

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6266tdx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet refers to the STM8AF6246, STM8AF6248, STM8AF6266 and STM8AF6268 products with 16 to 32 Kbyte of Flash program memory.

In the order code, the letter 'F' refers to product versions with data EEPROM and 'H' refers to product versions without data EEPROM. The identifiers 'F' and 'H' do not coexist in a given order code.

The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8 Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

Legend:

 ADC: Analog-to-digital converter beCAN: Controller area network
 BOR: Brownout reset
 I²C: Inter-integrated circuit multimaster interface
 IWDG: Independent window watchdog
 LINUART: Local interconnect network universal asynchronous receiver transmitter POR: Power on reset
 SPI: Serial peripheral interface module
 USART: Universal synchronous asynchronous receiver transmitter

5.8 Analog-to-digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

The ADC name differs between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 5*).

Table	5.	ADC	naming	g
-------	----	-----	--------	---

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
ADC	ADC1

ADC features

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f_{MASTER} divided by 2 to 18
- Conversion trigger on timer events and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result register
- Shadow registers for data consistency
- ADC input range: $V_{SSA} \le V_{IN} \le V_{DDA}$
- Analog watchdog
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption
- Scan mode (single and continuous)
- Dedicated result register for each conversion channel
- Buffer mode for continuous conversion

Note: An additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.

5.9 Communication interfaces

The following sections give a brief overview of the communication peripheral. Some peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 6*).

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
LINUART	UART2

UART mode

- Full duplex, asynchronous communications NRZ standard format (mark/space)
- High-precision baud rate generator
 - A common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits) 1 or 2 stop bits parity control
- Separate enable bits for transmitter and receiver
- Error detection flags
- Reduced power consumption mode
- Multi-processor communication enter mute mode if address match does not occur
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.10 Input/output specifications

The product features four different I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

2. (HS) high sink capability.

Table 7. Legend/abbreviation

Туре	I= input, O :	I= input, O = output, S = power supply				
Level	Input	CM = CMOS (standard for all I/Os)				
	Output	HS = High sink (8 mA)				
Output speed	01 = Stand 02 = Fast (03 = Fast/s 04 = Fast/s	ard (up to 2 MHz) up to 10 MHz) slow programmability with slow as default state after reset slow programmability with fast as default state after reset				
Port and control	Input	float = floating, wpu = weak pull-up				
configuration	Output	T = true open drain, OD = open drain, PP = push pull				
Reset state	Bold X (pin Unless othe "under rese	state after reset release). erwise specified, the pin state is the same during the reset phase (i.e. t") and after internal reset release (i.e. at reset state).				

P num	in 1ber				Inpu	t		Out	put				
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЬР	Main functior (after reset)	Default alternate function	Alternate function after remap [option bit]
47	31	PD6/ LINUART_RX	I/O	x	х	Х	-	01	х	х	Port D6	LINUART data receive	-
48	32	PD7/TLI ⁽⁸⁾	I/O	X	Х	Х	-	01	Х	Х	Port D7	Top level interrupt	-

Table 8. STM8AF6246/48/66/68 (32 Kbyte) microcontroller pin description⁽¹⁾⁽²⁾ (continued)

1. Refer to Table 7 for the definition of the abbreviations.

Reset state is shown in bold.

3. In Halt/Active-halt mode this pad behaves in the following way:

- the input/output path is disabled

- if the HSE clock is used for wakeup, the internal weak pull up is disabled - if the HSE clock is off, internal weak pull up setting from corresponding OR bit is used

By managing the OR bit correctly, it must be ensured that the pad is not left floating during Halt/Active-halt.

4. On this pin, a pull-up resistor as specified in Table 35. I/O static characteristics is enabled during the reset phase of the product.

5. AIN12 is not selectable in ADC scan mode or with analog watchdog.

- In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, week pull-up, and protection diode to V_{DD} are 6. not implemented)
- 7. The PD1 pin is in input pull-up during the reset phase and after reset release.

8. If this pin is configured as interrupt pin, it will trigger the TLI.

6.2 Alternate function remapping

As shown in the rightmost column of *Table 8*, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to Section 9: Option bytes on page 44. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016).

Flash program memory size	Flash program memory end address	RAM size	RAM end address	Stack roll-over address	
32K	0x00 0FFFF	214		0×00 0600	
16K	0x00 0BFFF	21		UXUU 0600	

 Table 9. Memory model for the devices covered in this datasheet

7.2 Register map

Г

Т

In this section the memory and register map of the devices covered by this datasheet is described. For a detailed description of the functionality of the registers, refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016.

