

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusNot For New DesignsCore ProcessorSTM8ACore Size8-BitSpeed16MHzConnectivityIPC, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O25Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
Core Size8-BitSpeed16MHzConnectivityI²C, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O25Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
Speed16MHzConnectivityI²C, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O25Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
ConnectivityIPC, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O25Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O25Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
Number of I/O25Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
Program Memory TypeFLASHEEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
EEPROM Size1K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
RAM Size2K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 7x10b	
Data Converters A/D 7x10b	
Oscillator Type Internal	
Operating Temperature -40°C ~ 125°C (TA)	
Mounting Type Surface Mount	
Package / Case 32-LQFP	
Supplier Device Package32-LQFP (7x7)	
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6266tcx	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		10.3.7	Reset pin characteristics
		10.3.8	TIM 1, 2, 3, and 4 timer specifications
		10.3.9	SPI serial peripheral interface69
		10.3.10	I ² C interface characteristics
		10.3.11	10-bit ADC characteristics
		10.3.12	EMC characteristics
11	Pack	age info	ormation
	11.1	VFQFP	N32 package information 78
	11.2	LQFP4	8 package information
	11.3	LQFP3	2 package information
	11.4	Therma	Il characteristics
		11.4.1	Reference document88
		11.4.2	Selecting the product temperature range
12	Orde	ring info	ormation
13	STM	8 develo	pment tools
	13.1	Emulati	on and in-circuit debugging tools
		13.1.1	STice key features
	13.2	Softwar	re tools
		13.2.1	STM8 toolset
		13.2.2	C and assembly toolchains92
	13.3	Prograr	nming tools
14	Revis	sion his [.]	tory
			-

5.4.2 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

5.4.3 Protection of user boot code (UBC)

If the user chooses to update the Flash program memory using a specific boot code to perform in application programming (IAP), this boot code needs to be protected against unwanted modification.

In the STM8A a memory area of up to 32 Kbyte can be protected from overwriting at user option level. Other than the standard write protection, the UBC protection can exclusively be modified via the debug interface, the user software cannot modify the UBC protection status.

The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and NUBC option bytes (see Section 9: Option bytes on page 44).

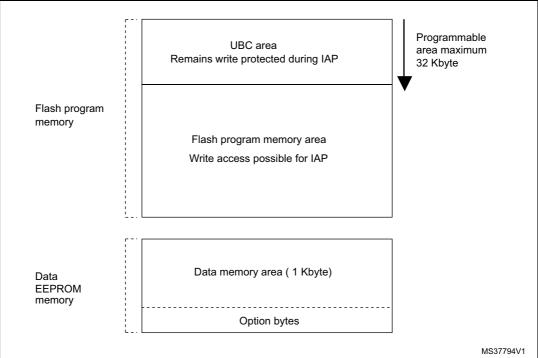


Figure 2. Flash memory organization of STM8AF6246/48/66/68

5.5.2 16 MHz high-speed internal RC oscillator (HSI)

- Default clock after reset 2 MHz (16 MHz/8)
- Fast wakeup time

User trimming

The register CLK_HSITRIMR with three trimming bits plus one additional bit for the sign permits frequency tuning by the application program. The adjustment range covers all possible frequency variations versus supply voltage and temperature. This trimming does not change the initial production setting.

For reason of compatibility with other devices from the STM8A family, a special mode with only two trimming bits plus sign can be selected. This selection is controlled with the HSITRIM0 bit in the option byte registers OPT3 and NOPT3.

UART mode

- Full duplex, asynchronous communications NRZ standard format (mark/space)
- High-precision baud rate generator
 - A common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits) 1 or 2 stop bits parity control
- Separate enable bits for transmitter and receiver
- Error detection flags
- Reduced power consumption mode
- Multi-processor communication enter mute mode if address match does not occur
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.10 Input/output specifications

The product features four different I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

Pi num					Inpu	t		Out	put				
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЪР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
24		PE6/AIN9	I/O	Х	Х	Х	-	01	Х	Х	Port E7	Analog input 9	-
25	17	PE5/SPI_NSS	I/O	Х	Х	Х	-	01	Х	Х	Port E5	SPI master/slave select	-
26	18	PC1/TIM1_CH1	I/O	Х	Х	Х	HS	O3	Х	Х	Port C1	Timer 1 - channel 1	-
27	19	PC2/TIM1_CH2	I/O	Х	Х	Х	HS	O3	Х	Х	Port C2	Timer 1- channel 2	-
28	20	PC3/TIM1_CH3	I/O	Х	Х	Х	HS	O3	Х	Х	Port C3	Timer 1 - channel 3	-
29	21	PC4/TIM1_CH4	I/O	Х	Х	Х	HS	O3	Х	Х	Port C4	Timer 1 - channel 4	-
30	22	PC5/SPI_SCK	I/O	Х	Х	Х		O3	Х	Х	Port C5	SPI clock	-
31	-	V _{SSIO_2}	S	-	-	-	-	-	-	-	I/O groun	d	-
32	-	V _{DDIO_2}	S	-	-	-	-	-	-	-	I/O power	supply	-
33	23	PC6/SPI_MOSI	I/O	x	х	х	-	O3	х	х	Port C6	SPI master out/ slave in	-
34	24	PC7/SPI_MISO	I/O	Х	Х	Х	-	O3	Х	Х	Port C7	SPI master in/ slave out	-
35	-	PG0	I/O	Х	Х	-	-	01	Х	Х	Port G0	-	-
36	-	PG1	I/O	Х	Х	-	-	01	Х	Х	Port G1	-	-
37	-	PE3/TIM1_BKIN	I/O	Х	Х	Х	-	01	Х	Х	Port E3	Timer 1 - break input	-
38	-	PE2/I ² C_SDA	I/O	Χ	-	Х	-	01	T ⁽⁶⁾	-	Port E2	I ² C data	-
39	-	PE1/I ² C_SCL	I/O	Χ	-	Х	-	01	T ⁽⁶⁾	-	Port E1	I ² C clock	-
40	-	PE0/CLK_CCO	I/O	x	х	х	-	O3	х	х	Port E0	Configurable clock output	-
41	25	PD0/TIM3_CH2	I/O	x	x	х	HS	O3	x	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
42	26	PD1/SWIM ⁽⁷⁾	I/O	Х	X	Х	HS	O4	Х	Х	Port D1	SWIM data interface	-
43	27	PD2/TIM3_CH1	I/O	x	х	х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
44	28	PD3/TIM2_CH2	I/O	x	х	х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
45	29	PD4/TIM2_CH1/ BEEP	I/O	x	х	х	HS	O3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
46	30	PD5/ LINUART_TX	I/O	x	х	Х	-	01	х	х	Port D5	LINUART data transmit	-

Table 8. STM8AF6246/48/66/68 (32 Kbyte) microcontroller pin description ⁽¹⁾⁽²⁾ (conti
--

Flash program memory size	Flash program memory end address	RAM size	RAM end address	Stack roll-over address	
32K	0x00 0FFFF	2K	0x00 07FF	0×00 0600	
16K	0x00 0BFFF	21	0x00 0777	0x00 0600	

 Table 9. Memory model for the devices covered in this datasheet

7.2 Register map

Г

Т

In this section the memory and register map of the devices covered by this datasheet is described. For a detailed description of the functionality of the registers, refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016.

