

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6268tdx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5.7.4	Advanced control and general purpose timers	. 21
		5.7.5	Basic timer	. 22
	5.8	Analog	-to-digital converter (ADC)	23
	5.9	Comm	unication interfaces	23
		5.9.1	Serial peripheral interface (SPI)	. 24
		5.9.2	Inter integrated circuit (I ² C) interface	. 24
		5.9.3	Universal asynchronous receiver/transmitter with LIN support (LINUART)	. 25
	5.10	Input/o	utput specifications	26
6	Pino	uts and	pin description	27
	6.1	Packag	ge pinouts	27
	6.2	Alterna	te function remapping	31
7	Mem	ory and	register map	32
	7.1	Memor	y map	32
	7.2	Registe	er map	33
•	Intor			43
8	interi	rupt tab	ie	70
9	Optic	on bytes	s	44
8 9 10	Optic	n bytes rical ch	aracteristics	44 49
8 9 10	Optic Elect	on bytes rical ch Paramo	aracteristics	44 49 49
8 9 10	Optic Elect	on bytes rical ch Paramo 10.1.1	aracteristics	44 49 49
8 9 10	Optic Elect	on bytes rical ch Parame 10.1.1 10.1.2	aracteristics	44 49 49 49 49
8 9 10	Optic Elect	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3	aracteristics	44 49 49 49 49 49 49
8 9 10	Optic Elect	Trical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4	aracteristics	44 49 49 49 49 49 49 49 49
8 9 10	Optic Elect	Frical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5	aracteristics	44 49 49 49 49 49 49 49 49 49 50
8 9 10	Optic Elect 10.1	rupt tab on bytes rical ch Paramo 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage	44 49 49 49 49 49 49 49 49 49 49 50
8 9 10	Optic Elect 10.1 10.2 10.3	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings	44 49 49 49 49 49 49 49 49 50 50 50
8 9 10	Optic Elect 10.1 10.2 10.3	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1	s aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings VCAP external capacitor	44 49 49 49 49 49 49 49 49 50 50 50 52 52
8 9 10	Optic Elect 10.1 10.2 10.3	Trical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1 10.3.2	aracteristics teter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings ing conditions VCAP external capacitor Supply current characteristics	44 49 49 49 49 49 49 49 50 50 50 52 52 54 54
8 9 10	Optic Elect 10.1	n bytes rical ch Paramo 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1 10.3.2 10.3.3	Aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings ing conditions VCAP external capacitor Supply current characteristics External clock sources and timing characteristics	44 49 49 49 49 49 49 49 50 50 50 52 52 54 54 54 57
8 9 10	Optic Elect 10.1 10.2 10.3	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1 10.3.2 10.3.3 10.3.4	Aracteristics	44 49 49 49 49 49 49 49 50 50 50 52 54 54 54 57 57 59
8 9 10	Optic Elect 10.1	rupt tab on bytes rical ch Parame 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Absolu Operat 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage te maximum ratings ing conditions VCAP external capacitor Supply current characteristics External clock sources and timing characteristics Internal clock sources and timing characteristics Memory characteristics	44 49 49 49 49 49 49 49 50 50 50 52 52 52 54 54 57 59 62

5.2 Single wire interface module (SWIM) and debug module (DM)

5.2.1 SWIM

The single wire interface module, SWIM, together with an integrated debug module, permits non-intrusive, real-time in-circuit debugging and fast memory programming. The interface can be activated in all device operation modes and can be connected to a running device (hot plugging). The maximum data transmission speed is 145 bytes/ms.

5.2.2 Debug module

The non-intrusive debugging module features a performance close to a full-flavored emulator. Besides memory and peripheral operation, CPU operation can also be monitored in real-time by means of shadow registers.

- R/W of RAM and peripheral registers in real-time
- R/W for all resources when the application is stopped
- Breakpoints on all program-memory instructions (software breakpoints), except the interrupt vector table
- Two advanced breakpoints and 23 predefined breakpoint configurations

5.3 Interrupt controller

- Nested interrupts with three software priority levels
- 21 interrupt vectors with hardware priority
- Five vectors for external interrupts (up to 34 depending on the package)
- Trap and reset interrupts

5.4 Flash program and data EEPROM

- 16 Kbyte to 32 Kbyte of medium density single voltage program Flash memory
- Up to 1 Kbyte true (not emulated) data EEPROM
- Read while write: writing in the data memory is possible while executing code in the Flash program memory

The whole Flash program memory and data EEPROM are factory programmed with 0x00.

