

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6268tay

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		10.3.7	Reset pin characteristics
		10.3.8	TIM 1, 2, 3, and 4 timer specifications
		10.3.9	SPI serial peripheral interface69
		10.3.10	I ² C interface characteristics
		10.3.11	10-bit ADC characteristics
		10.3.12	EMC characteristics
11	Pack	age info	ormation
	11.1	VFQFP	N32 package information 78
	11.2	LQFP4	8 package information
	11.3	LQFP3	2 package information
	11.4	Therma	Il characteristics
		11.4.1	Reference document88
		11.4.2	Selecting the product temperature range
12	Orde	ring info	ormation
13	STM	8 develo	pment tools
	13.1	Emulati	on and in-circuit debugging tools
		13.1.1	STice key features
	13.2	Softwar	re tools
		13.2.1	STM8 toolset
		13.2.2	C and assembly toolchains92
	13.3	Prograr	nming tools
14	Revis	sion his [.]	tory
			-

	flat package mechanical data	79
Table 47.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
	mechanical data	33
Table 48.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package	
	mechanical data	36
Table 49.	Thermal characteristics	38
Table 50.	Document revision history	94

TIM1: Advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and bridge driver.

- 16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
- Four independent CAPCOM channels configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In the present implementation it is possible to trigger the ADC upon a timer event.
- External trigger to change the timer behavior depending on external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break

TIM2 and TIM3: 16-bit general purpose timers

- 16-bit auto-reload up-counter
- 15-bit prescaler adjustable to fixed power of two ratios 1...32768
- Timers with three or two individually configurable CAPCOM channels
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5.7.5 Basic timer

The typical usage of this timer (TIM4) is the generation of a clock tick.

Table	٨	TIMA
lable	4.	1 11114

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM4	8-bit	Up	2 ⁿ n = 0 to 7	0	None	No	No	No	No

- 8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
- Clock source: master clock
- Interrupt source: 1 x overflow/update

5.8 Analog-to-digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

The ADC name differs between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 5*).

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
ADC	ADC1

ADC features

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f_{MASTER} divided by 2 to 18
- Conversion trigger on timer events and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result register
- Shadow registers for data consistency
- ADC input range: $V_{SSA} \le V_{IN} \le V_{DDA}$
- Analog watchdog
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption
- Scan mode (single and continuous)
- Dedicated result register for each conversion channel
- Buffer mode for continuous conversion

Note: An additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.

5.9 Communication interfaces

The following sections give a brief overview of the communication peripheral. Some peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 6*).

Table 6. Communication	peripheral n	naming correspondence
------------------------	--------------	-----------------------

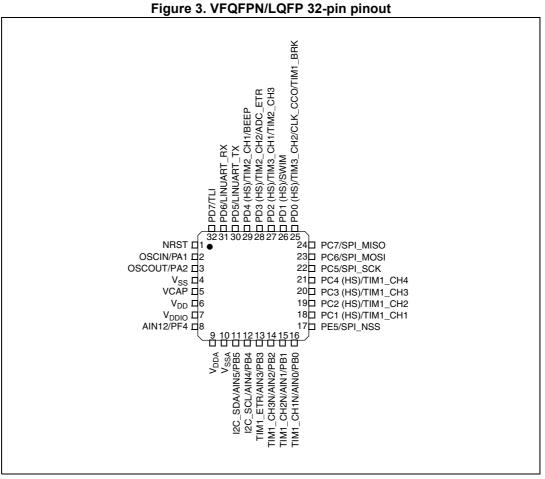
Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
LINUART	UART2

5.9.1 Serial peripheral interface (SPI)

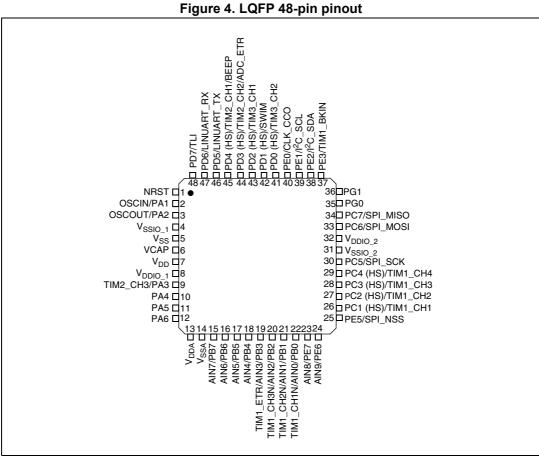
The devices covered by this datasheet contain one SPI. The SPI is available on all the supported packages.

