

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6266tcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	flat package mechanical data	79
Table 47.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
	mechanical data	33
Table 48.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package	
	mechanical data	36
Table 49.	Thermal characteristics	38
Table 50.	Document revision history	94

List of figures

Figure 1.	STM8AF6246/48/66/68 block diagram	12
Figure 2.	Flash memory organization of STM8AF6246/48/66/68	
Figure 3.	VFQFPN/LQFP 32-pin pinout	
Figure 4.	LQFP 48-pin pinout.	
Figure 5.	Register and memory map of STM8A products	
Figure 6.	Pin loading conditions.	
Figure 7.	Pin input voltage	
Figure 8.	f _{CPUmax} versus V _{DD}	
Figure 9.	External capacitor C _{FXT}	
Figure 10.	Typ. I _{DD(RUN)HSE} vs. V _{DD} @f _{CPU} = 16 MHz, peripheral = on	56
Figure 11.	Typ. $I_{DD(RUN)HSE}$ vs. f_{CPU} @ V_{DD} = 5.0 V, peripheral = on	56
Figure 12.	Typ. $I_{DD(RUN)HSI}$ vs. V_{DD} @ f_{CPU} = 16 MHz, peripheral = off	57
Figure 13.	Typ. $I_{DD(WFI)HSE}$ vs. V_{DD} @ f_{CPU} = 16 MHz, peripheral = on	57
Figure 14.	Typ. $I_{DD(WFI)HSE}$ vs. f_{CPU} @ V_{DD} = 5.0 V, peripheral = on	57
Figure 15.	Typ. $I_{DD(WFI)HSI}$ vs. V_{DD} @ f_{CPU} = 16 MHz, peripheral = off	57
Figure 16.	HSE external clock source	58
Figure 17.	HSE oscillator circuit diagram	
Figure 18.	Typical HSI frequency vs V _{DD}	
Figure 19.	Typical LSI frequency vs V _{DD}	
Figure 20.	Typical V _{IL} and V _{IH} vs V _{DD} @ four temperatures	
Figure 21.	Typical pull-up resistance R _{PU} vs V _{DD} @ four temperatures	
Figure 22.	Typical pull-up current I _{pu} vs V _{DD} @ four temperatures	
Figure 23.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (standard ports).	
Figure 24.	Typ. $V_{OL} @ V_{DD} = 5.0 V$ (standard ports).	
Figure 25.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (true open drain ports)	
Figure 26.	Typ. $V_{OL} @ V_{DD} = 5.0 V$ (true open drain ports)	
Figure 27.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (high sink ports)	
Figure 28.	Typ. $V_{OL} @ V_{DD} = 5.0 V$ (high sink ports)	
Figure 29.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 3.3 V$ (standard ports).	
Figure 30.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (standard ports).	
Figure 31.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 3.3 V$ (high sink ports)	
Figure 32.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (high sink ports)	
Figure 33.	Typical NRST V _{IL} and V _{IH} vs V _{DD} @ four temperatures	
Figure 34.	Typical NRST pull-up resistance R _{PU} vs V _{DD}	
Figure 35.	Typical NRST pull-up current I _{pu} vs V _{DD}	
Figure 36.	Recommended reset pin protection	
Figure 37.	SPI timing diagram where slave mode and CPHA = 0	
Figure 38.	SPI timing diagram where slave mode and CPHA = 1	70
Figure 39.	SPI timing diagram - master mode	
Figure 40.	Typical application with ADC	73
Figure 41.	ADC accuracy characteristics	74
Figure 42.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad	
U	flat package outline	78
Figure 43.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad	
-	flat package recommended footprint	80
Figure 44.	VFQFPN32 marking example (package top view)	81
Figure 45.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	
Figure 46.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	

1 Introduction

This datasheet refers to the STM8AF6246, STM8AF6248, STM8AF6266 and STM8AF6268 products with 16 to 32 Kbyte of Flash program memory.

In the order code, the letter 'F' refers to product versions with data EEPROM and 'H' refers to product versions without data EEPROM. The identifiers 'F' and 'H' do not coexist in a given order code.

