

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6266udx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5.7.4	Advanced control and general purpose timers	. 21				
		5.7.5	Basic timer	. 22				
	5.8	Analog	Analog-to-digital converter (ADC) 2					
	5.9	Comm	unication interfaces	23				
		5.9.1	Serial peripheral interface (SPI)	. 24				
		5.9.2	Inter integrated circuit (I ² C) interface	. 24				
		5.9.3	Universal asynchronous receiver/transmitter with LIN support (LINUART)	. 25				
	5.10	Input/o	utput specifications	26				
6	Pino	uts and	pin description	27				
	6.1	Packag	ge pinouts	27				
	6.2	Alterna	te function remapping	31				
7	Mem	ory and	register map	32				
	7.1	Memor	y map	32				
	7.2	Registe	er map	33				
•	Intor			43				
8	interi	rupt tab	ie	70				
9	Optic	on bytes	s	44				
8 9 10	Optic	n bytes rical ch	aracteristics	44 49				
8 9 10	Optic Elect	on bytes rical ch Paramo	aracteristics	44 49 49				
8 9 10	Optic Elect	on bytes rical ch Paramo 10.1.1	aracteristics	44 49 49				
8 9 10	Optic Elect	on bytes rical ch Parame 10.1.1 10.1.2	aracteristics	44 49 49 49 49				
8 9 10	Optic Elect	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3	aracteristics	44 49 49 49 49 49 49				
8 9 10	Optic Elect	Trical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4	aracteristics	44 49 49 49 49 49 49 49 49				
8 9 10	Optic Elect	Frical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5	aracteristics	44 49 49 49 49 49 49 49 49 49 50				
8 9 10	Optic Elect 10.1	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage	44 49 49 49 49 49 49 49 49 49 49 50				
8 9 10	Optic Elect 10.1 10.2 10.3	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings	44 49 49 49 49 49 49 49 49 50 50 50				
8 9 10	Optic Elect 10.1 10.2 10.3	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1	s aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings VCAP external capacitor	44 49 49 49 49 49 49 49 49 50 50 50 52 52				
8 9 10	Optic Elect 10.1 10.2 10.3	Trical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1 10.3.2	aracteristics teter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings ing conditions VCAP external capacitor Supply current characteristics	44 49 49 49 49 49 49 49 49 50 50 50 52 52 54 54				
8 9 10	Optic Elect 10.1	n bytes rical ch Paramo 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1 10.3.2 10.3.3	Aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings ing conditions VCAP external capacitor Supply current characteristics External clock sources and timing characteristics	44 49 49 49 49 49 49 49 50 50 50 52 52 54 54 54 57				
8 9 10	Optic Elect 10.1 10.2 10.3	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1 10.3.2 10.3.3 10.3.4	Aracteristics	44 49 49 49 49 49 49 49 50 50 50 52 54 54 54 57 57 59				
8 9 10	Optic Elect 10.1	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings ing conditions VCAP external capacitor Supply current characteristics External clock sources and timing characteristics Internal clock sources and timing characteristics Memory characteristics	44 49 49 49 49 49 49 49 50 50 50 52 52 52 54 54 57 59 62				