Address	Block	Reset status		
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX ⁽¹⁾
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX ⁽¹⁾
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0xXX ⁽¹⁾
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX ⁽¹⁾
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013		PD_CR2	Port D control register 2	0x00

Table 10. I/O port hardware register map

٦

Т

· · · · · · · · · · · · · · · · · · ·	Table 11. General hardware register map (continued)							
Address	Block	Register label	Register name	Reset status				
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00				
0x00 50A1	ITC	EXTI_CR2	External interrupt control register 2	0x00				
0x00 50A2 to 0x00 50B2		Re	eserved area (17 bytes)					
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾				
0x00 50B4 to 0x00 50BF	Reserved area (12 bytes)							
0x00 50C0		CLK_ICKR	Internal clock control register	0x01				
0x00 50C1	CLK	CLK_ECKR	External clock control register	0x00				
0x00 50C2		Reserved area (1 byte)						
0x00 50C3		CLK_CMSR	Clock master status register	0xE1				
0x00 50C4		CLK_SWR	Clock master switch register	0xE1				
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX				
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18				
0x00 50C7	CLK	CLK_PCKENR1 Peripheral clock gating register 1		0xFF				
0x00 50C8		CLK_CSSR	Clock security system register	0x00				
0x00 50C9		CLK_CCOR	Configurable clock control register	0x00				
0x00 50CA		CLK_PCKENR2	Peripheral clock gating register 2	0xFF				
0x00 50CB		F	Reserved area (1 byte)	1				
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00				
0x00 50CD	CLK	CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0				
0x00 50CE to 0x00 50D0		R	eserved area (3 bytes)					
0x00 50D1		WWDG_CR	WWDG control register	0x7F				
0x00 50D2	WWDG	WWDG_WR	WWDR window register	0x7F				
0x00 50D3 to 0x00 50DF		Re	eserved area (13 bytes)	L				
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾				
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00				
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF				
0x00 50E3 to 0x00 50EF		Re	eserved area (13 bytes)					
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00				
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F				
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00				

	•• • • • •	<i>((</i>))
Table 11. Gener	al hardware registe	er map (continued)