The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8 Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

Address	Block	Register label	Register name	Reset status
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX ⁽¹⁾
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX ⁽¹⁾
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C	PF_CR1 Port F control registe		Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0xXX ⁽¹⁾
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	PG_CR1 Port G control register 1	
0x00 5022	PG_CR2 Port G control register 2		0x00	

Table 10. I/O port hardware register map (continued)
--

1. Depends on the external circuitry.

Address	Block	Block Register label Register name		Reset status
0x00 505A		FLASH_CR1	Flash control register 1	0x00
0x00 505B		FLASH_CR2	Flash control register 2	0x00
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF
0x00 505D	Flash	FLASH_FPR	Flash protection register	0x00
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF
0x00 505F		FLASH_IAPSR	Flash in-application programming status register	0x40
0x00 5060 to 0x00 5061		Reserved area (2 bytes)		
0x00 5062	Flash	FLASH_PUKR Flash Program memory unprotection register		0x00
0x00 5063	Reserved area (1 byte)			
0x00 5064	Flash	Flash FLASH_DUKR Data EEPROM unprotection register		0x00
0x00 5065 to 0x00 509F	Reserved area (59 bytes)			

Table 11. General hardware register map

DocID14952 Rev 11

Table 11. General hardware register map (continued)				
Address	Block Register label Register name		Reset status	
0x00 50A0	EXTI_CR1		External interrupt control register 1	0x00
0x00 50A1	ITC	EXTI_CR2	External interrupt control register 2	0x00
0x00 50A2 to 0x00 50B2	Reserved area (17 bytes)			
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾
0x00 50B4 to 0x00 50BF		Re	eserved area (12 bytes)	
0x00 50C0		CLK_ICKR	Internal clock control register	0x01
0x00 50C1	CLK	CLK_ECKR	External clock control register	0x00
0x00 50C2		F	Reserved area (1 byte)	
0x00 50C3		CLK_CMSR	Clock master status register	0xE1
0x00 50C4		CLK_SWR	Clock master switch register	0xE1
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18
0x00 50C7	CLK	CLK_PCKENR1	Peripheral clock gating register 1	0xFF
0x00 50C8		CLK_CSSR	Clock security system register	0x00
0x00 50C9		CLK_CCOR	Configurable clock control register	0x00
0x00 50CA		CLK_PCKENR2	Peripheral clock gating register 2	0xFF
0x00 50CB	Reserved area (1 byte)		1	
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00
0x00 50CD	CLK	CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0
0x00 50CE to 0x00 50D0	Reserved area (3 bytes)			
0x00 50D1		WWDG_CR WWDG control register		0x7F
0x00 50D2	WWDG	WWDG_WR	WWDR window register	0x7F
0x00 50D3 to 0x00 50DF	Reserved area (13 bytes)		L	
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF
0x00 50E3 to 0x00 50EF	Reserved area (13 bytes)			
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00

	•• • • • •	<i>((</i>))
Table 11. Gener	al hardware registe	er map (continued)

Address	Block	ck Register label Register name		Reset status
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
0x00 7F97		DM_CR2	DM debug module control register 2	0x00
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10
0x00 7F99		DM_CSR2	DM debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F			Reserved area (5 bytes)	

Table 12. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 5: Register and memory map of STM8A products.

		Table 15. Tempor	ary memory unprotection registers	
Address	Block	Register label Register name		Reset status
0x00 5800		TMU_K1	Temporary memory unprotection key register 1	0x00
0x00 5801		TMU_K2	Temporary memory unprotection key register 2	0x00
0x00 5802		TMU_K3	Temporary memory unprotection key register 3	0x00
0x00 5803		TMU_K4	Temporary memory unprotection key register 4	0x00
0x00 5804	TMU	TMU_K5	Temporary memory unprotection key register 5	0x00
0x00 5805		TMU_K6	Temporary memory unprotection key register 6	0x00
0x00 5806		TMU_K7	Temporary memory unprotection key register 7	0x00
0x00 5807		TMU_K8	Temporary memory unprotection key register 8	0x00
0x00 5808		TMU_CSR	Temporary memory unprotection control and status register	0x00