- Maximum speed: 10 Mbit/s or f_{MASTER}/2 both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave mode/master mode management by hardware or software for both master and slave
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting
- Dedicated transmission and reception flags with interrupt capability
- SPI bus busy status flag
- Hardware CRC feature for reliable communication:
 - CRC value can be transmitted as last byte in Tx mode
 - CRC error checking for last received byte

5.9.2 Inter integrated circuit (I²C) interface


The devices covered by this datasheet contain one I^2C interface. The interface is available on all the supported packages.

- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds:
 - Standard speed (up to 100 kHz),
 - Fast speed (up to 400 kHz)
- Status flags:
 - Transmitter/receiver mode flag
 - End-of-byte transmission flag
 - I²C busy flag
- Error flags:
 - Arbitration lost condition for master mode
 - Acknowledgment failure after address/data transmission
 - Detection of misplaced start or stop condition
 - Overrun/underrun if clock stretching is disabled


6 Pinouts and pin description

6.1 Package pinouts

1. (HS) high sink capability.

2. (HS) high sink capability.

Table 7. Legend/abbreviation

Туре	I= input, O = output, S = power supply								
Level	Input	ut CM = CMOS (standard for all I/Os)							
	Output	HS = High sink (8 mA)							
Output speed	 O1 = Standard (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset 								
Port and control	Input	float = floating, wpu = weak pull-up							
configuration	Output	T = true open drain, OD = open drain, PP = push pull							
Reset state	state after reset release). erwise specified, the pin state is the same during the reset phase (i.e. t") and after internal reset release (i.e. at reset state).								

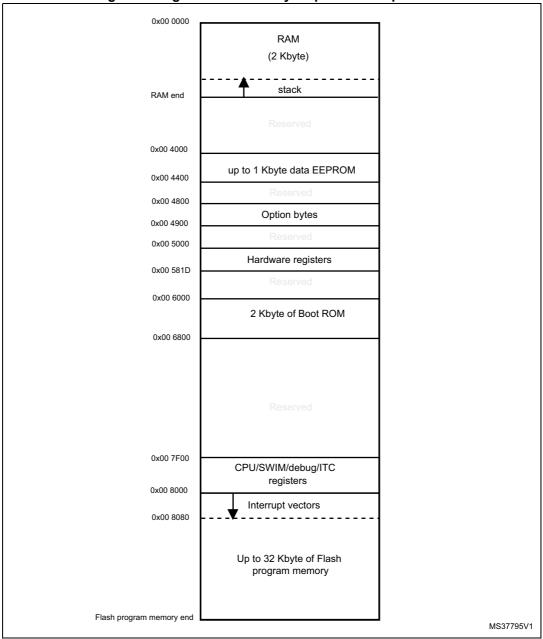

Pi	-												
num					Inpu	t		Out	put		_		
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	wpu	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	NRST	I/O	-	X	-	-	-	-	-	Reset	•	-
2	2	PA1/OSCIN ⁽³⁾	I/O	X	Х	-	-	01	Х	Х	Port A1	Resonator/crystal in	-
3	3	PA2/OSCOUT	I/O	X	Х	Х	-	01	Х	Х	Port A2	Resonator/crystal out	-
4	-	V _{SSIO_1}	S	-	-	-	-	-	-	-	I/O groun	d	-
5	4	V _{SS}	S	-	-	-	-	-	-	-	Digital gro	bund	-
6	5	VCAP	S	-	-	-	-	-	-	-	1.8 V reg	ulator capacitor	-
7	6	V _{DD}	S	-	-	-	-	-	-	-	Digital po	wer supply	-
8	7	V _{DDIO_1}	S	-	-	-	-	-	-	-	I/O power	supply	-
-	8	PF4/AIN12 ⁽⁴⁾⁽⁵⁾	I/O	X	Х		-	01	Х	Х	Port F4	Analog input 12	-
9	-	PA3/TIM2_CH3	I/O	x	х	Х	-	01	х	х	Port A3	Timer 2 - channel 3	TIM3_CH1 [AFR1]
10	-	PA4	I/O	Х	Х	Х	-	O3	Х	Х	Port A4		-
11	-	PA5	I/O	Х	Х	Х	-	O3	Х	Х	Port A5		-
12	-	PA6	I/O	Х	Х	Х	-	O3	Х	Х	Port A6		-
13	9	V _{DDA}	S	-	-	-	-	-	-	-	Analog po	ower supply	-
14	10	V _{SSA}	S	-	-	-	-	-	-	-	Analog gr	ound	-
15	-	PB7/AIN7	I/O	Х	Х	Х	-	01	Х	Х	Port B7	Analog input 7	-
16	-	PB6/AIN6	I/O	Х	Х	Х	-	01	Х	Х	Port B6	Analog input 6	-
17	11	PB5/AIN5	I/O	x	х	Х	-	01	х	х	Port B5	Analog input 5	I ² C_SDA [AFR6]
18	12	PB4/AIN4	I/O	x	х	х	-	01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]
19	13	PB3/AIN3	I/O	x	х	х	I	01	х	х	Port B3	Analog input 3	TIM1_ETR [AFR5]
20	14	PB2/AIN2	I/O	x	х	х	-	01	х	х	Port B2	Analog input	TIM1_NCC3 [AFR5]
21	15	PB1/AIN1	I/O	x	х	Х	-	01	х	х	Port B1 Analog input 1		TIM1_NCC2 [AFR5]
22	16	PB0/AIN0	I/O	x	х	х	-	01	х	х	Port B0 Analog input 0		TIM1_NCC1 [AFR5]
23	-	PE7/AIN8	I/O	X	Х		-	01	Х	Х	Port E7	Analog input 8	-

