

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6268tax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet refers to the STM8AF6246, STM8AF6248, STM8AF6266 and STM8AF6268 products with 16 to 32 Kbyte of Flash program memory.

In the order code, the letter 'F' refers to product versions with data EEPROM and 'H' refers to product versions without data EEPROM. The identifiers 'F' and 'H' do not coexist in a given order code.

The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8 Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

5.5.3 128 kHz low-speed internal RC oscillator (LSI)

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.

In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI_EN).

5.5.4 16 MHz high-speed external crystal oscillator (HSE)

The external high-speed crystal oscillator can be selected to deliver the main clock in normal Run mode. It operates with quartz crystals and ceramic resonators.

- Frequency range: 1 MHz to 16 MHz
- Crystal oscillation mode: preferred fundamental
- I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

5.5.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 16 MHz.

5.5.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.

In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).

Bit	Periphera I clock	Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock
PCKEN17	TIM1	PCKEN13	LINUART	PCKEN27	Reserved	PCKEN23	ADC
PCKEN16	TIM3	PCKEN12	Reserved	PCKEN26	Reserved	PCKEN22	AWU
PCKEN15	TIM2	PCKEN11	SPI	PCKEN25	Reserved	PCKEN21	Reserved
PCKEN14	TIM4	PCKEN10	l ² C	PCKEN24	Reserved	PCKEN20	Reserved

Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers

5.6 Low-power operating modes

For efficient power management, the application can be put in one of four different low power modes. Users can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

Wait mode

In this mode, the CPU is stopped but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset.

• Active-halt mode with regulator on

In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in Active-halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.

• Active-halt mode with regulator off

This mode is the same as Active-halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.

Halt mode

CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

In all modes the CPU and peripherals remain permanently powered on, the system clock is applied only to selected modules. The RAM content is preserved and the brown-out reset circuit remains activated.

5.7 Timers

5.7.1 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications. The watchdog timer activity is controlled by the application program or option bytes. Once the watchdog is activated, it cannot be disabled by the user program without going through reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application timing perfectly. The application software must refresh the counter before time-out and during a limited time window. If the counter is refreshed outside this time window, a reset is issued.

TIM1: Advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and bridge driver.

- 16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
- Four independent CAPCOM channels configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In the present implementation it is possible to trigger the ADC upon a timer event.
- External trigger to change the timer behavior depending on external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break

TIM2 and TIM3: 16-bit general purpose timers

- 16-bit auto-reload up-counter
- 15-bit prescaler adjustable to fixed power of two ratios 1...32768
- Timers with three or two individually configurable CAPCOM channels
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5.7.5 Basic timer

The typical usage of this timer (TIM4) is the generation of a clock tick.

Table	٨	TIMA
lable	4.	1 11114

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM4	8-bit	Up	2 ⁿ n = 0 to 7	0	None	No	No	No	No

- 8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
- Clock source: master clock
- Interrupt source: 1 x overflow/update

	Table 11. General hardware register map (continued)							
Address	Block	Register label	Register name	Reset status				
0x00 5240		UART2_SR	LINUART status register	0xC0				
0x00 5241		UART2_DR	LINUART data register	0xXX				
0x00 5242		UART2_BRR1	LINUART baud rate register 1	0x00				
0x00 5243		UART2_BRR2	LINUART baud rate register 2	0x00				
0x00 5244		UART2_CR1	LINUART control register 1	0x00				
0x00 5245	LINUART	UART2_CR2	LINUART control register 2	0x00				
0x00 5246		UART2_CR3	LINUART control register 3	0x00				
0x00 5247		UART2_CR4	LINUART control register 4	0x00				
0x00 5248			Reserved					
0x00 5249		UART2_CR6	LINUART control register 6	0x00				
0x00 524A to 0x00 524F		R	eserved area (6 bytes)					
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00				
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00				
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00				
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00				
0x00 5254		TIM1_IER	TIM1 Interrupt enable register	0x00				
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00				
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00				
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00				
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00				
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00				
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00				
0x00 525B	TIM1	TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00				
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00				
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00				
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00				
0x00 525F		TIM1_CNTRL	TIM1 counter low	0x00				
0x00 5260		TIM1_PSCRH	TIM1 prescaler register high	0x00				
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00				
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF				
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF				
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00				

