

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2420-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- **Memory Endurance:** The Enhanced Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 100,000 for program memory and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-Programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18F2420/ 2520/4420/4520 family introduces an optional extension to the PIC18 instruction set, which adds 8 new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced CCP Module: In PWM mode, this module provides 1, 2 or 4 modulated outputs for controlling half-bridge and full-bridge drivers. Other features include auto-shutdown, for disabling PWM outputs on interrupt, or other select conditions, and auto-restart to reactivate outputs once the condition has cleared.
- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reducing code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 26.0 "Electrical Characteristics" for time-out periods.

1.3 Details on Individual Family Members

Devices in the PIC18F2420/2520/4420/4520 family are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in five ways:

- 1. Flash program memory (16 Kbytes for PIC18F2420/4420 devices and 32 Kbytes for PIC18F2520/4520 devices).
- A/D channels (10 for 28-pin devices, 13 for 40/44-pin devices).
- 3. I/O ports (3 bidirectional ports on 28-pin devices, 5 bidirectional ports on 40/44-pin devices).
- CCP and Enhanced CCP implementation (28-pin devices have 2 standard CCP modules, 40/44-pin devices have one standard CCP module and one ECCP module).
- 5. Parallel Slave Port (present only on 40/44-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F2420/2520/4420/4520 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F2420), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF2420), function over an extended VDD range of 2.0V to 5.5V.

Register	Applicable Devices		Applicable Devices Power-on Reset, Brown-out Reset		MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
ADRESH	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADRESL	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	2420	2520	4420	4520	00 0000	00 0000	uu uuuu
ADCON1	2420	2520	4420	4520	00 0qqq (6)	00 0qqq ⁽⁶⁾	uu uuuu
ADCON2	2420	2520	4420	4520	0-00 0000	0-00 0000	u-uu uuuu
CCPR1H	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1L	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
CUPICON	2420	2520	4420	4520	00 0000	00 0000	uu uuuu
CCPR2H	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2L	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	2420	2520	4420	4520	00 0000	00 0000	uu uuuu
BAUDCON	2420	2520	4420	4520	0100 0-00	0100 0-00	uuuu u-uu
PWM1CON	2420	2520	4420	4520	0000 0000	0000 0000	սսսս սսսս
ECCD148	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
ECCETAS	2420	2520	4420	4520	0000 00	0000 00	uuuu uu
CVRCON	2420	2520	4420	4520	0000 0000	0000 0000	սսսս սսսս
CMCON	2420	2520	4420	4520	0000 0111	0000 0111	սսսս սսսս
TMR3H	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3L	2420	2520	4420	4520	xxxx xxxx	սսսս սսսս	սսսս սսսս
T3CON	2420	2520	4420	4520	0000 0000	uuuu uuuu	uuuu uuuu
SPBRGH	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
SPBRG	2420	2520	4420	4520	0000 0000	0000 0000	սսսս սսսս
RCREG	2420	2520	4420	4520	0000 0000	0000 0000	սսսս սսսս
TXREG	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
TXSTA	2420	2520	4420	4520	0000 0010	0000 0010	սսսս սսսս
RCSTA	2420	2520	4420	4520	0000 000x	0000 000x	uuuu uuuu
EEADR	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
EEDATA	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
EECON2	2420	2520	4420	4520	0000 0000	0000 0000	0000 0000
EECON1	2420	2520	4420	4520	xx-0 x000	uu-0 u000	uu-0 u000

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: The Reset value of the PCFG bits depends on the value of the PBADEN Configuration bit (CONFIG3H<1>). When PBADEN = 1, PCFG<2:0> = 000; when PBADEN = 0, PCFG<2:0> = 111.

6.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 32 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

6.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and places it into the data RAM space. Figure 6-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 6.5** "**Writing to Flash Program Memory**". Figure 6-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 6-1:

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	52
LATC PORTC Data Latch Register (Read and Write to Data Latch)								52	
TRISC	PORTC Data Direction Register								52

TABLE 10-6:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

10.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	40/44-pin devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 10-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation as long as the Enhanced CCP module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit, PSPMODE, enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits, PFCG<3:0> (ADCON1<3:0>), must also be set to a value in the range of '1010' through '1111'.