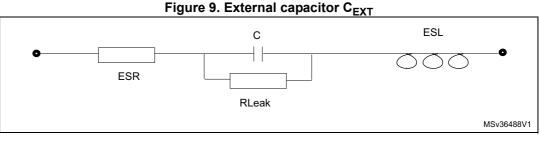

AddressBlockRegister labelRegister nameRest status0x00 5300ADC_DB0RHADC data buffer register 0 high0x000x00 5321ADC_DB0RLADC data buffer register 1 high0x000x00 5323ADC_DB1RLADC data buffer register 1 high0x000x00 5324ADC_DB1RLADC data buffer register 1 high0x000x00 5355ADC_DB1RLADC data buffer register 1 high0x000x00 5356ADC_DB3RLADC data buffer register 2 high0x000x00 5357ADC_DB3RLADC data buffer register 3 high0x000x00 5368ADC_DB3RLADC data buffer register 4 high0x000x00 5369ADC_DB3RLADC data buffer register 4 high0x000x00 5360ADC_DB4RLADC data buffer register 4 high0x000x00 5361ADC_DB5RLADC data buffer register 5 high0x000x00 5362ADC_DB5RLADC data buffer register 5 high0x000x00 5362ADC_DB5RLADC data buffer register 6 high0x000x00 5376ADC_DB7RLADC data buffer register 7 high0x000x00 5376ADC_DB8RLADC data buffer register 7 h		Table 1	1. General hardw	/are register map (continued)	
0x00 53E1 ADC_DB0RL ADC data buffer register 0 low 0x00 0x00 53E2 ADC_DB1RH ADC data buffer register 1 high 0x00 0x00 53E3 ADC_DB1RL ADC data buffer register 1 high 0x00 0x00 53E4 ADC_DB2RH ADC data buffer register 2 high 0x00 0x00 53E5 ADC_DB3RL ADC data buffer register 2 high 0x00 0x00 53E6 ADC_DB3RL ADC data buffer register 3 high 0x00 0x00 53E8 ADC_DB4RL ADC data buffer register 4 high 0x00 0x00 53E8 ADC_DB5RL ADC data buffer register 4 low 0x00 0x00 53E8 ADC_DB6RL ADC data buffer register 5 high 0x00 0x00 53E8 ADC_DB6RL ADC data buffer register 6 high 0x00 0x00 53E8 ADC_DB7RL ADC data buffer register 6 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 7 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 7 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 8 high 0x00 0x00 53F3	Address	Block	Register label	Register name	
0x00 53E2 ADC_DB1RH ADC data buffer register 1 high 0x00 0x00 53E3 ADC_DB1RL ADC data buffer register 1 low 0x00 0x00 53E4 ADC_DB2RH ADC data buffer register 2 high 0x00 0x00 53E5 ADC_DB2RL ADC data buffer register 2 high 0x00 0x00 53E6 ADC_DB3RH ADC data buffer register 3 high 0x00 0x00 53E7 ADC_DB4RH ADC data buffer register 4 high 0x00 0x00 53E8 ADC_DB4RL ADC data buffer register 4 high 0x00 0x00 53E8 ADC_DB5RL ADC data buffer register 5 high 0x00 0x00 53E8 ADC_DB6RL ADC data buffer register 5 low 0x00 0x00 53E8 ADC_DB7RL ADC data buffer register 6 high 0x00 0x00 53E9 ADC_DB7RL ADC data buffer register 7 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 7 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 7 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 9 high 0x00 0x00 53F5	0x00 53E0		ADC _DB0RH	ADC data buffer register 0 high	0x00
0x00 53E3 ADC_DB1RL ADC data buffer register 1 low 0x00 0x00 53E4 ADC_DB2RH ADC data buffer register 2 high 0x00 0x00 53E5 ADC_DB2RL ADC data buffer register 2 low 0x00 0x00 53E6 ADC_DB3RH ADC data buffer register 3 high 0x00 0x00 53E7 ADC_DB3RL ADC data buffer register 3 low 0x00 0x00 53E8 ADC_DB4RH ADC data buffer register 4 high 0x00 0x00 53E8 ADC_DB5RH ADC data buffer register 4 low 0x00 0x00 53E8 ADC_DB5RH ADC data buffer register 5 low 0x00 0x00 53E8 ADC_DB5RL ADC data buffer register 6 high 0x00 0x00 53E6 ADC_DB6RH ADC data buffer register 6 high 0x00 0x00 53E6 ADC_DB7RL ADC data buffer register 7 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 7 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 8 high 0x00 0x00 53F1 ADC_DB8RL ADC data buffer register 9 high 0x00 0x00 53F3 <td>0x00 53E1</td> <td></td> <td>ADC _DB0RL</td> <td>ADC data buffer register 0 low</td> <td>0x00</td>	0x00 53E1		ADC _DB0RL	ADC data buffer register 0 low	0x00
0x00 53E4 0x00 53E5 0x00 53E5ADC _DB2RHADC data buffer register 2 high0x000x00 53E6 0x00 53E7 0x00 53E8 0x00 53E8 0x00 53E8ADC _DB3RHADC data buffer register 3 high0x000x00 53E8 0x00 53E8 0x00 53E8ADC _DB4RHADC data buffer register 3 high0x000x00 53E6 0x00 53E8 0x00 53E8ADC _DB4RHADC data buffer register 4 high0x000x00 53E6 0x00 53E6ADC _DB5RHADC data buffer register 4 high0x000x00 53E6 0x00 53E6ADC _DB5RHADC data buffer register 5 high0x000x00 53E6 0x00 53E6ADC _DB6RHADC data buffer register 6 high0x000x00 53E6 0x00 53E6ADC _DB7RHADC data buffer register 6 high0x000x00 53E7 0x00 53F1ADC _DB7RHADC data buffer register 7 high0x000x00 53F1 0x00 53F2ADC _DB8RHADC data buffer register 7 high0x000x00 53F3ADC _DB8RHADC data buffer register 8 high0x000x00 53F4 to 0x00 53F4 0x00 53F4ADC _DB8RHADC control/status register0x000x00 53F4 to 0x00 53F4ADC _CR1ADC configuration register 10x000x00 5400 0x00 5401ADC _CR2ADC configuration register 20x000x00 5403 0x00 5404ADC _DRHADC configuration register 10x000x00 5406ADC _DRHADC configuration register 10x000x00 5407ADC _DRHADC configuration register 10x000x00 5408ADC _TDRHADC Configuration register 10x0	0x00 53E2		ADC _DB1RH	ADC data buffer register 1 high	0x00
ADC _DB2RLADC data buffer register 2 low0x000x00 53E6ADC _DB3RHADC data buffer register 3 high0x000x00 53E7ADC _DB3RLADC data buffer register 3 low0x000x00 53E8ADC _DB4RHADC data buffer register 4 high0x000x00 53E9ADC _DB5RHADC data buffer register 4 low0x000x00 53E6ADC _DB5RHADC data buffer register 5 high0x000x00 53E6ADC _DB5RLADC data buffer register 5 low0x000x00 53E6ADC _DB5RLADC data buffer register 6 high0x000x00 53E6ADC _DB6RHADC data buffer register 7 low0x000x00 53E6ADC _DB6RLADC data buffer register 7 high0x000x00 53E6ADC _DB7RHADC data buffer register 7 low0x000x00 53F1ADC _DB7RLADC data buffer register 7 low0x000x00 53F2ADC _DB7RLADC data buffer register 8 low0x000x00 53F3ADC _DB8RHADC data buffer register 9 low0x000x00 53F4 to 0x00 53F6ADC _DB9RLADC data buffer register 9 low0x000x00 53F4ADC _CRSRADC control/status register0x000x00 5402ADC_CR2ADC configuration register 10x000x00 5403ADC_DRHADC data register low0xXX0x00 5404ADC_CR3ADC configuration register 30x000x00 5405ADC_CR3ADC configuration register 10x000x00 5406ADC_DRHADC data register low0xXX0x00 5406 </td <td>0x00 53E3</td> <td></td> <td>ADC _DB1RL</td> <td>ADC data buffer register 1 low</td> <td>0x00</td>	0x00 53E3		ADC _DB1RL	ADC data buffer register 1 low	0x00