 Table 11. General hardware register map (continued)

Address	Block	Register label	bel Register name			
0x00 540B		ADC_LTRL	ADC low threshold register low	0x00		
0x00 540C		ADC _AWSRH	ADC watchdog status register high	0x00		
0x00 540D	ADC ADC_AWSRL ADC _AWCRH		ADC watchdog status register low	0x00		
0x00 540E			ADC watchdog control register high	0x00		
0x00 540F		ADC _AWCRL	ADC watchdog control register low	0x00		
0x00 5410 to 0x00 541F	Reserved area (16 bytes)					

 Table 11. General hardware register map (continued)

1. Depends on the previous reset source.

2. Write only register.

Table 12. CPU/SWIM/debug module/interrupt controller registers

Address	Block	Register label	Register name	Reset status
0x00 7F00		А	Accumulator	0x00
0x00 7F01		PCE	Program counter extended	0x00
0x00 7F02		PCH	Program counter high	0x80
0x00 7F03		PCL	Program counter low	0x00
0x00 7F04		ХН	X index register high	0x00
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00
0x00 7F06		YH	Y index register high	0x00
0x00 7F07		YL	Y index register low	0x00
0x00 7F08		SPH	Stack pointer high	0x17 ⁽²⁾
0x00 7F09	9 SPL Stack pointer low		0xFF	
0x00 7F0A	0A CC Condition code register		Condition code register	0x28
0x00 7F0B to 0x00 7F5F			Reserved area (85 bytes)	
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00
0x00 7F70		ITC_SPR1	Interrupt software priority register 1	0xFF
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF
0x00 7F72	ITC	ITC_SPR3	Interrupt software priority register 3	0xFF
0x00 7F73	ne	ITC_SPR4	Interrupt software priority register 4	0xFF
0x00 7F74		ITC_SPR5	Interrupt software priority register 5	0xFF
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF
0x00 7F76 to 0x00 7F79			Reserved area (4 bytes)	
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00

Option byte no.	Description
	HSITRIM: Trimming option for 16 MHz internal RC oscillator
	0: 3-bit on-the-fly trimming (compatible with devices based on the 128K silicon)
	1: 4-bit on-the-fly trimming
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
OPT3	IWDG_HW: Independent watchdog
UF 13	0: IWDG independent watchdog activated by software1: IWDG independent watchdog activated by hardware
	WWDG_HW: Window watchdog activation
	0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on Halt
	0: No reset generated on Halt if WWDG active 1: Reset generated on Halt if WWDG active
	EXTCLK: External clock selection
	0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
	CKAWUSEL: Auto-wakeup unit/clock
OPT4	0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0]: AWU clock prescaler
	00: Reserved 01: 16 MHz to 128 kHz prescaler
	10: 8 MHz to 128 kHz prescaler
	11: 4 MHz to 128 kHz prescaler
0.075	HSECNT[7:0]: HSE crystal oscillator stabilization time
OPT5	This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00.
0.770	TMU[3:0]: Enable temporary memory unprotection
OPT6	0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
OPT7	Reserved
OPT8	TMU_KEY 1 [7:0]: Temporary unprotection key 0 Temporary unprotection key: Must be different from 0x00 or 0xFF
	TMU_KEY 2 [7:0]: Temporary unprotection key 1
OPT9	Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT10	TMU_KEY 3 [7:0]: Temporary unprotection key 2 Temporary unprotection key: Must be different from 0x00 or 0xFF
	TMU_KEY 4 [7:0]: Temporary unprotection key 3
OPT11	Temporary unprotection key: Must be different from 0x00 or 0xFF

Table 16. Option byte description (continued)

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

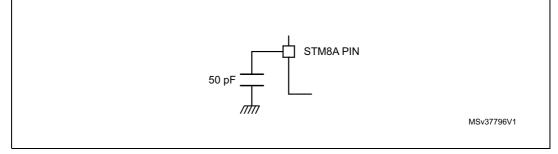
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.