Table 13. Temporary memory unprotection registers

Option byte no.	Description
	HSITRIM: Trimming option for 16 MHz internal RC oscillator
	0: 3-bit on-the-fly trimming (compatible with devices based on the 128K silicon)
	1: 4-bit on-the-fly trimming
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
OPT3	IWDG_HW: Independent watchdog
UF 13	0: IWDG independent watchdog activated by software1: IWDG independent watchdog activated by hardware
	WWDG_HW: Window watchdog activation
	0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on Halt
	0: No reset generated on Halt if WWDG active 1: Reset generated on Halt if WWDG active
	EXTCLK: External clock selection
OPT4	0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
	CKAWUSEL: Auto-wakeup unit/clock
	0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0]: AWU clock prescaler
	00: Reserved 01: 16 MHz to 128 kHz prescaler
	10: 8 MHz to 128 kHz prescaler
	11: 4 MHz to 128 kHz prescaler
0.075	HSECNT[7:0]: HSE crystal oscillator stabilization time
OPT5	This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00.
0.770	TMU[3:0]: Enable temporary memory unprotection
OPT6	0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
OPT7	Reserved
OPT8	TMU_KEY 1 [7:0]: Temporary unprotection key 0 Temporary unprotection key: Must be different from 0x00 or 0xFF
	TMU_KEY 2 [7:0]: Temporary unprotection key 1
OPT9	Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT10	TMU_KEY 3 [7:0]: Temporary unprotection key 2 Temporary unprotection key: Must be different from 0x00 or 0xFF
	TMU_KEY 4 [7:0]: Temporary unprotection key 3
OPT11	Temporary unprotection key: Must be different from 0x00 or 0xFF

Table 16. Option byte description (continued)

Symbol	Ratings	Max.	Unit
I _{VDDIO}	Total current into V_{DDIO} power lines (source) ⁽¹⁾⁽²⁾⁽³⁾	100	
I _{VSSIO}	Total current out of $V_{SS IO}$ ground lines (sink) ⁽¹⁾⁽²⁾⁽³⁾	100	
1.	Output current sunk by any I/O and control pin	20	mA
Ι _{ΙΟ}	Output current source by any I/Os and control pin	-20	IIIA
I _{INJ(PIN)} ⁽⁴⁾	Injected current on any pin	±10	
I _{INJ(TOT)}	Sum of injected currents	50	

Table 18. Current characteristics

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.

- 2. The total limit applies to the sum of operation and injected currents.
- 3. V_{DDIO} includes the sum of the positive injection currents. V_{SSIO} includes the sum of the negative injection currents.
- 4. This condition is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current allowed and the corresponding V_{IN} maximum must always be respected.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
TJ	Maximum junction temperature	160	0

Table 20. Operating lifetime⁽¹⁾

Symbol	Ratings	Value	Unit
OLF	Conforming to AEC-Q100 rev G	-40 to 125 °C	Grade 1
		-40 to 150 °C	Grade 0

1. For detailed mission profile analysis, please contact the nearest local ST Sales Office.

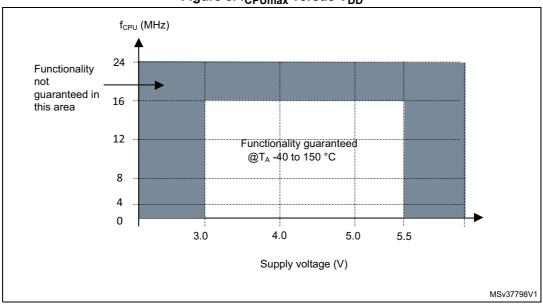

10.3 Operating conditions

Table 21. General operating conditions					
Symbol	Parameter	Conditions	Min	Мах	Unit
f _{CPU}	Internal CPU clock frequency	T_A = -40 °C to 150 °C	0	16	MHz
V _{DD/} V _{DDIO}	Standard operating voltage	-	3.0	5.5	V
(1)	C _{EXT} : capacitance of external capacitor	-	470	3300	nF
$V_{CAP}^{(1)}$	ESR of external capacitor	at 1 MHz ⁽²⁾	-	0.3	Ω
	ESL of external capacitor		-	15	nH
	Power dissipation (all temperature ranges)	LQFP32	-	85	
PD		VFQFPN32	-	200	mW
		LQFP48	-	88	
		Suffix A		85	°C
T _A	Ambient temperature	Suffix C		125	
		Suffix D	40	150	
TJ		Suffix A	-40	90	U
	Junction temperature range	Suffix C		130	
		Suffix D		155	