Address	Block	lock Register label Register name			
0x00 5000		PA_ODR	Port A data output latch register	0x00	
0x00 5001		PA_IDR	Port A input pin value register	0xXX ⁽¹⁾	
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00	
0x00 5003		PA_CR1	Port A control register 1	0x00	
0x00 5004		PA_CR2	Port A control register 2	0x00	
0x00 5005		PB_ODR	Port B data output latch register	0x00	
0x00 5006		PB_IDR	Port B input pin value register	0xXX ⁽¹⁾	
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00	
0x00 5008		PB_CR1	Port B control register 1	0x00	
0x00 5009		PB_CR2	Port B control register 2	0x00	
0x00 500A		PC_ODR	Port C data output latch register	0x00	
0x00 500B		PB_IDR	Port C input pin value register	0xXX ⁽¹⁾	
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00	
0x00 500D		PC_CR1	Port C control register 1	0x00	
0x00 500E		PC_CR2	Port C control register 2	0x00	
0x00 500F		PD_ODR	Port D data output latch register	0x00	
0x00 5010		PD_IDR	Port D input pin value register	0xXX ⁽¹⁾	
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00	
0x00 5012		PD_CR1	Port D control register 1	0x02	
0x00 5013		PD_CR2	Port D control register 2	0x00	

Table 10. I/O port hardware register map

٦

Т

			J J J J J J J J J J				
Address	Block	Register label	Register name	Reset status			
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00			
0x00 50A1	ne	EXTI_CR2	External interrupt control register 2	0x00			
0x00 50A2 to 0x00 50B2		Re	eserved area (17 bytes)				
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾			
0x00 50B4 to 0x00 50BF		Reserved area (12 bytes)					
0x00 50C0		CLK_ICKR	Internal clock control register	0x01			
0x00 50C1	CLK	CLK_ECKR	External clock control register	0x00			
0x00 50C2		F	Reserved area (1 byte)	<u></u>			
0x00 50C3		CLK_CMSR	Clock master status register	0xE1			
0x00 50C4		CLK_SWR	Clock master switch register	0xE1			
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX			
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18			
0x00 50C7	CLK	CLK_PCKENR1	Peripheral clock gating register 1	0xFF			
0x00 50C8		CLK_CSSR	Clock security system register	0x00			
0x00 50C9		CLK_CCOR	Configurable clock control register	0x00			
0x00 50CA		CLK_PCKENR2	Peripheral clock gating register 2	0xFF			
0x00 50CB		Reserved area (1 byte)					
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00			
0x00 50CD	CLK	CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0			
0x00 50CE to 0x00 50D0		R	eserved area (3 bytes)				
0x00 50D1		WWDG_CR	WWDG control register	0x7F			
0x00 50D2	WWDG	WWDG_WR	WWDR window register	0x7F			
0x00 50D3 to 0x00 50DF		Re	eserved area (13 bytes)				
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾			
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00			
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF			
0x00 50E3 to 0x00 50EF		Re	eserved area (13 bytes)				
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00			
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F			
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00			

	<u> </u>		• •		<i>, ,</i> , ,	
Table 11.	General	hardware	register	map	(continued))

Address	Block	Register label	Register name	Reset status			
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F			
0x00 50F4 to 0x00 50FF	Reserved area (12 bytes)						
0x00 5200		SPI_CR1	SPI control register 1	0x00			
0x00 5201		SPI_CR2	SPI control register 2	0x00			
0x00 5202		SPI_ICR	SPI interrupt control register	0x00			
0x00 5203	201	SPI_SR	SPI status register	0x02			
0x00 5204	581	SPI_DR	SPI data register	0x00			
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07			
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF			
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF			
0x00 5208 to 0x00 520F	Reserved area (8 bytes)						
0x00 5210		I2C_CR1	I2C control register 1	0x00			
0x00 5211		I2C_CR2	I2C control register 2	0x00			
0x00 5212		I2C_FREQR	I2C frequency register	0x00			
0x00 5213		I2C_OARL	I2C own address register low	0x00			
0x00 5214		I2C_OARH	I2C own address register high	0x00			
0x00 5215			Reserved area (1 byte)				
0x00 5216	120	I2C_DR	I2C data register	0x00			
0x00 5217	120	I2C_SR1	I2C status register 1	0x00			
0x00 5218		I2C_SR2	I2C status register 2	0x00			
0x00 5219		I2C_SR3	I2C status register 3	0x00			
0x00 521A		I2C_ITR	I2C interrupt control register	0x00			
0x00 521B		I2C_CCRL	I2C clock control register low	0x00			
0x00 521C		I2C_CCRH	I2C clock control register high	0x00			
0x00 521D		I2C_TRISER	I2C TRISE register	0x02			
0x00 521E to 0x00 523F		Re	eserved area (24 bytes)				

Table 11. General hardware register map (continued)