0x00 53E6 0x00 53E7ADC _DB3RHADC data buffer register 3 high0x000x00 53E8 0x00 53E9ADC _DB4RHADC data buffer register 4 high0x000x00 53E8 0x00 53E4ADC _DB4RLADC data buffer register 4 high0x000x00 53E6 0x00 53E6ADC _DB5RHADC data buffer register 5 high0x000x00 53E6 0x00 53E6ADC _DB5RHADC data buffer register 5 high0x000x00 53E6 0x00 53E6ADC _DB6RHADC data buffer register 6 high0x000x00 53E6 0x00 53E6ADC _DB6RHADC data buffer register 6 high0x000x00 53E7 0x00 53E6ADC _DB7RHADC data buffer register 7 high0x000x00 53F1 0x00 53F1ADC _DB7RHADC data buffer register 7 high0x000x00 53F2ADC _DB7RHADC data buffer register 8 high0x000x00 53F3ADC _DB7RHADC data buffer register 8 high0x000x00 53F3ADC _DB7RHADC data buffer register 9 high0x000x00 53F3ADC _DB7RHADC data buffer register 9 high0x000x00 53F4 to 0x00 53F4ADC _DB9RHADC control/status register0x000x00 5402ADC _CR3ADC configuration register 10x000x00 5403ADC_CR3ADC configuration register 30x000x00 5404ADC_DRHADC data register high0xXX0x00 5405ADC_DRHADC data register low0xXX0x00 5406ADC_DRHADC configuration register 30x000x00 5406ADC_DRHADC data register	0x00 53E4		ADC _DB2RH	ADC data buffer register 2 high	0x00
0x00 53E7ADC _DB3RLADC data buffer register 3 low0x000x00 53E8ADC _DB4RHADC data buffer register 4 low0x000x00 53E4ADC _DB4RLADC data buffer register 4 low0x000x00 53E6ADC _DB5RHADC data buffer register 5 low0x000x00 53E6ADC _DB6RHADC data buffer register 5 low0x000x00 53E7ADC _DB6RHADC data buffer register 6 low0x000x00 53E7ADC _DB6RHADC data buffer register 7 low0x000x00 53F6ADC _DB7RHADC data buffer register 7 low0x000x00 53F7ADC _DB8RLADC data buffer register 7 low0x000x00 53F1ADC _DB8RHADC data buffer register 8 low0x000x00 53F2ADC _DB8RHADC data buffer register 9 low0x000x00 53F4ADC _DB8RLADC data buffer register 9 low0x000x00 53F4 to 0x00 53F7ADC _DB9RLADC control/status register0x000x00 5400ADC _CR3ADC configuration register 10x000x00 5401ADC_CR2ADC configuration register 30x000x00 5405ADC_DRHADC data register low0xXX0x00 5406ADC_DRHADC Configuration register 10x000x00 5407ADC_DRHADC Configuration register 10x000x00 5408ADC_DRHADC Control/status register0x000x00 5408ADC_DRHADC Configuration register 30x000x00 5407ADC_DRHADC Configuration register 10x000x00	0x00 53E5		ADC _DB2RL	ADC data buffer register 2 low	0x00
0x00 53E8 0x00 53E9ADC _DB4RHADC data buffer register 4 high0x000x00 53E4ADC _DB4RLADC data buffer register 4 low0x000x00 53E4ADC _DB5RHADC data buffer register 5 low0x000x00 53E6ADC _DB6RHADC data buffer register 5 low0x000x00 53E7ADC _DB6RHADC data buffer register 6 high0x000x00 53E7ADC _DB7RHADC data buffer register 7 high0x000x00 53F1ADC _DB7RHADC data buffer register 7 low0x000x00 53F2ADC _DB8RHADC data buffer register 7 low0x000x00 53F3ADC _DB8RHADC data buffer register 8 high0x000x00 53F4ADC _DB8RHADC data buffer register 9 high0x000x00 53F4 to 0x00 53F7ADC _DB9RHADC data buffer register 9 high0x000x00 5400ADC _DB9RLADC data buffer register 9 high0x000x00 5400ADC _CSRADC control/status register0x000x00 5401ADC_CR1ADC configuration register 10x000x00 5403ADC_DRHADC configuration register 30x000x00 5404ADC_DRHADC Cata register low0xXX0x00 5406ADC_DRHADC Cata buffer register 10x000x00 5407ADC_DRHADC Cata register low0xXX0x00 5408ADC_DRHADC Configuration register 10x000x00 5408ADC_DRHADC Configuration register 10x000x00 5407ADC_DRHADC Configuration register 10x00 <tr< td=""><td>0x00 53E6</td><td></td><td>ADC _DB3RH</td><td>ADC data buffer register 3 high</td><td>0x00</td></tr<>	0x00 53E6		ADC _DB3RH	ADC data buffer register 3 high	0x00
ADCADCADCADCADCADCADC0x0053E3ADCADCDB5RHADC data buffer register 5 high0x000x0053E3ADCDB5RLADC data buffer register 5 low0x000x0053E0ADCDB6RHADC data buffer register 6 low0x000x0053E1ADCDB6RLADC data buffer register 6 low0x000x0053E2ADCDB7RHADC data buffer register 7 low0x000x0053E7ADCDB7RHADC data buffer register 7 low0x000x0053F3ADCDB8RHADC data buffer register 8 low0x000x0053F3ADCDB8RLADC data buffer register 8 low0x000x0053F4ADCADCDB8RLADC data buffer register 9 low0x000x0053F4ADCADCDB9RHADC data buffer register 9 low0x000x0053F4ADCADCDB9RLADC cata buffer register 9 low0x000x0053F4ADCADCCSRADC control/status register0x000x0053F4ADCADCCR2ADC configuration register 10x000x0053F4ADCADC_CR3ADC configuration register 20x000x005400ADCADC_CR3ADC configuration register 10x000x005403ADC_DRHADC data register high0xXX0x005406ADC_DRLADC control/status register0x00<	0x00 53E7		ADC _DB3RL	ADC data buffer register 3 low	0x00
ADCADC_DBSRHADC data buffer register 5 high0x000x00 53EAADC_DBSRLADC data buffer register 5 low0x000x00 53EBADC_DB6RLADC data buffer register 6 high0x000x00 53EDADC_DB6RLADC data buffer register 6 low0x000x00 53EDADC_DB7RHADC data buffer register 7 high0x000x00 53EFADC_DB7RLADC data buffer register 7 low0x000x00 53F0ADC_DB7RLADC data buffer register 7 low0x000x00 53F1ADC_DB8RHADC data buffer register 8 high0x000x00 53F2ADC_DB8RLADC data buffer register 8 low0x000x00 53F3ADC_DB9RHADC data buffer register 9 high0x000x00 53F4 to 0x00 53F4ADC_DB9RLADC data buffer register 9 high0x000x00 5400ADC_CR3ADC control/status register0x000x00 5401ADC_CR1ADC configuration register 10x000x00 5403ADC_DRHADC configuration register 30x000x00 5404ADC_DRLADC configuration register 10x000x00 5406ADC_DRLADC Control/status register0x000x00 5407ADC_DRHADC control/status register high0xXX0x00 5408ADC_TDRHADC control/status register high0xXX0x00 5408ADC_DRLADC control/status register high0xXX0x00 5407ADC_TDRHADC control/status register high0x000x00 5408ADC_TDRHADC control/status register high0x00 <tr< td=""><td>0x00 53E8</td><td></td><td>ADC _DB4RH</td><td>ADC data buffer register 4 high</td><td>0x00</td></tr<>	0x00 53E8		ADC _DB4RH	ADC data buffer register 4 high	0x00
