device summary: u</i> pdated the footnotes to all STM8AF61xx part numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|             |                  | Section: Introduction: small text change in first paragraph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|             |                  | <i>Table:</i> STM8AF62xx product line-up: added "P" version for all order codes; updated RAM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|             |                  | <i>Table: STM8AF/H61xx product line-up</i> : added "P" version for all order codes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 18-Jul-2012 |                  | <i>Figure: STM8A block diagram</i> : updated POR, BOR and WDG; updated LINUART input; added legend.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             |                  | Section: Flash program and data EEPROM: removed non relevant bullet points and added a sentence about the factory programmer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|             |                  | Table: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers: updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|             |                  | ADC features: updated ADC input range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             |                  | <i>Table: Memory model for the devices covered in this datasheet:</i> updated 16 Kbyte and 8 Kbyte information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|             |                  | <i>Table: Option bytes</i> : updated factory default setting for NOPT17; added footnote <i>1</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|             |                  | Section: Minimum and maximum values: T <sub>A</sub> = -40 °C (not 40 °C).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|             |                  | Table: General operating conditions: updated V <sub>CAP</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|             |                  | Table: Total current consumption in Run, Wait and Slow mode General conditions for VDD apply, TA = -40 to 150 °C: updated conditions for $I_{DD(RUN)}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|             |                  | <i>Table: I/O static characteristics</i> : added new condition and new max values for rise and fall time; updated the footnote.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

Table 50. Document revision history (continued)