10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 6*.

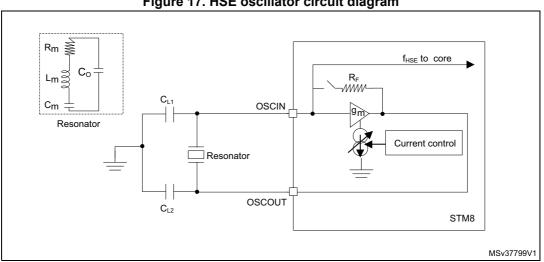


Figure 17. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

The crystal characteristics have to be checked with the following formula:

g_m » g_{mcrit}

where g_{mcrit} can be calculated with the crystal parameters as follows:

$$g_{mcrit} = (2 \times \Pi \times {}^{f}HSE)^{2} \times R_{m}(2Co + C)^{2}$$

R_m: Notional resistance (see crystal specification)

L_m: Notional inductance (see crystal specification)

C_m: Notional capacitance (see crystal specification)

Co: Shunt capacitance (see crystal specification)

 $C_{1,1} = C_{1,2} = C$: Grounded external capacitance

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and T_A.

High speed internal RC oscillator (HSI)

Table 30. HSI oscillator characteristics	Table 30.	HSI	oscillator	characteristics
--	-----------	-----	------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	-	-	16	-	MHz

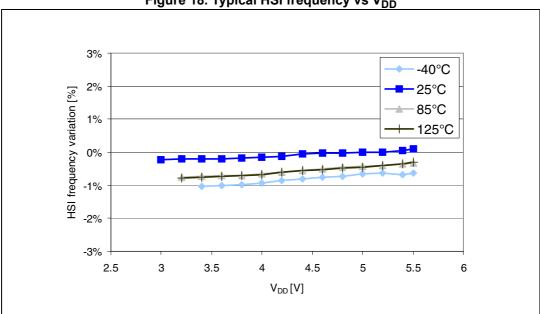

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	HSI oscillator user	Trimmed by the application	-1 ⁽¹⁾	-	1 ⁽¹⁾	
	trimming accuracy	for any V _{DD} and T _A conditions	-0.5 ⁽¹⁾	-	0.5 ⁽¹⁾	
	HSI oscillator accuracy (factory calibrated)	$3.0 V \le V_{DD} \le 5.5 V$, -40 °C $\le T_A \le 150 °C$	-5	-	5	%
		$\begin{array}{l} 3.0V \leq \! V_{DD} \leq \! 5.5V, \\ -40^\circ C \leq \! T_A \leq \! 125 \ ^\circ C \end{array}$	-2.5 ⁽²⁾	-	2.5 ⁽²⁾	
t _{su(HSI)}	HSI oscillator wakeup time	-	-	-	2 ⁽³⁾	μs

Table 30. HSI oscillator characteristics

1. Depending on option byte setting (OPT3 and NOPT3)

2. These values are guaranteed for STM8AF62x6ITx order codes only.

3. Guaranteed by characterization, not tested in production

Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 31. LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	112	128	144	kHz
t _{su(LSI)}	LSI oscillator wakeup time	-	-	-	7 ⁽¹⁾	μs