Table 8. STM8AF6246/48/66/68 ((32 Kbv	vte) micro	ocontroller	pin descri	ption ⁽¹⁾⁽²⁾
				pin acour	puon

7 Memory and register map

7.1 Memory map

Address	Block Register label F		Register name	Reset status
0x00 7F81 to 0x00 7F8F		Reserved area (15 bytes)		
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
0x00 7F97		DM_CR2	DM debug module control register 2	0x00
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10
0x00 7F99		DM_CSR2	DM debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F	Reserved area (5 bytes)			

Table 12. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 5: Register and memory map of STM8A products.

Table 13. Temporary memory unprotection registers				
Address	Block	Register label Register name		Reset status
0x00 5800		TMU_K1	Temporary memory unprotection key register 1	0x00
0x00 5801		TMU_K2	Temporary memory unprotection key register 2	0x00
0x00 5802		TMU_K3	Temporary memory unprotection key register 3	0x00
0x00 5803		TMU_K4	Temporary memory unprotection key register 4	0x00
0x00 5804	TMU	TMU_K5	Temporary memory unprotection key register 5	0x00
0x00 5805		TMU_K6	Temporary memory unprotection key register 6	0x00
0x00 5806		TMU_K7	Temporary memory unprotection key register 7	0x00
0x00 5807		TMU_K8	Temporary memory unprotection key register 8	0x00
0x00 5808		TMU_CSR	Temporary memory unprotection control and status register	0x00

Table 13. Temporary memory unprotection registers

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

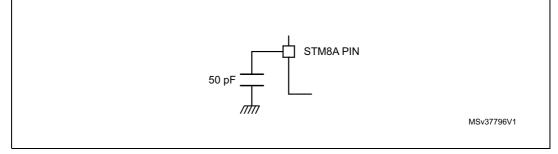
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

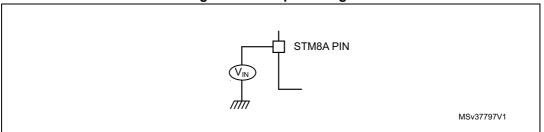
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.


10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 6*.



10.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

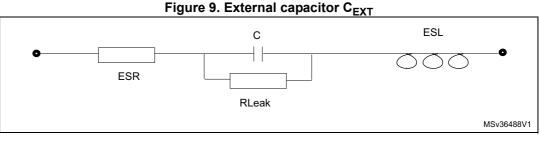
Figure 7. Pin input voltage

10.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

······································					
Symbol	Ratings	Min	Max	Unit	
V _{DDx} - V _{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	V	
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V	
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v	
V _{DDx} - V _{DD}	Variations between different power pins	-	50	mV	
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	IIIV	
V _{ESD}	Electrostatic discharge voltage		ite maximum cal sensitivity) page 76	•	

Table 17. Voltage characteristics


1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 21*. Care should be taken to limit the series inductance to less than 15 nH.

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 6 on page 49* and *Figure 7 on page 50*.

If not explicitly stated, general conditions of temperature and voltage apply.