5.4.1 Architecture

- The memory is organized in blocks of 128 bytes each
- Read granularity: 1 word = 4 bytes
- Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
- Writing, erasing, word and block management is handled automatically by the memory interface.

5.4.4 Read-out protection (ROP)

The STM8A provides a read-out protection of the code and data memory which can be activated by an option byte setting (see the ROP option byte in section 10).

The read-out protection prevents reading and writing Flash program memory, data memory and option bytes via the debug module and SWIM interface. This protection is active in all device operation modes. Any attempt to remove the protection by overwriting the ROP option byte triggers a global erase of the program and data memory.

The ROP circuit may provide a temporary access for debugging or failure analysis. The temporary read access is protected by a user defined, 8-byte keyword stored in the option bytes area. This keyword must be entered via the SWIM interface to temporarily unlock the device.

If desired, the temporary unlock mechanism can be permanently disabled by the user through OPT6/NOPT6 option bytes.

5.5 Clock controller

The clock controller distributes the system clock coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.

5.5.1 Features

Clock sources

- 16 MHz high-speed internal RC oscillator (HSI)
- 128 kHz low-speed internal RC (LSI)
- 1-16 MHz high-speed external crystal (HSE)
- Up to 16 MHz high-speed user-external clock (HSE user-ext)
- Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock (16 MHz/8). The clock source and speed can be changed by the application program as soon as the code execution starts.
- **Safe clock switching**: Clock sources can be changed safely on the fly in Run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management**: To reduce power consumption, the clock controller can stop the clock to the core or individual peripherals.
- Wakeup: In case the device wakes up from low-power modes, the internal RC oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device switches to the clock source that was selected before Halt mode was entered.
- Clock security system (CSS): The CSS permits monitoring of external clock sources and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
- **Configurable main clock output (CCO)**: This feature permits to output a clock signal for use by the application.

5.5.2 16 MHz high-speed internal RC oscillator (HSI)

- Default clock after reset 2 MHz (16 MHz/8)
- Fast wakeup time

User trimming

The register CLK_HSITRIMR with three trimming bits plus one additional bit for the sign permits frequency tuning by the application program. The adjustment range covers all possible frequency variations versus supply voltage and temperature. This trimming does not change the initial production setting.

For reason of compatibility with other devices from the STM8A family, a special mode with only two trimming bits plus sign can be selected. This selection is controlled with the HSITRIM0 bit in the option byte registers OPT3 and NOPT3.

5.8 Analog-to-digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

The ADC name differs between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 5*).

Table	5.	ADC	naming	g
-------	----	-----	--------	---

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)	
ADC	ADC1	

ADC features

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f_{MASTER} divided by 2 to 18
- Conversion trigger on timer events and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result register
- Shadow registers for data consistency
- ADC input range: $V_{SSA} \le V_{IN} \le V_{DDA}$
- Analog watchdog
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption
- Scan mode (single and continuous)
- Dedicated result register for each conversion channel
- Buffer mode for continuous conversion

Note: An additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.

5.9 Communication interfaces

The following sections give a brief overview of the communication peripheral. Some peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 6*).

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
LINUART	UART2

- Interrupt:
 - Successful address/data communication
 - Error condition
 - Wakeup from Halt
- Wakeup from Halt on address detection in slave mode

5.9.3 Universal asynchronous receiver/transmitter with LIN support (LINUART)

The devices covered by this datasheet contain one LINUART interface. The interface is available on all the supported packages. The LINUART is an asynchronous serial communication interface which supports extensive LIN functions tailored for LIN slave applications. In LIN mode it is compliant to the LIN standards rev 1.2 to rev 2.2.

Detailed feature list:

LIN mode

Master mode:

- LIN break and delimiter generation
- LIN break and delimiter detection with separate flag and interrupt source for read back checking.