ADC _DB5RHADC data buffer register 5 high0x000x00 53EBADC _DB5RLADC data buffer register 5 low0x000x00 53ECADC _DB6RHADC data buffer register 6 high0x000x00 53EDADC _DB6RLADC data buffer register 6 low0x000x00 53EDADC _DB7RHADC data buffer register 7 high0x000x00 53F1ADC _DB7RHADC data buffer register 7 high0x000x00 53F2ADC _DB8RHADC data buffer register 8 high0x000x00 53F3ADC _DB8RHADC data buffer register 8 high0x000x00 53F4 to 0x00 53F4 to 0x00 5402ADC _CSRADC control/status register 9 high0x000x00 5402ADC _CR2ADC configuration register 10x000x00 5403ADC _CR3ADC configuration register 30x000x00 5404ADC _DRHADC data puffer register 10x000x00 5406ADC _CR3ADC configuration register 10x000x00 5406ADC _DRHADC configuration register 10x000x00 5407ADC _DRHADC configuration register high0xXX0x00 5408ADC _TDRHADC Schmitt trigger disable register high0x000x00 5407ADC _TDRHADC Schmitt trigger disable register high0x000x00 5408ADC _HTRHADC high threshold re	0x00 53E9		ADC _DB4RL	ADC data buffer register 4 low	0x00
0x00 53ECADC _DB6RHADC data buffer register 6 high0x000x00 53EDADC _DB6RLADC data buffer register 6 low0x000x00 53EEADC _DB7RHADC data buffer register 7 high0x000x00 53F6ADC _DB7RLADC data buffer register 7 low0x000x00 53F1ADC _DB8RHADC data buffer register 8 high0x000x00 53F2ADC _DB8RLADC data buffer register 8 low0x000x00 53F3ADC _DB9RHADC data buffer register 9 high0x000x00 53F4 to 0x00 53F4 to 0x00 53F4ADC _CSRADC control/status register 9 low0x000x00 53F4 to 0x00 53F4ADC _CCR1ADC configuration register 10x000x00 5401ADC _CR2ADC configuration register 20x000x00 5403ADC _DRHADC configuration register 30x000x00 5404ADC _DRHADC data register high0xXX0x00 5406ADC _DRHADC Control/status register 00x000x00 5407ADC _DRHADC Configuration register 10x000x00 5408ADC _DRHADC Control/status register high0xXX0x00 5408ADC _DRHADC Configuration register 10x000x00 5409ADC _DRHADC Control/status register high0x000x00 5408ADC _DRHADC Configuration register 10x000x00 5406ADC _DRHADC Control/status register high0x000x00 5408ADC _DRHADC Control/status register high0x000x00 5409ADC _DRHADC Control/sta	0x00 53EA	ADC	ADC _DB5RH	ADC data buffer register 5 high	0x00
Ox00 53EDADC_DB6RLADC data buffer register 6 lowOx000x00 53EEADC_DB7RHADC data buffer register 7 high0x000x00 53FFADC_DB7RLADC data buffer register 7 low0x000x00 53F0ADC_DB8RHADC data buffer register 7 low0x000x00 53F1ADC_DB8RLADC data buffer register 8 high0x000x00 53F2ADC_DB8RLADC data buffer register 9 high0x000x00 53F3ADC_DB9RHADC data buffer register 9 high0x000x00 53F4 to 0x00 53FFReserved area (12 bytes)0x000x00 5400ADC_CR1ADC configuration register 10x000x00 5401ADC_CR2ADC configuration register 20x000x00 5403ADC_DRHADC configuration register 30x000x00 5404ADC_DRHADC configuration register 10x000x00 5406ADC_TDRHADC Schmitt trigger disable register high0x000x00 5407ADC_TDRHADC Schmitt trigger disable register low0x000x00 5408ADC_HTRHADC high threshold register low0x00	0x00 53EB		ADC _DB5RL	ADC data buffer register 5 low	0x00
Ox00 53EEADC _DB7RHADC data buffer register 7 highOx000x00 53FFADC _DB7RLADC data buffer register 7 high0x000x00 53F0ADC _DB8RHADC data buffer register 8 high0x000x00 53F1ADC _DB8RLADC data buffer register 8 low0x000x00 53F2ADC _DB9RHADC data buffer register 9 high0x000x00 53F3ADC _DB9RLADC data buffer register 9 high0x000x00 53F4 to 0x00 53F4 to 0x00 53FFReserved area (12 bytes)0x000x00 5400ADC _CR1ADC configuration register 10x000x00 5401ADC _CR2ADC configuration register 20x000x00 5403ADC _DRHADC configuration register 30x000x00 5404ADC _DRHADC data register high0xXX0x00 5405ADC _DRLADC Configuration register 10x000x00 5406ADC _DRHADC configuration register 10x000x00 5406ADC _DRHADC configuration register 10x000x00 5406ADC _TDRHADC Schmitt trigger disable register high0x000x00 5408ADC _TDRHADC Schmitt trigger disable register low0x000x00 5409ADC _HTRHADC high threshold register high0xFF	0x00 53EC		ADC _DB6RH	ADC data buffer register 6 high	0x00
Ox00 53EFADC _DB7RLADC data buffer register 7 lowOx000x00 53F0ADC _DB8RHADC data buffer register 8 high0x000x00 53F1ADC _DB8RLADC data buffer register 8 high0x000x00 53F2ADC _DB9RHADC data buffer register 9 high0x000x00 53F3ADC _DB9RLADC data buffer register 9 high0x000x00 53F4 to 0x00 53FFReserved area (12 bytes)0x000x00 5400ADC _CSRADC control/status register0x000x00 5401ADC _CR1ADC configuration register 10x000x00 5402ADC _CR2ADC configuration register 20x000x00 5403ADC _DRHADC configuration register 30x000x00 5404ADC _DRHADC data register high0xXX0x00 5406ADC _DRLADC Cchmitt trigger disable register0x000x00 5407ADC _TDRHADC Schmitt trigger disable register0x000x00 5408ADC _HTRHADC high threshold register high0xFF0x00 5409ADC _HTRLADC high threshold register low0x03	0x00 53ED		ADC _DB6RL	ADC data buffer register 6 low	0x00
ADC _DB8RHADC data buffer register 8 high0x000x00 53F1ADC _DB8RLADC data buffer register 8 high0x000x00 53F2ADC _DB9RHADC data buffer register 9 high0x000x00 53F3ADC _DB9RLADC data buffer register 9 high0x000x00 53F4 to 0x00 53FFADC _CSRADC control/status register0x000x00 5400ADC _CR1ADC configuration register 10x000x00 5401ADC _CR2ADC configuration register 20x000x00 5403ADC _DRHADC configuration register 30x000x00 5404ADC _DRLADC data register high0xXX0x00 5406ADC _TDRHADC Schmitt trigger disable register0x000x00 5407ADC _TDRHADC Schmitt trigger disable register0x000x00 5408ADC _TTRHADC Schmitt trigger disable register0x000x00 5409ADC _HTRHADC high threshold register high0xFF	0x00 53EE		ADC _DB7RH	ADC data buffer register 7 high	0x00
ADC _DB8RLADC data buffer register 8 low0x000x00 53F1ADC _DB9RHADC data buffer register 9 high0x000x00 53F3ADC _DB9RLADC data buffer register 9 high0x000x00 53F4 to 0x00 53FFReserved area (12 bytes)0x000x00 5400ADC _CSRADC control/status register0x000x00 5401ADC_CR1ADC configuration register 10x000x00 5402ADC_CR2ADC configuration register 20x000x00 5403ADC_DRHADC configuration register 30x000x00 5404ADC_DRLADC data register high0xXX0x00 5405ADC_TDRHADC Schmitt trigger disable register high0x000x00 5407ADC_TDRLADC Schmitt trigger disable register high0x000x00 5408ADC _HTRHADC high threshold register high0x000x00 5409ADC _HTRLADC high threshold register low0x03	0x00 53EF		ADC _DB7RL	ADC data buffer register 7 low	0x00