General conditions for v_{DD} apply, $I_A = -40$ to 150 °C						
Symbol	Parameter	Conditions		Тур	Мах	Unit
		All peripherals	f _{CPU} = 16 MHz	7.4	14	
I _{DD(RUN)} ⁽¹⁾	Supply current in	clocked, code executed from Flash	f _{CPU} = 8 MHz	4.0	7.4 ⁽²⁾	
DD(RUN)	Run mode	program memory, HSE external clock	f _{CPU} = 4 MHz	2.4	4.1 ⁽²⁾	
		(without resonator)	f _{CPU} = 2 MHz	1.5	2.5	
		All peripherals	f _{CPU} = 16 MHz	3.7	5.0	
I _{DD(RUN)} ⁽¹⁾	Supply current in	nt in and EEPROM HSE	f _{CPU} = 8 MHz	2.2	3.0 ⁽²⁾	
'DD(RUN)`	Run mode		f _{CPU} = 4 MHz	1.4	2.0 ⁽²⁾	
			f _{CPU} = 2 MHz	1.0	1.5	mA
			f _{CPU} = 16 MHz	1.65	2.5	
I _{DD(WFI)} ⁽¹⁾	Supply current in	CPU stopped, all peripherals off, HSE external clock	f _{CPU} = 8 MHz	1.15	1.9 ⁽²⁾	
'DD(WFI)`´			f _{CPU} = 4 MHz	0.90	1.6 ⁽²⁾	
			f _{CPU} = 2 MHz	0.80	1.5	
(1)	Supply f _{CPU} scaled down, all peripherals off,	Ext. clock 16 MHz f _{CPU} = 125 kHz	1.50	1.95		
I _{DD(SLOW)} ⁽¹⁾	current in Slow mode	code executed from RAM	LSI internal RC f _{CPU} = 128 kHz	1.50	1.80 ⁽²⁾	


Table 23. Total current consumption in Run, Wait and Slow mode. General conditions for V_{DD} apply, $T_A = -40$ to 150 °C

1. The current due to I/O utilization is not taken into account in these values.

2. Values not tested in production. Design guidelines only.

DocID14952 Rev 11

10.3.3 External clock sources and timing characteristics

HSE user external clock

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_} ext	User external clock source frequency	T _A is -40 to 150 °C	0 ⁽¹⁾	-	16	MHz
V _{HSEdHL}	Comparator hysteresis	-	0.1 x V _{DD}	-	-	
V _{HSEH}	OSCIN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD}	v
V _{HSEL}	OSCIN input pin low level voltage	-	V _{SS}	-	0.3 x V _{DD}	
ILEAK_HSE	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	-	+1	μA

1. In CSS is used, the external clock must have a frequency above 500 kHz.

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V_{IL}	Input low level voltage		-0.3 V	-	0.3 x V _{DD}	
V _{IH}	Input high level voltage	_	0.7 x V _{DD}	-	V _{DD} + 0.3 V	
V _{hys}	Hysteresis ⁽¹⁾		-	0.1 x V _{DD}	-	
M	Output high level voltage	Standard I/0, V _{DD} = 5 V, I = 3 mA	V _{DD} - 0.5 V	-	-	
V _{OH}	output high level voltage	Standard I/0, V _{DD} = 3 V, I = 1.5 mA	V _{DD} - 0.4 V	-	-	V
		High sink and true open drain I/0, V _{DD} = 5 V I = 8 mA	-	-	0.5	
V_{OL}	I = 3 mÅ	Standard I/0, V _{DD} = 5 V I = 3 mA	-	-	0.6	
		Standard I/0, V _{DD} = 3 V I = 1.5 mA	-	-	0.4	
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	35	50	65	kΩ
		Fast I/Os Load = 50 pF	-	-	35 ⁽²⁾	
	Rise and fall time	Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	20
t _R , t _F	(10% - 90%)	Fast I/Os Load = 20 pF	-	-	20 ⁽²⁾	ns
		Standard and high sink I/Os Load = 20 pF	-	-	50 ⁽²⁾	
l _{lkg}	Digital input pad leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA
. Analog input pa	ha Analog input pad leakage $ \begin{array}{c} V_{SS} \leq V_{IN} \leq V_{DD} \\ -40 \ ^{\circ}C < T_A < 125 \ ^{\circ}C \\ \hline V_{SS} \leq V_{IN} \leq V_{DD} \\ -40 \ ^{\circ}C < T_A < 150 \ ^{\circ}C \end{array} $	V _{SS} ≤ V _{IN} ≤ V _{DD} -40 °C < T _A < 125 °C	-	-	±250	24
l _{Ikg ana}		-	-	±500	nA	
l _{lkg(inj)}	Leakage current in adjacent I/O ⁽³⁾	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA
I _{DDIO}	Total current on either V _{DDIO} or V _{SSIO}	Including injection currents	-	-	60	mA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