Slave mode:

- Autonomous header handling one single interrupt per valid header
- Mute mode to filter responses
- Identifier parity error checking
- LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI) clock source
- Break detection at any time, even during a byte reception
- Header errors detection:
 - Delimiter too short
 - Synch field error
 - Deviation error (if automatic resynchronization is enabled)
 - Framing error in synch field or identifier field
 - Header time-out

P num	in 1ber				Inpu	t		Out	put				
LQFP48	VFQFPN/LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЬР	Main functior (after reset)	Default alternate function	Alternate function after remap [option bit]
47	31	PD6/ LINUART_RX	I/O	x	х	Х	-	01	х	х	Port D6 LINUART data receive		-
48	32	PD7/TLI ⁽⁸⁾	I/O	X	Х	Х	-	01	Х	Х	Port D7	Top level interrupt	-

Table 8. STM8AF6246/48/66/68 (32 Kbyte) microcontroller pin description⁽¹⁾⁽²⁾ (continued)

1. Refer to Table 7 for the definition of the abbreviations.

Reset state is shown in bold.

3. In Halt/Active-halt mode this pad behaves in the following way:

- the input/output path is disabled

- if the HSE clock is used for wakeup, the internal weak pull up is disabled - if the HSE clock is off, internal weak pull up setting from corresponding OR bit is used

By managing the OR bit correctly, it must be ensured that the pad is not left floating during Halt/Active-halt.

4. On this pin, a pull-up resistor as specified in Table 35. I/O static characteristics is enabled during the reset phase of the product.

5. AIN12 is not selectable in ADC scan mode or with analog watchdog.

- In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, week pull-up, and protection diode to V_{DD} are 6. not implemented)
- 7. The PD1 pin is in input pull-up during the reset phase and after reset release.

8. If this pin is configured as interrupt pin, it will trigger the TLI.

6.2 Alternate function remapping

As shown in the rightmost column of *Table 8*, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to Section 9: Option bytes on page 44. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016).

		-		
Address	Block	Register label	Register name	Reset status
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX ⁽¹⁾
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX ⁽¹⁾
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0xXX ⁽¹⁾
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022]	PG_CR2	Port G control register 2	0x00

	Table 10. I/O	port hardware	register map	(continued)
--	---------------	---------------	--------------	-------------

1. Depends on the external circuitry.

			U I			
Address	Block	Register label	Register label Register name			
0x00 505A		FLASH_CR1	Flash control register 1	0x00		
0x00 505B		FLASH_CR2	Flash control register 2	0x00		
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF		
0x00 505D	Flash	FLASH_FPR	Flash protection register	0x00		
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF		
0x00 505F		FLASH_IAPSR	Flash in-application programming status register	0x40		
0x00 5060 to 0x00 5061		Reserved area (2 bytes)				
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00		
0x00 5063	Reserved area (1 byte)					
0x00 5064	Flash	Flash FLASH_DUKR Data EEPROM unprotection register				
0x00 5065 to 0x00 509F	Reserved area (59 bytes)					

Table 11. General hardware register map

DocID14952 Rev 11

			ale legieter map (continued)	
Address	Block	Register label	Register name	Reset status
0x00 5240		UART2_SR	LINUART status register	0xC0
0x00 5241		UART2_DR	LINUART data register	0xXX
0x00 5242		UART2_BRR1	LINUART baud rate register 1	0x00
0x00 5243		UART2_BRR2	LINUART baud rate register 2	0x00
0x00 5244		UART2_CR1	LINUART control register 1	0x00
0x00 5245	LINUARI	UART2_CR2	LINUART control register 2	0x00
0x00 5246		UART2_CR3	LINUART control register 3	0x00
0x00 5247		UART2_CR4	LINUART control register 4	0x00
0x00 5248			Reserved	
0x00 5249		UART2_CR6	LINUART control register 6	0x00
0x00 524A to 0x00 524F		R	eserved area (6 bytes)	
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00
0x00 5254		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00
0x00 525B	TIM1	TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00
0x00 525F		TIM1_CNTRL	TIM1 counter low	0x00
0x00 5260		TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00

 Table 11. General hardware register map (continued)

10.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

Figure 7. Pin input voltage

10.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit	
V _{DDx} - V _{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	V	
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V	
۷IN	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v	
V _{DDx} - V _{DD}	Variations between different power pins	-	50	m\/	
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	IIIV	
V _{ESD}	Electrostatic discharge voltage	see Absolu (electric	ite maximum cal sensitivity, page 76	ratings) on	

Table 17. Voltage characteristics

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Figure 19. Typical LSI frequency vs V_{DD}

10.3.5 Memory characteristics

Flash program memory/data EEPROM memory

General conditions: $T_A = -40$ to 150 °C.