				Deast		
Address	Block	Register label	Register name	status		
0x00 5314	TIM2	TIM2_CCR3L	TIM2 capture/compare register 3 low	0x00		
0x00 5315 to 0x00 531F		Reserved area (11 bytes)				
0x00 5320		TIM3_CR1	TIM3 control register 1	0x00		
0x00 5321		TIM3_IER	TIM3 interrupt enable register	0x00		
0x00 5322		TIM3_SR1	TIM3 status register 1	0x00		
0x00 5323		TIM3_SR2	TIM3 status register 2	0x00		
0x00 5324		TIM3_EGR	TIM3 event generation register	0x00		
0x00 5325		TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00		
0x00 5326		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00		
0x00 5327		TIM3_CCER1	TIM3 capture/compare enable register 1	0x00		
0x00 5328	TIM3	TIM3_CNTRH	TIM3 counter high	0x00		
0x00 5329		TIM3_CNTRL	TIM3 counter low	0x00		
0x00 532A		TIM3_PSCR	TIM3 prescaler register	0x00		
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF		
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF		
0x00 532D		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00		
0x00 532E		TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00		
0x00 532F		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00		
0x00 5330		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00		
0x00 5331 to 0x00 533F		Re	eserved area (15 bytes)			
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00		
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00		
0x00 5342		TIM4_SR	TIM4 status register	0x00		
0x00 5343	TIM4	TIM4_EGR	TIM4 event generation register	0x00		
0x00 5344		TIM4_CNTR	TIM4 counter	0x00		
0x00 5345		TIM4_PSCR	TIM4 prescaler register	0x00		
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF		
0x00 5347 to 0x00 53DF	Reserved area (185 bytes)					

 Table 11. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
0x00 7F97		DM_CR2	DM debug module control register 2	0x00
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10
0x00 7F99		DM_CSR2	DM debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F			Reserved area (5 bytes)	-

Table 12. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 5: Register and memory map of STM8A products.

Table 10. Temporary memory unprotection registers							
Address	Address Block Register label Register name		Reset status				
0x00 5800		TMU_K1	Temporary memory unprotection key register 1	0x00			
0x00 5801		TMU_K2	Temporary memory unprotection key register 2	0x00			
0x00 5802		TMU_K3	Temporary memory unprotection key register 3	0x00			
0x00 5803		TMU_K4	Temporary memory unprotection key register 4	0x00			
0x00 5804	TMU	TMU_K5	Temporary memory unprotection key register 5	0x00			
0x00 5805		TMU_K6	Temporary memory unprotection key register 6	0x00			
0x00 5806		TMU_K7	Temporary memory unprotection key register 7	0x00			
0x00 5807		TMU_K8	Temporary memory unprotection key register 8	0x00			
0x00 5808		TMU_CSR	Temporary memory unprotection control and status register	0x00			

Table 13. Temporary memory unprotection registers

Option byte no.	Description
	HSITRIM: Trimming option for 16 MHz internal RC oscillator 0: 3-bit on-the-fly trimming (compatible with devices based on the 128K silicon) 1: 4-bit on-the-fly trimming
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
OPT3	IWDG_HW: Independent watchdog 0: IWDG independent watchdog activated by software 1: IWDG independent watchdog activated by hardware
	WWDG_HW: Window watchdog activation 0: WWDG window watchdog activated by software 1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on Halt 0: No reset generated on Halt if WWDG active 1: Reset generated on Halt if WWDG active
	EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
OPT4	CKAWUSEL: Auto-wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0]: AWU clock prescaler 00: Reserved 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00.
OPT6	TMU [3:0]: Enable temporary memory unprotection 0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
OPT7	Reserved
OPT8	TMU_KEY 1 [7:0]: Temporary unprotection key 0 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT9	TMU_KEY 2 [7:0]: Temporary unprotection key 1 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT10	TMU_KEY 3 [7:0]: Temporary unprotection key 2 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT11	TMU_KEY 4 [7:0]: Temporary unprotection key 3 Temporary unprotection key: Must be different from 0x00 or 0xFF

Table 16. Option byte description (continued)

10.3.3 External clock sources and timing characteristics

HSE user external clock

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	T _A is -40 to 150 ℃	0 ⁽¹⁾	-	16	MHz
V _{HSEdHL}	Comparator hysteresis	-	$0.1 \times V_{DD}$	-	-	
V _{HSEH}	OSCIN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSCIN input pin low level voltage	-	V _{SS}	-	0.3 x V _{DD}	
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	-	+1	μA

Table 28. HSE (user external	clock characteristics
-----------------	---------------	-----------------------

1. In CSS is used, the external clock must have a frequency above 500 kHz.

Figure 17. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

The crystal characteristics have to be checked with the following formula:

g_m » g_{mcrit}

where g_{mcrit} can be calculated with the crystal parameters as follows:

$$g_{mcrit} = (2 \times \Pi \times {}^{f}HSE)^{2} \times R_{m}(2Co + C)^{2}$$

R_m: Notional resistance (see crystal specification)

L_m: Notional inductance (see crystal specification)

C_m: Notional capacitance (see crystal specification)

Co: Shunt capacitance (see crystal specification)

 $C_{1,1} = C_{1,2} = C$: Grounded external capacitance

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and T_A.