0x00 53F2ADC _DB9RHADC data buffer register 9 high0x000x00 53F3ADC _DB9RLADC data buffer register 9 low0x000x00 53F4 to 0x00 53FFReserved area (12 bytes)0x000x00 5400ADC _CSRADC control/status register0x000x00 5401ADC _CR1ADC configuration register 10x000x00 5402ADC _CR2ADC configuration register 20x000x00 5403ADC _CR3ADC configuration register 30x000x00 5404ADC _DRHADC data register low0xXX0x00 5405ADC _DRLADC data register low0xXX0x00 5406ADC _TDRHADC Schmitt trigger disable register low0x000x00 5408ADC _TDRLADC Schmitt trigger disable register low0x000x00 5408ADC _HTRHADC high threshold register high0xFF0x00 5409ADC _HTRLADC high threshold register low0x03	0x00 53F0		ADC _DB8RH	ADC data buffer register 8 high	0x00
0x00 53F3ADC _DB9RLADC data buffer register 9 low0x000x00 53F4 to 0x00 53FFReserved area (12 bytes)0x000x00 5400ADC _CSRADC control/status register0x000x00 5401ADC _CR1ADC configuration register 10x000x00 5402ADC _CR2ADC configuration register 20x000x00 5403ADC _CR3ADC configuration register 30x000x00 5404ADC _DRHADC data register high0xXX0x00 5406ADC _DRLADC data register low0xXX0x00 5407ADC _TDRHADC Schmitt trigger disable register low0x000x00 5408ADC _HTRLADC high threshold register high0x0FF0x00 5409ADC _HTRLADC high threshold register low0x03	0x00 53F1		ADC _DB8RL	ADC data buffer register 8 low	0x00
0x00 53F4 to 0x00 53FFReserved area (12 bytes)0x00 5400ADC_CSRADC control/status register0x000x00 5401ADC_CR1ADC configuration register 10x000x00 5402ADC_CR2ADC configuration register 20x000x00 5403ADC_CR3ADC configuration register 30x000x00 5404ADC_DRHADC data register high0xXX0x00 5405ADC_DRLADC data register low0xXX0x00 5406ADC_TDRHADC Schmitt trigger disable register low0x000x00 5408ADC_HTRHADC high threshold register low0x070x00 5409ADC_HTRLADC high threshold register low0x03	0x00 53F2		ADC _DB9RH	ADC data buffer register 9 high	0x00
Ox00 53FF ADC_CSR ADC control/status register Ox00 0x00 5401 ADC_CR1 ADC configuration register 1 0x00 0x00 5402 ADC_CR2 ADC configuration register 2 0x00 0x00 5403 ADC_DR1 ADC configuration register 3 0x00 0x00 5404 ADC_DRH ADC data register high 0xXX 0x00 5405 ADC_DRL ADC data register low 0x00 0x00 5406 ADC_TDRH ADC Schmitt trigger disable register low 0x00 0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00 0x00 5408 ADC_HTRH ADC high threshold register high 0xFF 0x00 5409 ADC_HTRL ADC high threshold register low 0x03	0x00 53F3		ADC _DB9RL	ADC data buffer register 9 low	0x00
0x00 5401ADC_CR1ADC configuration register 10x000x00 5402ADC_CR2ADC configuration register 20x000x00 5403ADC_CR3ADC configuration register 30x000x00 5404ADC_DRHADC data register high0xXX0x00 5405ADC_DRLADC data register low0xXX0x00 5406ADC_TDRHADC Schmitt trigger disable register high0x000x00 5407ADC_TDRLADC Schmitt trigger disable register low0x000x00 5408ADC_HTRHADC high threshold register high0xFF0x00 5409ADC_HTRLADC high threshold register low0x03			Re	eserved area (12 bytes)	
0x00 5402 ADC_CR2 ADC configuration register 2 0x00 0x00 5403 ADC_CR3 ADC configuration register 3 0x00 0x00 5404 ADC_DRH ADC data register high 0xXX 0x00 5405 ADC_DRL ADC data register low 0xXX 0x00 5406 ADC_TDRH ADC Schmitt trigger disable register low 0x00 0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00 0x00 5408 ADC_HTRH ADC high threshold register low 0x03	0x00 5400		ADC _CSR	ADC control/status register	0x00
0x00 5403ADC_CR3ADC configuration register 30x000x00 5404ADC_DRHADC data register high0xXX0x00 5405ADC_DRLADC data register low0xXX0x00 5406ADC_TDRHADC Schmitt trigger disable register high0x000x00 5407ADC_TDRLADC Schmitt trigger disable register low0x000x00 5408ADC_HTRHADC high threshold register low0xFF0x00 5409ADC_HTRLADC high threshold register low0x03	0x00 5401		ADC_CR1	ADC configuration register 1	0x00
0x00 5404 ADC_DRH ADC data register high 0xXX 0x00 5405 ADC_DRL ADC data register low 0xXX 0x00 5406 ADC_TDRH ADC Schmitt trigger disable register high 0xXX 0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00 0x00 5408 ADC_TDRL ADC Schmitt trigger disable register low 0x00 0x00 5409 ADC_HTRH ADC high threshold register low 0x03	0x00 5402		ADC_CR2	ADC configuration register 2	0x00
0x00 5405 ADC_DRL ADC data register low 0xXX 0x00 5406 ADC_TDRH ADC Schmitt trigger disable register high 0x00 0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00 0x00 5408 ADC_HTRH ADC high threshold register high 0xFF 0x00 5409 ADC_HTRL ADC high threshold register low 0x03	0x00 5403		ADC_CR3	ADC configuration register 3	0x00
ADC ADC ADC_TDRH ADC Schmitt trigger disable register high 0x00 0x00 5406 ADC_TDRH ADC Schmitt trigger disable register low 0x00 0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00 0x00 5408 ADC_HTRH ADC high threshold register high 0xFF 0x00 5409 ADC_HTRL ADC high threshold register low 0x03	0x00 5404		ADC_DRH	ADC data register high	0xXX
0x00 5406 ADC_TDRH ADC Schmitt trigger disable register high 0x00 0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00 0x00 5408 ADC_HTRH ADC high threshold register low 0x03 0x00 5409 ADC_HTRL ADC high threshold register low 0x03	0x00 5405	ADC	ADC_DRL	ADC data register low	0xXX
0x00 5407 ADC_TDRL Iow 0x00 0x00 5408 ADC_HTRH ADC high threshold register high 0xFF 0x00 5409 ADC_HTRL ADC high threshold register low 0x03	0x00 5406		ADC_TDRH		0x00
0x00 5409 ADC_HTRL ADC high threshold register low 0x03	0x00 5407		ADC_TDRL		0x00
	0x00 5408		ADC _HTRH	ADC high threshold register high	0xFF
0x00 540A ADC _LTRH ADC low threshold register high 0x00	0x00 5409		ADC_HTRL	ADC high threshold register low	0x03
	0x00 540A		ADC _LTRH	ADC low threshold register high	0x00