List of figures

Figure 1.	STM8AF6246/48/66/68 block diagram	12
Figure 2.	Flash memory organization of STM8AF6246/48/66/68	16
Figure 3.	VFQFPN/LQFP 32-pin pinout	27
Figure 4.	LQFP 48-pin pinout.	28
Figure 5.	Register and memory map of STM8A products	32
Figure 6.	Pin loading conditions.	49
Figure 7.	Pin input voltage	50
Figure 8.	f _{CPUmax} versus V _{DD}	52
Figure 9.	External capacitor C _{FXT}	54
Figure 10.	Typ. $I_{DD(RUN)HSE}$ vs. V_{DD} @f _{CPU} = 16 MHz, peripheral = on	56
Figure 11.	Typ. $I_{DD(RUN)HSE}$ vs. f_{CPU} @ V_{DD} = 5.0 V, peripheral = on	56
Figure 12.	Typ. $I_{DD(RUN)HSI}$ vs. V_{DD} @ f_{CPU} = 16 MHz, peripheral = off	57
Figure 13.	Typ. $I_{DD(WFI)HSF}$ vs. V_{DD} @ f_{CPU} = 16 MHz, peripheral = on	57
Figure 14.	Typ. $I_{DD(WFI)HSF}$ vs. f_{CPU} @ V_{DD} = 5.0 V, peripheral = on	57
Figure 15.	Typ. $I_{DD(WFI)HSI}$ vs. V_{DD} @ f_{CPU} = 16 MHz, peripheral = off	57
Figure 16.	HSE external clock source	58
Figure 17.	HSE oscillator circuit diagram.	59
Figure 18.	Typical HSI frequency vs V _{DD}	60
Figure 19.	Typical LSI frequency vs V _{DD}	61
Figure 20.	Typical V _{IL} and V _{IH} vs V _{DD} @ four temperatures	64
Figure 21.	Typical pull-up resistance R _{PU} vs V _{DD} @ four temperatures	64
Figure 22.	Typical pull-up current I _{pu} vs V _{DD} @ four temperatures	65
Figure 23.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (standard ports).	65
Figure 24.	Typ. V _{OL} @ V _{DD} = 5.0 V (standard ports).	65
Figure 25.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (true open drain ports)	65
Figure 26.	Typ. $V_{OL} @ V_{DD} = 5.0 V$ (true open drain ports)	65
Figure 27.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (high sink ports)	66
Figure 28.	Typ. $V_{OL} @ V_{DD} = 5.0 V$ (high sink ports)	66
Figure 29.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 3.3 V$ (standard ports).	66
Figure 30.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (standard ports).	66
Figure 31.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 3.3 V$ (high sink ports)	66
Figure 32.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (high sink ports)	66
Figure 33.	Typical NRST V _{IL} and V _{IH} vs V _{DD} @ four temperatures	67
Figure 34.	Typical NRST pull-up resistance R _{PU} vs V _{DD}	68
Figure 35.	Typical NRST pull-up current I _{pu} vs V _{DD}	68
Figure 36.	Recommended reset pin protection	68
Figure 37.	SPI timing diagram where slave mode and CPHA = 0	70
Figure 38.	SPI timing diagram where slave mode and CPHA = 1	70
Figure 39.	SPI timing diagram - master mode	71
Figure 40.	Typical application with ADC	73
Figure 41.	ADC accuracy characteristics	74
Figure 42.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad	
	flat package outline	78
Figure 43.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad	
	flat package recommended footprint	80
Figure 44.	VFQFPN32 marking example (package top view)	81
Figure 45.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	82
Figure 46.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	

Legend:

 ADC: Analog-to-digital converter beCAN: Controller area network
 BOR: Brownout reset
 I²C: Inter-integrated circuit multimaster interface
 IWDG: Independent window watchdog
 LINUART: Local interconnect network universal asynchronous receiver transmitter POR: Power on reset
 SPI: Serial peripheral interface module
 USART: Universal synchronous asynchronous receiver transmitter

5 **Product overview**

This section describes the family features that are implemented in the products covered by this datasheet.

For more detailed information on each feature please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

5.1 STM8A central processing unit (CPU)

The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.1.1 Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus with single cycle fetching for most instructions
- X and Y 16-bit index registers, enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter with 16-Mbyte linear memory space
- 16-bit stack pointer with access to a 64 Kbyte stack
- 8-bit condition code register with seven condition flags for the result of the last instruction.

5.1.2 Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for efficient implementation of local variables and parameter passing

5.1.3 Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

5.9.1 Serial peripheral interface (SPI)

The devices covered by this datasheet contain one SPI. The SPI is available on all the supported packages.

- Maximum speed: 10 Mbit/s or f_{MASTER}/2 both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave mode/master mode management by hardware or software for both master and slave
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting
- Dedicated transmission and reception flags with interrupt capability
- SPI bus busy status flag
- Hardware CRC feature for reliable communication:
 - CRC value can be transmitted as last byte in Tx mode
 - CRC error checking for last received byte

5.9.2 Inter integrated circuit (I²C) interface

The devices covered by this datasheet contain one I^2C interface. The interface is available on all the supported packages.

- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds:
 - Standard speed (up to 100 kHz),
 - Fast speed (up to 400 kHz)
- Status flags:
 - Transmitter/receiver mode flag
 - End-of-byte transmission flag
 - I²C busy flag
- Error flags:
 - Arbitration lost condition for master mode
 - Acknowledgment failure after address/data transmission
 - Detection of misplaced start or stop condition
 - Overrun/underrun if clock stretching is disabled

6 Pinouts and pin description

6.1 Package pinouts

1. (HS) high sink capability.

P num	in 1ber				Inpu	t		Out	put				
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЪР	Main functior (after reset)	Default alternate function	Alternate function after remap [option bit]
47	31	PD6/ LINUART_RX	I/O	x	х	Х	-	01	х	х	Port D6	LINUART data receive	-
48	32	PD7/TLI ⁽⁸⁾	I/O	X	Х	Х	-	01	Х	Х	Port D7	Top level interrupt	-

Table 8. STM8AF6246/48/66/68 (32 Kbyte) microcontroller pin description⁽¹⁾⁽²⁾ (continued)

1. Refer to Table 7 for the definition of the abbreviations.

Reset state is shown in bold.