Table 21. General operating conditions

1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

2. This frequency of 1 MHz as a condition for V_{CAP} parameters is given by design of internal regulator.

Figure 8. f_{CPUmax} versus V_{DD}

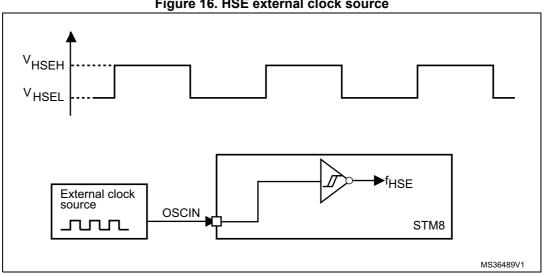


Figure 16. HSE external clock source

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 16 MHz. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Table 29. HSE osci	llator characteristics
--------------------	------------------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _F	Feedback resistor	-	-	220	-	kΩ
$C_{L1}/C_{L2}^{(1)}$	Recommended load capacitance	-	-	-	20	pF
9 _m	Oscillator transconductance	-	5	-	-	mA/V
t _{SU(HSE)} ⁽²⁾	Startup time	V _{DD} is stabilized	-	2.8	-	ms

1. The oscillator needs two load capacitors, C_{L1} and C_{L2} , to act as load for the crystal. The total load capacitance (C_{load}) is $(C_{L1} * C_{L2})/(C_{L1} + C_{L2})$. If $C_{L1} = C_{L2}$, $C_{load} = C_{L1} / 2$. Some oscillators have built-in load capacitors, C_{L1} and C_{L2} .

2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 16 MHz oscillation is reached. It can vary with the crystal type that is used.

10.3.8 TIM 1, 2, 3, and 4 timer specifications

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Table 37. TIM 1	2, 3, and 4 electrical specified	ications
-----------------	----------------------------------	----------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{EXT}	Timer external clock frequency ⁽¹⁾	-	-	-	16	MHz

1. Not tested in production. On 64 Kbyte devices, the frequency is limited to 16 MHz.

10.3.9 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 38* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions		Min	Мах	Unit
		Master mode		0	10	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	V _{DD} < 4.5 V	0	6 ⁽¹⁾	MHz
		Slave mode	V _{DD} = 4.5 V to 5.5 V	0	8 ⁽¹⁾	
t _{r(SCK}) t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C =	= 30 pF	-	25 ⁽²⁾	
t _{su(NSS)} ⁽³⁾	NSS setup time	Slave mode		4 * t _{MASTER}	-	
t _{h(NSS)} ⁽³⁾	NSS hold time	Slave mode		70	-	
t _{w(SCKH)} ⁽³⁾ t _{w(SCKL)} ⁽³⁾	SCK high and low time	Master mode		t _{SCK} /2 - 15	t _{SCK} /2 + 15	
t _{su(MI)} (3)	Data input setup time	Master mode		5	-	
$t_{su(SI)}^{(3)}$	Data input setup time	Slave mode		5	-	
t _{h(MI)} ⁽³⁾ t _{h(SI)} ⁽³⁾	Data input hold time	Master mode		7	-	ns
$t_{h(SI)}^{(3)}$		Slave mode		10	-	
t _{a(SO)} (3)(4)	Data output access time	Slave mode		-	3* t _{MASTER}	
t _{dis(SO)} ⁽³⁾⁽⁵⁾	Data output disable time	Slave mode		25		
+ (3)	(SO) ⁽³⁾ Data output valid time	Slave mode	V _{DD} < 4.5 V	-	75	
t _{v(SO)} (°)		(after enable edge)	V _{DD} = 4.5 V to 5.5 V	-	53	1
t _{v(MO)} ⁽³⁾	Data output valid time	Master mode (after enable edge)		-	30	
t _{h(SO)} ⁽³⁾	Data output hold time	Slave mode (after enable edge)		31	-	
t _{h(MO)} ⁽³⁾	Data output hold time	Master mode (after	enable edge)	12	-	

Table 38. SPI ch	aracteristics
------------------	---------------

1. $f_{SCK} < f_{MASTER}/2$.

2. The pad has to be configured accordingly (fast mode).

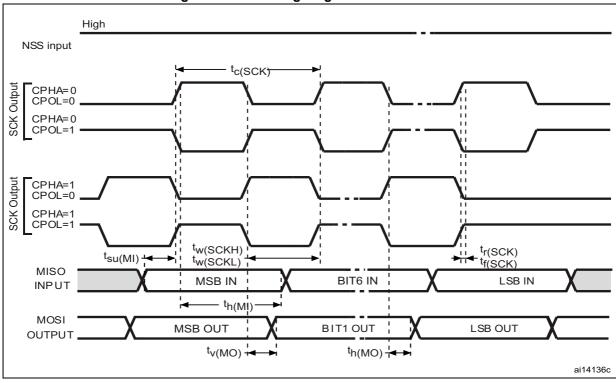


Figure 39. SPI timing diagram - master mode

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

10.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T _A = 25 °C, f _{MASTER} = 16 MHz (HSI clock), Conforms to IEC 1000-4-2	3/B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = 25 °C, f _{MASTER} = 16 MHz (HSI clock), Conforms to IEC 1000-4-4	4/A