Table 11. General hardware register map (continued)

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 21*. Care should be taken to limit the series inductance to less than 15 nH.

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 6 on page 49* and *Figure 7 on page 50*.

If not explicitly stated, general conditions of temperature and voltage apply.

r	Ochera	i conditions for V _{DE}	100 0			
Symbol	Parameter	Condi	tions	Тур	Max	Unit
		All peripherals	f _{CPU} = 16 MHz	7.4	14	
I _{DD(RUN)} ⁽¹⁾ I _{DD(RUN)} ⁽¹⁾ I _{DD(WFI)} ⁽¹⁾	Supply current in	clocked, code executed from Flash	f _{CPU} = 8 MHz	4.0	7.4 ⁽²⁾	
	Run mode	program memory, HSE external clock	f _{CPU} = 4 MHz	2.4	4.1 ⁽²⁾	
		(without resonator)	f _{CPU} = 2 MHz	1.5	2.5	
		All peripherals	f _{CPU} = 16 MHz	3.7	5.0	
	Supply current in Run mode	clocked, code executed from RAM	f _{CPU} = 8 MHz	2.2	3.0 ⁽²⁾	
		and EEPROM, HSE external clock	f _{CPU} = 4 MHz	1.4	2.0 ⁽²⁾	
		(without resonator)	f _{CPU} = 2 MHz	1.0	1.5	mA
	Supply current in Wait mode		f _{CPU} = 16 MHz	1.65	2.5	
		CPU stopped, all	f _{CPU} = 8 MHz	1.15	1.9 ⁽²⁾	
		peripherals off, HSE external clock	f _{CPU} = 4 MHz	0.90	1.6 ⁽²⁾	
			f _{CPU} = 2 MHz	0.80	1.5	
1 (1)	Supply current in	f _{CPU} scaled down, all peripherals off,	Ext. clock 16 MHz f _{CPU} = 125 kHz	1.50	1.95	
I _{DD(SLOW)} ⁽¹⁾	Slow mode	code executed from RAM	LSI internal RC f _{CPU} = 128 kHz	1.50	1.80 ⁽²⁾	

Table 23. Total current consumption in Run, Wait and Slow mode. General conditions for V_{DD} apply, $T_A = -40$ to 150 °C

1. The current due to I/O utilization is not taken into account in these values.

2. Values not tested in production. Design guidelines only.

DocID14952 Rev 11

r	General co			$I_{A} = -40 \ to \ 55 \ C$	1		
			Conditi				
Symbol	Parameter	Main voltage regulator (MVR) ⁽¹⁾	Flash mode ⁽²⁾	Clock source and specific temperature condition	Тур	Мах	Unit
			Power-	Clocks stopped	5	35 ⁽³⁾	
I _{DD(H)}	Supply current in Halt mode	Off	down	Clocks stopped, T _A = 25 °C	5	25	
I _{DD(AH)}	Supply current in Active-halt	On	Power- down	Ext. clock 16 MHz f _{MASTER} = 125 kHz	770	900 ⁽³⁾	μΑ
	mode with regulator on			LSI clock 128 kHz	150	230 ⁽³⁾	
	Supply current in Active-halt		Power- down	LSI clock 128 kHz	25	42 ⁽³⁾	
	mode with regulator off	Off		LSI clock 128 kHz, T _A = 25 °C	25	30	
t	Wakeup time from Active- halt mode with regulator on	On	Operating	T _A = -40 to 150 °C	10	30 ⁽³⁾	119
t _{WU(AH)}	Wakeup time from Active- halt mode with regulator off	Off	mode	i _A = -το το 150° Ο	50	80 ⁽³⁾	μs

Table 24. Total current consumption in Halt and Active-halt modes. General conditions for V_{DD} apply, $T_A = -40$ to 55 °C

1. Configured by the REGAH bit in the CLK_ICKR register.

2. Configured by the AHALT bit in the FLASH_CR1 register.

3. Data based on characterization results. Not tested in production.

Current consumption for on-chip peripherals

Table 25. Oscillator	current consumption
----------------------	---------------------

Symbol	Parameter	Conditions		Тур	Max ⁽¹⁾	Unit					
		Quartz or	f _{OSC} = 24 MHz	1	2.0 ⁽³⁾						
		ceramic resonator,	f _{OSC} = 16 MHz	0.6	-						
		CL = 33 pF V _{DD} = 5 V			N/ F N/	f _{OSC} = 8 MHz	0.57	-	mA		
IDD(OSC)	consumption ⁽²⁾	Quartz or ceramic resonator,	ceramic					f _{OSC} = 24 MHz	0.5	1.0 ⁽³⁾	ШA
				f _{OSC} = 16 MHz	0.25	-					
CL = 33 pF V _{DD} = 3.3 V	f _{OSC} = 8 MHz	0.18	-								

1. During startup, the oscillator current consumption may reach 6 mA.

2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

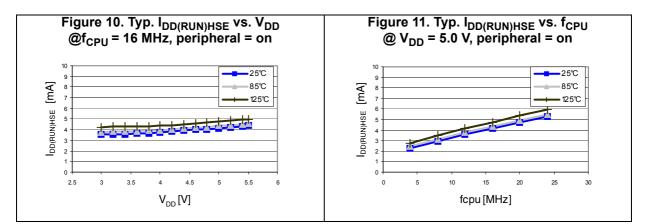
3. Informative data.

Symbol	Parameter	Conditions	Тур	Мах	Unit		
I _{DD(PROG)}	Programming current	V _{DD} = 5 V, -40 °C to 150 °C, erasing and programming data or Flash program memory	1.0	1.7	mA		

Table 26. Programming current consumption

Table 27. Typical peripheral current consumption $V_{DD} = 5.0 V^{(1)}$

Symbol	Parameter	Typ. f _{master} = 2 MHz	Typ. f _{master} = 16 MHz	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽²⁾	0.03	0.23	
I _{DD(TIM2)}	TIM2 supply current ⁽²⁾	0.02	0.12	
I _{DD(TIM3)}	TIM3 supply current ⁽²⁾	0.01	0.1	
I _{DD(TIM4)}	TIM4 supply current ⁽²⁾	0.004	0.03	
I _{DD(LINUART)}	LINUART supply current ⁽²⁾	0.03	0.11	
I _{DD(SPI)}	SPI supply current ⁽²⁾	0.01	0.04	mA
I _{DD(I²C)}	I ² C supply current ⁽²⁾	0.02	0.06	
I _{DD(AWU)}	AWU supply current ⁽²⁾	0.003	0.02	
I _{DD(TOT_DIG)}	All digital peripherals on	0.22	1	
I _{DD(ADC)}	ADC supply current when converting ⁽³⁾	0.93	0.95	


1. Typical values not tested in production. Since the peripherals are powered by an internally regulated, constant digital supply voltage, the values are similar in the full supply voltage range.

2. Data based on a differential I_{DD} measurement between no peripheral clocked and a single active peripheral. This measurement does not include the pad toggling consumption.


3. Data based on a differential ${\rm I}_{\rm DD}$ measurement between reset configuration and continuous A/D conversions.

Current consumption curves

Figure 10 to *Figure 15* show typical current consumption measured with code executing in RAM.