3. In Halt/Active-halt mode this pad behaves in the following way:

- the input/output path is disabled

- if the HSE clock is used for wakeup, the internal weak pull up is disabled - if the HSE clock is off, internal weak pull up setting from corresponding OR bit is used

By managing the OR bit correctly, it must be ensured that the pad is not left floating during Halt/Active-halt.

4. On this pin, a pull-up resistor as specified in Table 35. I/O static characteristics is enabled during the reset phase of the product.

5. AIN12 is not selectable in ADC scan mode or with analog watchdog.

- In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, week pull-up, and protection diode to V_{DD} are 6. not implemented)
- 7. The PD1 pin is in input pull-up during the reset phase and after reset release.

8. If this pin is configured as interrupt pin, it will trigger the TLI.

6.2 Alternate function remapping

As shown in the rightmost column of *Table 8*, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to Section 9: Option bytes on page 44. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016).

Flash program memory size address		RAM size	RAM end address	Stack roll-over address	
32K	0x00 0FFFF	214		0×00 0600	
16K	0x00 0BFFF	21		0x00 0600	

 Table 9. Memory model for the devices covered in this datasheet

7.2 Register map

Г

Т

In this section the memory and register map of the devices covered by this datasheet is described. For a detailed description of the functionality of the registers, refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016.

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX ⁽¹⁾
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX ⁽¹⁾
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0xXX ⁽¹⁾
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX ⁽¹⁾
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013		PD_CR2	Port D control register 2	0x00

Table 10. I/O port hardware register map

٦

Т

			ale legieter map (continued)	
Address	Block	Register label	Register name	Reset status
0x00 5240		UART2_SR	LINUART status register	0xC0
0x00 5241		UART2_DR	LINUART data register	0xXX
0x00 5242		UART2_BRR1	LINUART baud rate register 1	0x00
0x00 5243		UART2_BRR2	LINUART baud rate register 2	0x00
0x00 5244		UART2_CR1	LINUART control register 1	0x00
0x00 5245	LINUARI	UART2_CR2	LINUART control register 2	0x00
0x00 5246		UART2_CR3	LINUART control register 3	0x00
0x00 5247		UART2_CR4	LINUART control register 4	0x00
0x00 5248			Reserved	
0x00 5249		UART2_CR6	LINUART control register 6	0x00
0x00 524A to 0x00 524F		R	eserved area (6 bytes)	
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00
0x00 5254		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00
0x00 525B	TIM1	TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00
0x00 525F		TIM1_CNTRL	TIM1 counter low	0x00
0x00 5260		TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00

 Table 11. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
0x00 7F97		DM_CR2	DM debug module control register 2	0x00
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10
0x00 7F99		DM_CSR2	DM debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F			Reserved area (5 bytes)	-

Table 12. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 5: Register and memory map of STM8A products.

Table 10. Temporary memory unprotection registers					
Address	Block	Register label	Register name	Reset status	
0x00 5800		TMU_K1	Temporary memory unprotection key register 1	0x00	
0x00 5801		TMU_K2	Temporary memory unprotection key register 2	0x00	
0x00 5802		TMU_K3	Temporary memory unprotection key register 3	0x00	
0x00 5803		TMU_K4	Temporary memory unprotection key register 4	0x00	
0x00 5804	TMU	TMU_K5	Temporary memory unprotection key register 5	0x00	
0x00 5805		TMU_K6	Temporary memory unprotection key register 6	0x00	
0x00 5806		TMU_K7	Temporary memory unprotection key register 7	0x00	
0x00 5807		TMU_K8	Temporary memory unprotection key register 8	0x00	
0x00 5808		TMU_CSR	Temporary memory unprotection control and status register	0x00	

Table 13. Temporary memory unprotection registers

Option byte no.	Description				
OPT12	TMU_KEY 5 [7:0]: Temporary unprotection key 4 Temporary unprotection key: Must be different from 0x00 or 0xFF				
OPT13	TMU_KEY 6 [7:0]: Temporary unprotection key 5 Temporary unprotection key: Must be different from 0x00 or 0xFF				
OPT14	TMU_KEY 7 [7:0]: Temporary unprotection key 6 Temporary unprotection key: Must be different from 0x00 or 0xFF				
OPT15	TMU_KEY 8 [7:0]: Temporary unprotection key 7 Temporary unprotection key: Must be different from 0x00 or 0xFF				
OPT16	 TMU_MAXATT [7:0]: TMU access failure counter TMU_MAXATT can be initialized with the desired value only if TMU is disabled (TMU[3:0]=0101 in OPT6 option byte). When TMU is enabled, any attempt to temporary remove the readout protection by using wrong key values increments the counter. When the option byte value reaches 0x08, the Flash memory and data EEPROM are erased. 				
OPT17	BL [7:0]: Bootloader enable If this option byte is set to 0x55 (complementary value 0xAA) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0560).				