Table 32. Flash program memory/data EEPROM memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Operating voltage (all modes, execution/write/erase)	f _{CPU} is 0 to 16 MHz with 0 ws	3.0	-	5.5	V
V_{DD}	Operating voltage (code execution)	f _{CPU} is 0 to 16 MHz with 0 ws	2.6	-	5.5	v
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)	-	-	6	6.6	
. 0	Fast programming time for 1 block (128 bytes)	-	-	3	3.3	ms
t _{erase}	Erase time for 1 block (128 bytes)	-	-	3	3.3	

Table 33. Flash program memory

Symbol	Parameter	Condition	Min	Мах	Unit
T_{WE}	Temperature for writing and erasing	-	-40	150	°C
N_{WE}	Flash program memory endurance (erase/write cycles) ⁽¹⁾	T _A = 25 °C	1000	-	cycles
t	Data rotantian time	T _A = 25 °C	40	-	VOORS
' RET		T _A = 55 °C	20	_	ycars

 The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

	Tabl	e 34.	Data	memory
--	------	-------	------	--------

Symbol	Parameter	Condition	Min	Max	Unit	
T_{WE}	Temperature for writing and erasing	-	-40	150	°C	
N	Data memory endurance ⁽¹⁾	T _A = 25 °C	300 k	-	oveloo	
WE	(erase/write cycles)	$T_A = -40^{\circ}C$ to 125 °C	100 k ⁽²⁾	-	Cycles	
t _{RET}	Data rotantian time	T _A = 25 °C	40 ⁽²⁾⁽³⁾	-	Veere	
		T _A = 55 °C	20 ⁽²⁾⁽³⁾	-	years	

1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.

3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.

Figure 34. Typical NRST pull-up resistance R_{PU} vs V_{DD}

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below $V_{IL(NRST)}$ max (see *Table 36: NRST pin characteristics*), otherwise the reset is not taken into account internally.

Figure 36. Recommended reset pin protection

DocID14952 Rev 11

Figure 39. SPI timing diagram - master mode

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	0.800	0.900	1.000	0.0315	0.0354	0.0394	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.200	-	-	0.0079	-	
b	0.180	0.250	0.300	0.0071	0.0098	0.0118	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D2	3.500	3.600	3.700	0.1378	0.1417	0.1457	
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	
E2	3.500	3.600	3.700	0.1378	0.1417	0.1457	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.050	-	-	0.0020	

Table 46. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quadflat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

11.2 LQFP48 package information

SEATING PLANE A2 ŨŦŨŦŨŦŨŦĬĦŮŸŨŦŨŦŨŦŨŦŎŹ F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b Œ <u>ш</u> ш Ē ----------£ 48 13 12 e 5B_ME_V2

Figure 45. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Cumhal	millimeters			inches ⁽¹⁾			
Зутвої	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5° 7°		
CCC	-	-	0.080	-	-	0.0031	

Table 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

13.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8A Flash microcontroller on the user application board via the SWIM protocol. Additional tools are used to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the user STM8A.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

Date	Revision	Changes
31-Jan-2011	5	Modified references to reference manual, and Flash programming manual in the whole document. Added reference to AEC Q100 standard on cover page. Renamed timer types as follows: - Auto-reload timer to general purpose timer - Multipurpose timer to advanced control timer - System timer to basic timer Introduced concept of medium density Flash program memory. Updated timer names in <i>Figure: STM8A block diagram.</i> Added TMU brief description in Section: Flash program and data EEPROM, and updated TMU_MAXATT description in Table: Option byte description. Updated clock sources in clock controller features. Changed 16MHZTRIM0 to HSITRIM bit in Section: User trimming. Added Table: Peripheral clock gating bits. Updated Section: Low-power operating modes. Added Calibration using TIM3 in Section: Auto-wakeup counter. Added Table: ADC naming and Table: Communication peripheral naming correspondence. Added Note 1 related AIN12 pin in Section: Analog-to-digital converter (ADC) and Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin description: updated SPI data rate to 10 Mbit/s or fMASTER/2 in Section: Serial peripheral interface (SPI). Added reset state in Table: Legend/abbreviation. Table: STM8AF61xx/62xx (32 Kbyte) microcontroller pin description: added Note 7 related to PD1/SWIM, modified N

Table 50. Document revision history (continued)