1. Data based on characterization results, not tested in production.

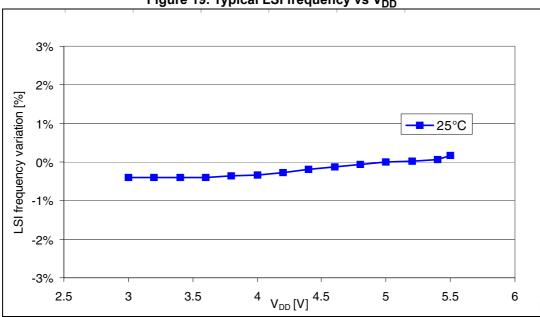
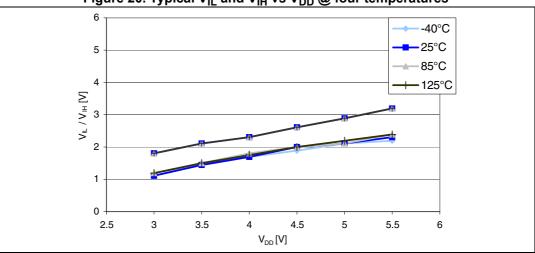
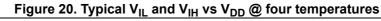
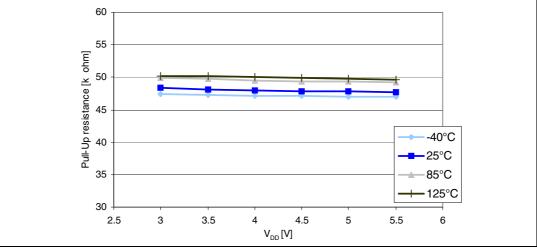




Figure 19. Typical LSI frequency vs V_{DD}



- 2. Guaranteed by design.
- 3. Data based on characterization results, not tested in production.

10.3.8 TIM 1, 2, 3, and 4 timer specifications

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Table 37. TIM 1	2, 3, and 4 electrical specified	ications
-----------------	----------------------------------	----------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{EXT}	Timer external clock frequency ⁽¹⁾	-	-	-	16	MHz

1. Not tested in production. On 64 Kbyte devices, the frequency is limited to 16 MHz.

10.3.9 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 38* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Cond	ditions	Min	Мах	Unit		
		Master mode		0	10			
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	V _{DD} < 4.5 V	0	6 ⁽¹⁾	MHz		
		Slave mode	V _{DD} = 4.5 V to 5.5 V	0	8 ⁽¹⁾			
t _{r(SCK}) t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		-	25 ⁽²⁾			
t _{su(NSS)} ⁽³⁾	NSS setup time	Slave mode		4 * t _{MASTER}	-			
t _{h(NSS)} ⁽³⁾	NSS hold time	Slave mode		70	-			
t _{w(SCKH)} ⁽³⁾ t _{w(SCKL)} ⁽³⁾	SCK high and low time	Master mode		t _{SCK} /2 - 15	t _{SCK} /2 + 15			
t _{su(MI)} (3)	Data input setup time	Master mode	Master mode		-			
$t_{su(SI)}^{(3)}$	Data input setup time	Slave mode		Slave mode		5	-	
t _{h(MI)} ⁽³⁾ t _{h(SI)} ⁽³⁾	Data input hold time	Master mode	Master mode		-	ns		
$t_{h(SI)}^{(3)}$		Slave mode		10	-			
t _{a(SO)} (3)(4)	Data output access time	Slave mode		-	3* t _{MASTER}			
t _{dis(SO)} ⁽³⁾⁽⁵⁾	Data output disable time	Slave mode		25				
t _{v(SO)} ⁽³⁾	Data output valid time	Slave mode	V _{DD} < 4.5 V	-	75			
v(SO) ^{۲۷}		(after enable edge) $V_{DD} = 4.5 \text{ V to } 5.10 \text{ J}$		-	53			
t _{v(MO)} ⁽³⁾	Data output valid time	Master mode (after enable edge)		-	30			
t _{h(SO)} ⁽³⁾	Data output hold time	Slave mode (after enable edge)		31	-			
t _{h(MO)} ⁽³⁾	Data output hold time	Master mode (after	enable edge)	12	-			

Table 38. SPI ch	aracteristics
------------------	---------------

1. $f_{SCK} < f_{MASTER}/2$.