Table 16. Option byte description (continued)

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 6*.

Figure 34. Typical NRST pull-up resistance R_{PU} vs V_{DD}

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below $V_{IL(NRST)}$ max (see *Table 36: NRST pin characteristics*), otherwise the reset is not taken into account internally.

Figure 36. Recommended reset pin protection

DocID14952 Rev 11

10.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	eter Conditions	
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \ V, \ T_{A} = 25 \ ^\circC, \\ f_{MASTER} = 16 \ MHz \ (HSI \ clock), \\ Conforms \ to \ IEC \ 1000\text{-}4\text{-}2 \end{array}$	3/B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = 25 °C, f_{MASTER} = 16 MHz (HSI clock), Conforms to IEC 1000-4-4	4/A

Tahl	P	42	FMS	data
Iab		44.		uala

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.200	-	-	0.0079	-
b	0.180	0.250	0.300	0.0071	0.0098	0.0118
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D2	3.500	3.600	3.700	0.1378	0.1417	0.1457
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E2	3.500	3.600	3.700	0.1378	0.1417	0.1457
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.050	-	-	0.0020

Table 46. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quadflat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 46. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 49. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 14 mA, V_{DD} = 5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V

P_{INTmax} = 14 mA x 5 V= 70 mW

P_{IOmax} = 20 x 8 mA x 0.4 V = 64 mW

This gives: P_{INTmax} = 70 mW and P_{IOmax} 64 mW:

P_{Dmax} = 70 mW + 64 mW

Thus: P_{Dmax} = 134 mW.

Using the values obtained in *Table 49: Thermal characteristics* T_{Jmax} is calculated as follows:

For LQFP64 46 °C/W

This is within the range of the suffix C version parts (-40 < T_J < 125 °C).

Parts must be ordered at least with the temperature range suffix C.

Date	Revision	Changes		
31-Jan-2011	5 (continued)	Renamed Fast Active Halt mode to Active-halt mode with regulator on, and Slow Active Halt mode to Active-halt mode with regulator off. Updated <i>Table: Total current consumption in Halt and Active-halt</i> <i>modes. General conditions for VDD apply, TA</i> = -40 to 55 °C, in particular I _{DD(FAH)} and I _{DD(SAH)} renamed I _{DD(AH)} ; t _{WU(FAH)} and t _{WU(SAH)} renamed t _{WU(AH)} , and temperature condition added. Removed I _{DD(USART)} from <i>Table: Typical peripheral current</i> <i>consumption VDD</i> = 5.0 V.		
		Updated general conditions in <i>Section: Memory characteristics.</i> Modified T_{WE} maximum value in <i>Table: Flash program memory</i> and <i>Table: Data memory.</i> Update $I_{Ikg ana}$ maximum value for T_A ranging from -40 to 150 °C in		
		<i>Table: I/O static characteristics.</i> Added $t_{IFP(NRST)}$ and renamed $V_{F(NRST)} t_{IFP}$ in <i>Table: NRST pin characteristics.</i> Added recommendations concerning NRST pin level above <i>Figure: Recommended reset pin protection,</i> and updated external capacitor value. Added Raisonance compiler in <i>Section: Software tools.</i> Moved know limitations to separate errata sheet.		
18-Jul-2012	6	Updated wildcards of document part numbers. Table: Device summary: updated the footnotes to all STM8AF61xx part numbers. Section: Introduction: small text change in first paragraph. Table: STM8AF62xx product line-up: added "P" version for all order codes; updated RAM. Table: STM8AF/H61xx product line-up: added "P" version for all order codes. Figure: STM8A block diagram: updated POR, BOR and WDG; updated LINUART input; added legend. Section: Flash program and data EEPROM: removed non relevant bullet points and added a sentence about the factory programmer. Table: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers: updated ADC features: updated ADC input range. Table: Memory model for the devices covered in this datasheet: updated 16 Kbyte and 8 Kbyte information. Table: Option bytes: updated factory default setting for NOPT17; added footnote 1. Section: Minimum and maximum values: $T_A = -40$ °C (not 40 °C). Table: General operating conditions: updated V _{CAP} . Table: Total current consumption in Run, Wait and Slow mode General conditions for VDD apply, TA = -40 to 150 °C: updated conditions for I _{DD(RUN)} . Table: I/O static characteristics: added new condition and new max values for rise and fall time; updated the footnote.		

Table 50. Document revision history (continued)