Table	12	EMC	data
rable	4Z.		uala

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

Symbol		Conditions				
	Parameter		Monitored	Max f _{CPU} ⁽¹⁾		Unit
		General conditions	frequency band	8 MHz	16 MHz	
S _{EMI}		V _{DD} = 5 V,	0.1 MHz to 30 MHz	15	17	
	Peak level	T _A = 25 °C, LQFP80 package	30 MHz to 130 MHz	18	22	dBµV
	conforming to IEC		130 MHz to 1 GHz	-1	3	ubμv
	EMI level	61967-2	-	2	2.5]

Table 4	13. E	EMI c	lata
---------	-------	-------	------

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Table 44.	ESD abs	olute maximum	ratings
-----------	---------	---------------	---------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	ЗA	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	$T_A = 25^{\circ}C$, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = 25°C, conforming to JESD22-A115	В	200	

1. Data based on characterization results, not tested in production

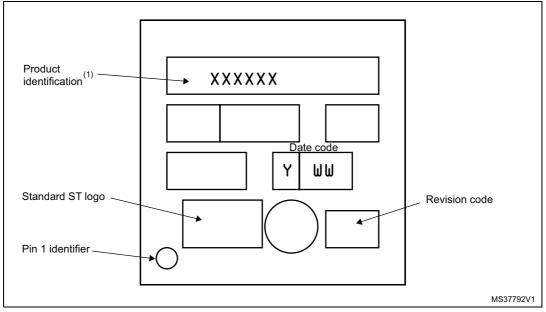
Static latch-up

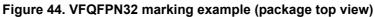
Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾	
LU		$T_A = 25 \ ^\circ C$		
	Static latch-up class	T _A = 85 °C		
		T _A = 125 °C	A	
		T _A = 150 °C		


Table 4	5. Electrical	sensitivities
---------	---------------	---------------


 Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

11.4 Thermal characteristics

In case the maximum chip junction temperature (T_{Jmax}) specified in *Table 21: General operating conditions on page 52* is exceeded, the functionality of the device cannot be guaranteed.

 T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in $^{\circ}C$
- O_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \; (\mathsf{V}_\mathsf{OL} * \mathsf{I}_\mathsf{OL}) + \Sigma ((\mathsf{V}_\mathsf{DD} - \mathsf{V}_\mathsf{OH}) * \mathsf{I}_\mathsf{OH}),$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	59	°C/W
Θ_{JA}	Thermal resistance junction-ambient VFQFPN32	25	°C/W

Table 49. Thermal characteristics⁽¹⁾

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.4.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

11.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see *Section 12: Ordering information*).

The following example shows how to calculate the temperature range needed for a given application.

13 STM8 development tools

Development tools for the STM8A microcontrollers include the

- STice emulation system offering tracing and code profiling
- STVD high-level language debugger including assembler and visual development environment seamless integration of third party C compilers.
- STVP Flash programming software

In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

13.1 Emulation and in-circuit debugging tools

The STM8 tool line includes the STice emulation system offering a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8A application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full-featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including tracing, profiling and code coverage analysis to help detect execution bottlenecks and dead code.

In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows users to order exactly what they need to meet their development requirements and to adapt their emulation system to support existing and future ST microcontrollers.

13.1.1 STice key features

- Program and data trace recording up to 128 K records
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Real-time read/write of all device resources during emulation
- Occurrence and time profiling and code coverage analysis (new features)
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- USB 2.0 high speed interface to host PC
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows users to specify the components they need to meet their development requirements and adapt to future requirements.
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