10.3.3 External clock sources and timing characteristics

HSE user external clock

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_} ext	User external clock source frequency	T _A is -40 to 150 °C	0 ⁽¹⁾	-	16	MHz
V _{HSEdHL}	Comparator hysteresis	-	0.1 x V _{DD}	-	-	
V _{HSEH}	OSCIN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD}	v
V _{HSEL}	OSCIN input pin low level voltage	-	V _{SS}	-	0.3 x V _{DD}	
ILEAK_HSE	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	-	+1	μA

1. In CSS is used, the external clock must have a frequency above 500 kHz.

10.3.5 Memory characteristics

Flash program memory/data EEPROM memory

General conditions: $T_A = -40$ to 150 °C.

Table 32. Flash program memory/data EEPROM memory

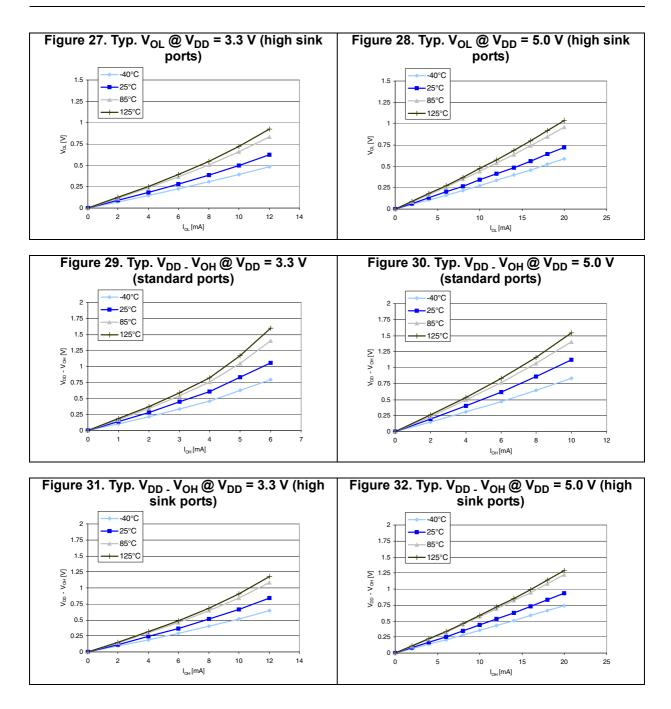
	1 0 ,			-		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Operating voltage (all modes, execution/write/erase)	f _{CPU} is 0 to 16 MHz with 0 ws	3.0	-	5.5	V
V_{DD}	Operating voltage (code execution)	f _{CPU} is 0 to 16 MHz with 0 ws	2.6	-	5.5	v
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)	-	-	6	6.6	
1.2	Fast programming time for 1 block (128 bytes)	-	-	3	3.3	ms
t _{erase}	Erase time for 1 block (128 bytes)	-	-	3	3.3	

Table 33. Flash program memory

Symbol	Parameter	Condition	Min	Мах	Unit
T _{WE}	Temperature for writing and erasing	-	-40	150	°C
N _{WE}	Flash program memory endurance (erase/write cycles) ⁽¹⁾	T _A = 25 °C	1000	-	cycles
+	Data retention time	T _A = 25 °C	40	-	VOOR
t _{RET}		T _A = 55 °C	20	-	years

 The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

Table 34.	Data	memory
-----------	------	--------


Symbol	Parameter	Condition	Min	Max	Unit
T _{WE}	Temperature for writing and erasing	-	-40	150	°C
N	Data memory endurance ⁽¹⁾	T _A = 25 °C	300 k	-	cycles
N _{WE}	(erase/write cycles) $T_A = -40^{\circ}C$ to 125 °C	100 k ⁽²⁾	-	Cycles	
	Data retention time	T _A = 25 °C	40 ⁽²⁾⁽³⁾	-	
t _{RET}		T _A = 55 °C	20 ⁽²⁾⁽³⁾	-	years

1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.

3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.

10.3.10 I²C interface characteristics

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		Unit
Symbol	Falameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} = 3 to 5.5 V)	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time (V _{DD} = 3 to 5.5 V)	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	
Cb	Capacitive load for each bus line	-	400	-	400	pF

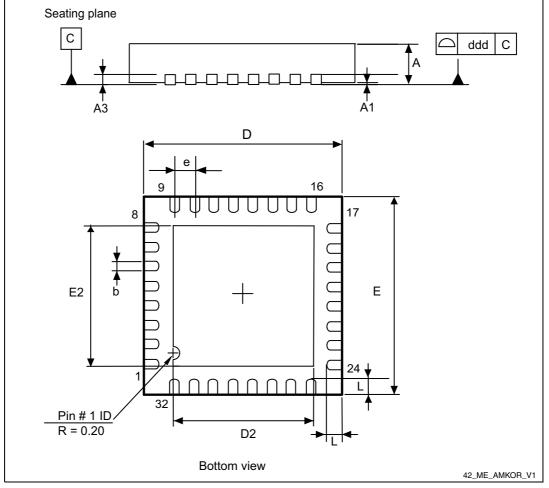
Table 39. I²C characteristics

1. f_{MASTER} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz)

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL



11 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

11.1 VFQFPN32 package information

Figure 42. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline

1. Drawing is not to scale.

11.4 Thermal characteristics

In case the maximum chip junction temperature (T_{Jmax}) specified in *Table 21: General operating conditions on page 52* is exceeded, the functionality of the device cannot be guaranteed.

 T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in $^{\circ}C$
- O_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \; (\mathsf{V}_\mathsf{OL} * \mathsf{I}_\mathsf{OL}) + \Sigma ((\mathsf{V}_\mathsf{DD} - \mathsf{V}_\mathsf{OH}) * \mathsf{I}_\mathsf{OH}),$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	59	°C/W
Θ_{JA}	Thermal resistance junction-ambient VFQFPN32	25	°C/W

Table 49. Thermal characteristics⁽¹⁾

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.4.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

11.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see *Section 12: Ordering information*).

The following example shows how to calculate the temperature range needed for a given application.

13 STM8 development tools

Development tools for the STM8A microcontrollers include the

- STice emulation system offering tracing and code profiling
- STVD high-level language debugger including assembler and visual development environment seamless integration of third party C compilers.
- STVP Flash programming software

In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

13.1 Emulation and in-circuit debugging tools

The STM8 tool line includes the STice emulation system offering a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8A application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full-featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including tracing, profiling and code coverage analysis to help detect execution bottlenecks and dead code.

In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows users to order exactly what they need to meet their development requirements and to adapt their emulation system to support existing and future ST microcontrollers.

13.1.1 STice key features

- Program and data trace recording up to 128 K records
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Real-time read/write of all device resources during emulation
- Occurrence and time profiling and code coverage analysis (new features)
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- USB 2.0 high speed interface to host PC
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows users to specify the components they need to meet their development requirements and adapt to future requirements.
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

13.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8A Flash microcontroller on the user application board via the SWIM protocol. Additional tools are used to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the user STM8A.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID14952 Rev 11