2. The pad has to be configured accordingly (fast mode).

10.3.10 I²C interface characteristics

Symbol	Parameter	Standard	mode I ² C	Fast mod	Unit		
Symbol	Falameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} = 3 to 5.5 V)	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time (V _{DD} = 3 to 5.5 V)	-	300	-	300		
t _{h(STA)}	START condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-		
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-		
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 39. I²C characteristics

1. f_{MASTER} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz)

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

		Conditions					
Symbol	Parameter		Monitored	Max f _{CPU} ⁽¹⁾		Unit	
		General conditions	frequency band	8 MHz	16 MHz		
			Peak level $T_A = 25 ^{\circ}C$,	0.1 MHz to 30 MHz	15	17	
e	Peak level			30 MHz to 130 MHz	18	22	dBµV
S _{EMI}	EMI LQFP80 package conforming to IEC	130 MHz to 1 GHz	-1	3	υσμν		
	EMI level	61967-2	-	2	2.5		

Table 4	13. E	EMI c	lata
---------	-------	-------	------

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Table 44.	ESD	absolute	maximum	ratings
-----------	-----	----------	---------	---------

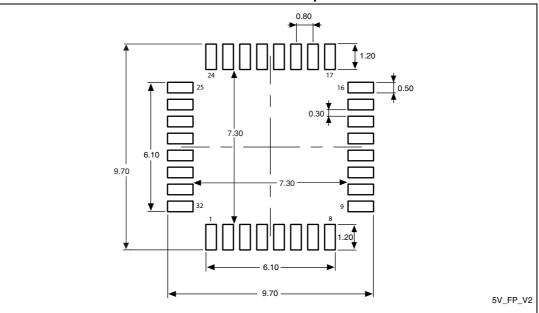
Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	ЗA	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	$T_A = 25^{\circ}C$, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = 25°C, conforming to JESD22-A115	В	200	

1. Data based on characterization results, not tested in production

Cumb al	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.200	-	-	0.0079	-
b	0.180	0.250	0.300	0.0071	0.0098	0.0118
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D2	3.500	3.600	3.700	0.1378	0.1417	0.1457
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E2	3.500	3.600	3.700	0.1378	0.1417	0.1457
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.050	-	-	0.0020

Table 46. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quadflat package mechanical data

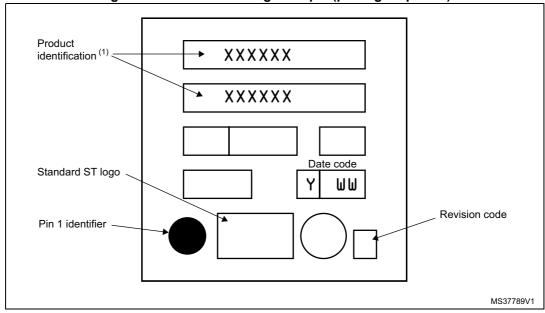
1. Values in inches are converted from mm and rounded to 4 decimal digits.

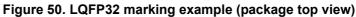


Currence of		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.