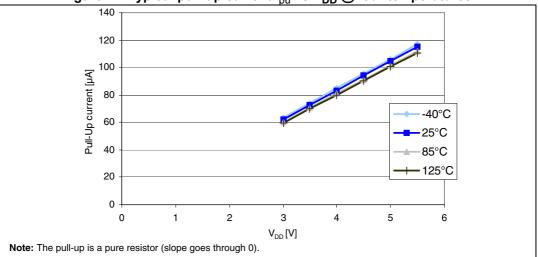
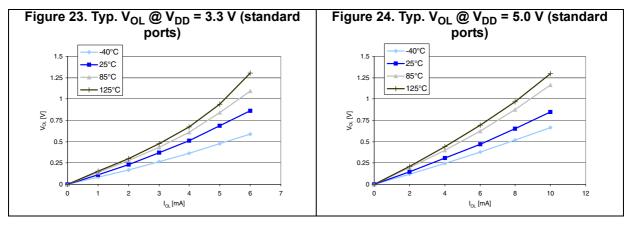
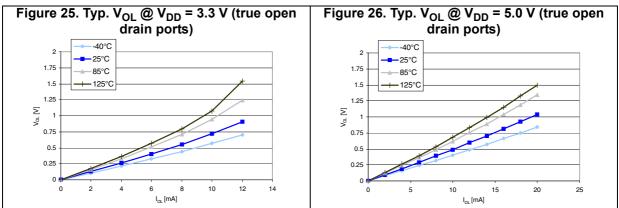




Figure 22. Typical pull-up current I_{pu} vs V_{DD} @ four temperatures

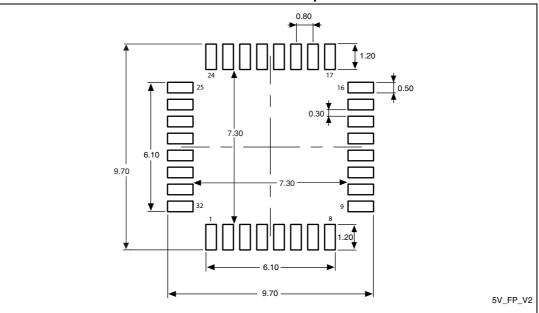
Typical output level curves

Figure 23 to *Figure 32* show typical output level curves measured with output on a single pin.

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

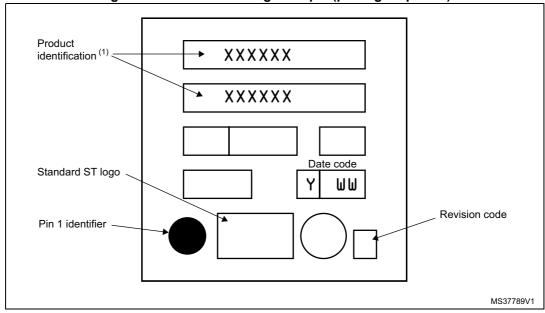
- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

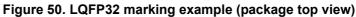

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
		$T_A = 25 \ ^\circ C$	
LU		T _A = 85 °C	٨
LU	Static latch-up class	T _A = 125 °C	A
		T _A = 150 °C	

Table 4	5. Electrical	sensitivities
---------	---------------	---------------

 Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).




Figure 49. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Date	Revision	Changes
31-Jan-2011	5	 Modified references to reference manual, and Flash programming manual in the whole document. Added reference to AEC Q100 standard on cover page. Renamed timer types as follows: Auto-reload timer to general purpose timer Multipurpose timer to advanced control timer System timer to basic timer Introduced concept of medium density Flash program memory. Updated timer names in <i>Figure: STM8A block diagram</i>. Added TMU brief description in <i>Section: Flash program and data EEPROM</i>, and updated TMU_MAXATT description in <i>Table: Option byte description</i>. Updated clock sources in clock controller features. Changed 16MHZTRIM0 to HSITRIM bit in <i>Section: User trimming</i>. Added Table: Peripheral clock gating bits. Updated Section: Low-power operating modes. Added Table: ADC naming and Table: Communication peripheral naming correspondence. Added Note 1 related AIN12 pin in Section: Analog-to-digital converter (ADC) and Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin description. Updated SPI data rate to 10 Mbit/s or f_{MASTER}/2 in Section: Serial peripheral interface (SPI). Added reset state in Table: Legend/abbreviation. Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin description: added Note 7 related to PD1/SWIM, modified Note 6, corrected wpu input for PE1 and PE2, and renamed TIMn_CCx and TIMn_NCCx to TIMn_CHx and TIMn_CHxN, respectively. Section: Register map: Replaced tables describing register maps and reset values for nonvolatile memory, global configuration, reset status, clock controller, interrupt controller, timers, communication interfaces, and ADC, by Table: General hardware register map.

Table 50. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID14952 Rev 11