High speed internal RC oscillator (HSI)

Table 30.	. HSI	oscillator	characteristics
-----------	-------	------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	-	-	16	-	MHz

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
E _T	Total unadjusted error ⁽²⁾		1.4	3 ⁽³⁾	
E _O	Offset error ⁽²⁾		0.8	3	
E _G	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.1	2	
E _D	Differential linearity error ⁽²⁾		0.9	1	
E _L	Integral linearity error ⁽²⁾		0.7	1.5	
E _T	Total unadjusted error ⁽²⁾		1.9 ⁽⁴⁾	4 ⁽⁴⁾	LSB
E _O	Offset error ⁽²⁾		1.3 ⁽⁴⁾	4 ⁽⁴⁾	
E _G	Gain error ⁽²⁾	f _{ADC} = 4 MHz	0.6 ⁽⁴⁾	3 ⁽⁴⁾	
E _D	Differential linearity error ⁽²⁾		1.5 ⁽⁴⁾	2 ⁽⁴⁾	
E _L	Integral linearity error ⁽²⁾		1.2 ⁽⁴⁾	1.5 ⁽⁴⁾	

Table 41. ADC accuracy for $V_{DDA} = 5 V$

1. Max value is based on characterization, not tested in production.

ADC accuracy vs. injection current: Any positive or negative injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 10.3.6 does not affect the ADC accuracy. 2.

TUE 2LSB can be reached on specific sales types on the whole temperature range. 3.

4. Target values.

- 1. Example of an actual transfer curve
- 2. The ideal transfer curve
- 3. End point correlation line

E_T = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.

 E_{D} = Offset error: Deviation between the first actual transition and the first ideal one. E_{D} = Differential linearity error: Maximum deviation between actual steps and the ideal one. E_{D} = Differential linearity error: Maximum deviation between actual steps and the ideal one. E_{L} = Integral linearity error: Maximum deviation between any actual transition and the end point correlation line.

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

		Conditions				
Symbol	Parameter		Monitored	Max f _{CPU} ⁽¹⁾		Unit
		General conditions	frequency band	8 MHz	16 MHz	
		V _{DD} = 5 V,	0.1 MHz to 30 MHz	15	17	
S _{EMI}	Peak level	$T_A = 25 $ °C, LQFP80 package conforming to IEC	30 MHz to 130 MHz	18	22	dBµV
			130 MHz to 1 GHz	-1	3	
	EMI level	61967-2	-	2	2.5	

Table 43. EMI dat

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Table 44.	ESD	absolute	maximum	ratings
-----------	-----	----------	---------	---------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	ЗA	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	$T_A = 25^{\circ}C$, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = 25°C, conforming to JESD22-A115	В	200	

1. Data based on characterization results, not tested in production

11.2 LQFP48 package information

SEATING PLANE A2 ŨŦŨŦŨŦŨŦĬĦŮŸŨŦŨŦŨŦŨŦŎŹ F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b Œ <u>ш</u> ш Ē ----------£ 48 13 12 e 5B_ME_V2

Figure 45. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Cumhal	millimeters			inches ⁽¹⁾		
Зутвої	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

13 STM8 development tools

Development tools for the STM8A microcontrollers include the

- STice emulation system offering tracing and code profiling
- STVD high-level language debugger including assembler and visual development environment seamless integration of third party C compilers.
- STVP Flash programming software

In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

13.1 Emulation and in-circuit debugging tools

The STM8 tool line includes the STice emulation system offering a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8A application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full-featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including tracing, profiling and code coverage analysis to help detect execution bottlenecks and dead code.

In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows users to order exactly what they need to meet their development requirements and to adapt their emulation system to support existing and future ST microcontrollers.

13.1.1 STice key features

- Program and data trace recording up to 128 K records
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Real-time read/write of all device resources during emulation
- Occurrence and time profiling and code coverage analysis (new features)
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- USB 2.0 high speed interface to host PC
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows users to specify the components they need to meet their development requirements and adapt to future requirements.
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

13.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8.

13.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com. This package includes:

ST visual develop

Full-featured integrated development environment from STMicroelectronics, featuring:

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST visual programmer (STVP)

Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A microcontroller Flash memory. STVP also offers project mode for saving programming configurations and automating programming sequences.

13.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of the application directly from an easy-to-use graphical interface.

Available toolchains include:

C compiler for STM8

All compilers are available in free version with a limited code size depending on the compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com, and www.iar.com.

STM8 assembler linker

Free assembly toolchain included in the STM8 toolset, which allows users to assemble and link the application source code.