Figure 49. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

14 Revision history

Date	Revision	Changes
22-Aug-2008	1	Initial release
10-Aug-2009	2	Document revised as the following: Updated <i>Features</i> ; Updated <i>Table: Device summary</i> ; Updated <i>Section: Product line-up</i> ; Changed <i>Section: Product overview</i> ; Updated <i>Section: Pinouts and pin description</i> ; Changed <i>Section: Register map</i> ; Updated <i>Section: Register map</i> ; Updated <i>Section: Interrupt table</i> ; Updated <i>Section: Option bytes</i> ; Updated <i>Section: Electrical characteristics</i> ; Updated <i>Section: Package information</i> ; Updated <i>Section: Ordering information</i> ; Added <i>Section: STM8 development tools</i> .
22-Oct-2009	3	Adapted Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin description. Added Section: LIN header error when automatic resynchronization is enabled.
08-Jul-2010	4	Updated title on cover page. Added VFQFPN32 5x 5 mm package. Added STM8AF62xx devices, and modified cover page header to clarify the part numbers covered by the datasheets. Updated <i>Note 1</i> below <i>Table: Device summary.</i> Updated D temperature range to -40 to 150°C. Content of <i>Section: Product overview</i> reorganized. Renamed <i>Section: Memory and register map</i> , and content merged with Register map section. Renamed BL_EN and NBL_EN, BL and NBL, respectively, in <i>Table:</i> <i>Option bytes.</i> Added <i>Table: Operating lifetime.</i> Added CEXT and P _D (power dissipation) in <i>Table: General operating</i> <i>conditions</i> , and <i>Section: VCAP external capacitor.</i> Suffix D maximum junction temperature (T _J) updated in <i>Table:</i> <i>General operating conditions.</i> Update tvDD in <i>Table: Operating conditions at power-up/power-down.</i> Moved <i>Table: Typical peripheral current consumption VDD = 5.0 V</i> to <i>Section: Current consumption for on-chip peripherals</i> and removed I _{DD(CAN)} . Updated <i>Section: STM8 development tools.</i>

Table 50. Document revision history

Date	Revision	Changes
Date	1764121011	
31-Jan-2011	5 (continued)	Renamed Fast Active Halt mode to Active-halt mode with regulator on, and Slow Active Halt mode to Active-halt mode with regulator off. Updated <i>Table: Total current consumption in Halt and Active-halt</i> <i>modes. General conditions for VDD apply, TA</i> = -40 to 55 °C, in particular I _{DD(FAH)} and I _{DD(SAH)} renamed I _{DD(AH)} ; t _{WU(FAH)} and t _{WU(SAH)} renamed t _{WU(AH)} , and temperature condition added. Removed I _{DD(USART)} from <i>Table: Typical peripheral current</i> <i>consumption VDD</i> = 5.0 V.
		Updated general conditions in <i>Section: Memory characteristics</i> . Modified T_{WE} maximum value in <i>Table: Flash program memory</i> and <i>Table: Data memory</i> . Update $I_{lkg ana}$ maximum value for T_A ranging from -40 to 150 °C in
		Table: I/O static characteristics.
		Added $t_{IFP(NRST)}$ and renamed $V_{F(NRST)} t_{IFP}$ in <i>Table: NRST pin characteristics</i> . Added recommendations concerning NRST pin level above <i>Figure: Recommended reset pin protection,</i> and updated external capacitor value.
		Added Raisonance compiler in Section: Software tools.
		Moved know limitations to separate errata sheet.
	6	Updated wildcards of document part numbers.
18-Jul-2012		<i>Table: Device summary: u</i> pdated the footnotes to all STM8AF61xx part numbers.
		Section: Introduction: small text change in first paragraph.
		<i>Table:</i> STM8AF62xx product line-up: added "P" version for all order codes; updated RAM.
		<i>Table: STM8AF/H61xx product line-up</i> : added "P" version for all order codes.
		<i>Figure: STM8A block diagram</i> : updated POR, BOR and WDG; updated LINUART input; added legend.
		Section: Flash program and data EEPROM: removed non relevant bullet points and added a sentence about the factory programmer.
		Table: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers: updated
		ADC features: updated ADC input range.
		<i>Table: Memory model for the devices covered in this datasheet:</i> updated 16 Kbyte and 8 Kbyte information.
		<i>Table: Option bytes</i> : updated factory default setting for NOPT17; added footnote <i>1</i> .
		Section: Minimum and maximum values: T _A = -40 °C (not 40 °C).
		Table: General operating conditions: updated V _{CAP} .
		Table: Total current consumption in Run, Wait and Slow mode General conditions for VDD apply, TA = -40 to 150 °C: updated conditions for $I_{DD(RUN)}$.
		<i>Table: I/O static characteristics</i> : added new condition and new max values for rise and fall time; updated the footnote.

Table 50. Document revision history (continued)