14 Revision history

Date	Revision	Changes
22-Aug-2008	1	Initial release
10-Aug-2009	2	Document revised as the following: Updated <i>Features</i> ; Updated <i>Table: Device summary</i> ; Updated <i>Section: Product line-up</i> ; Changed <i>Section: Product overview</i> ; Updated <i>Section: Pinouts and pin description</i> ; Changed <i>Section: Register map</i> ; Updated <i>Section: Register map</i> ; Updated <i>Section: Interrupt table</i> ; Updated <i>Section: Option bytes</i> ; Updated <i>Section: Electrical characteristics</i> ; Updated <i>Section: Package information</i> ; Updated <i>Section: Ordering information</i> ; Added <i>Section: STM8 development tools</i> .
22-Oct-2009	3	Adapted Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin description. Added Section: LIN header error when automatic resynchronization is enabled.
08-Jul-2010	4	Updated title on cover page. Added VFQFPN32 5x 5 mm package. Added STM8AF62xx devices, and modified cover page header to clarify the part numbers covered by the datasheets. Updated <i>Note 1</i> below <i>Table: Device summary.</i> Updated D temperature range to -40 to 150°C. Content of <i>Section: Product overview</i> reorganized. Renamed <i>Section: Memory and register map</i> , and content merged with Register map section. Renamed BL_EN and NBL_EN, BL and NBL, respectively, in <i>Table:</i> <i>Option bytes.</i> Added <i>Table: Operating lifetime.</i> Added CEXT and P _D (power dissipation) in <i>Table: General operating</i> <i>conditions</i> , and <i>Section: VCAP external capacitor.</i> Suffix D maximum junction temperature (T _J) updated in <i>Table:</i> <i>General operating conditions.</i> Update tvDD in <i>Table: Operating conditions at power-up/power-down.</i> Moved <i>Table: Typical peripheral current consumption VDD = 5.0 V</i> to <i>Section: Current consumption for on-chip peripherals</i> and removed I _{DD(CAN)} . Updated <i>Section: STM8 development tools.</i>

Table 50. Document revision history

Date		Table 50. Document revision history (continued) Revision Changes		
Date	1764121011			
	5 (continued)	Renamed Fast Active Halt mode to Active-halt mode with regulator on, and Slow Active Halt mode to Active-halt mode with regulator off. Updated <i>Table: Total current consumption in Halt and Active-halt</i> <i>modes. General conditions for VDD apply, TA</i> = -40 to 55 °C, in particular I _{DD(FAH)} and I _{DD(SAH)} renamed I _{DD(AH)} ; t _{WU(FAH)} and t _{WU(SAH)} renamed t _{WU(AH)} , and temperature condition added. Removed I _{DD(USART)} from <i>Table: Typical peripheral current</i> <i>consumption VDD</i> = 5.0 V.		
31-Jan-2011		Updated general conditions in <i>Section: Memory characteristics</i> . Modified T_{WE} maximum value in <i>Table: Flash program memory</i> and <i>Table: Data memory</i> . Update $I_{lkg ana}$ maximum value for T_A ranging from -40 to 150 °C in		
		Table: I/O static characteristics.		
		Added $t_{IFP(NRST)}$ and renamed $V_{F(NRST)} t_{IFP}$ in <i>Table: NRST pin characteristics</i> . Added recommendations concerning NRST pin level above <i>Figure: Recommended reset pin protection,</i> and updated external capacitor value.		
		Added Raisonance compiler in Section: Software tools.		
		Moved know limitations to separate errata sheet.		
		Updated wildcards of document part numbers.		
		<i>Table: Device summary: u</i> pdated the footnotes to all STM8AF61xx part numbers.		
		Section: Introduction: small text change in first paragraph.		
	2 6	<i>Table:</i> STM8AF62xx product line-up: added "P" version for all order codes; updated RAM.		
		<i>Table: STM8AF/H61xx product line-up</i> : added "P" version for all order codes.		
		<i>Figure: STM8A block diagram</i> : updated POR, BOR and WDG; updated LINUART input; added legend.		
		Section: Flash program and data EEPROM: removed non relevant bullet points and added a sentence about the factory programmer.		
18-Jul-2012		Table: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers: updated		
		ADC features: updated ADC input range.		
		<i>Table: Memory model for the devices covered in this datasheet:</i> updated 16 Kbyte and 8 Kbyte information.		
		<i>Table: Option bytes</i> : updated factory default setting for NOPT17; added footnote <i>1</i> .		
		Section: Minimum and maximum values: T _A = -40 °C (not 40 °C).		
		Table: General operating conditions: updated V _{CAP} .		
		Table: Total current consumption in Run, Wait and Slow mode General conditions for VDD apply, TA = -40 to 150 °C: updated conditions for $I_{DD(RUN)}$.		
		<i>Table: I/O static characteristics</i> : added new condition and new max values for rise and fall time; updated the footnote.		

Table 50. Document revision history (continued)