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is clear. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken. The timing for the control signals in Write and Read modes is shown in Figure 10-3 and Figure 10-4, respectively.

12.7 Considerations in Asynchronous Counter Mode

Following a Timer1 interrupt and an update to the TMR1 registers, the Timer1 module uses a falling edge on its clock source to trigger the next register update on the rising edge. If the update is completed after the clock input has fallen, the next rising edge will not be counted.

If the application can reliably update TMR1 before the timer input goes low, no additional action is needed. Otherwise, an adjusted update can be performed following a later Timer1 increment. This can be done by

monitoring TMR1L within the interrupt routine until it increments, and then updating the TMR1H:TMR1L register pair while the clock is low, or one-half of the period of the clock source. Assuming that Timer1 is being used as a Real-Time Clock, the clock source is a 32.768 kHz crystal oscillator; in this case, one half period of the clock is 15.25 μ s.

The Real-Time Clock application code in Example 12-1 shows a typical ISR for Timer1, as well as the optional code required if the update cannot be done reliably within the required interval.

EXAMPLE 12-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

RTCinit				
	MOVLW	80h	;	Preload TMR1 register pair
	MOVWF	TMR1H	;	for 1 second overflow
	CLRF	TMR1L		
	MOVLW	b'00001111'	;	Configure for external clock,
	MOVWF	T1CON	;	Asynchronous operation, external oscillator
	CLRF	secs	;	Initialize timekeeping registers
	CLRF	mins	;	
	MOVLW	.12		
	MOVWF	hours		
	BSF	PIE1, TMR1IE	;	Enable Timer1 interrupt
	RETURN			
RTCisr			;	Start ISR here
			;	Insert the next 4 lines of code when TMR1
			;	can not be reliably updated before clock pulse goes low
	BTFSC	TMR1L,0	;	wait for TMR1L<0> to become clear
	BRA	\$-2	;	(may already be clear)
	BTFSS	TMR1L,0	;	wait for TMR1L<0> to become set
	BRA	\$-2	;	TMR1 has just incremented
			;	If TMR1 update can be completed before clock pulse goes low
	BSF	TMR1H, 7	;	Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	;	Clear interrupt flag
	INCF	secs, F	;	Increment seconds
	MOVLW	.59	;	60 seconds elapsed?
	CPFSGT	secs		
	RETURN		;	No, done
	CLRF	secs	;	Clear seconds
	INCF	mins, F	;	Increment minutes
	MOVLW	.59	;	60 minutes elapsed?
	CPFSGT	mins		
	RETURN		;	No, done
	CLRF	mins	;	clear minutes
	INCF	hours, F	;	Increment hours
	MOVLW	.23	;	24 hours elapsed?
	CPFSGT	hours		
	RETURN	_	;	No, done
	CLRF	hours	;	Reset hours
	RETURN		;	Done

13.0 TIMER2 MODULE

The Timer2 module timer incorporates the following features:

- 8-Bit Timer and Period registers (TMR2 and PR2, respectively)
- · Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- · Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP module

The module is controlled through the T2CON register (Register 13-1), which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 13-1.

13.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options; these are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see **Section 13.2 "Timer2 Interrupt**").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-3	T2OUTPS<3:0>: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

16.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> bits contain the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 16-2:

Maximum Resolution (bits)

PWM Duty Cycle =	$(CCPR1L:CCP1CON < 5:4 >) \bullet$
	TOSC • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2. concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation.

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

If the PWM duty cycle value is longer than Note: the PWM period, the CCP1 pin will not be cleared.

16.4.3 PWM OUTPUT CONFIGURATIONS

The P1M<1:0> bits in the CCP1CON register allow one of four configurations:

- · Single Output
- · Half-Bridge Output
- · Full-Bridge Output, Forward mode
- · Full-Bridge Output, Reverse mode

8

The Single Output mode is the standard PWM mode discussed in Section 16.4 "Enhanced PWM Mode". The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 16-2 and Figure 16-3.

7

67 kHz 1

6.58

ABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz							
PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67	
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1	
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h	

10

10

10

V+ PIC18F4X2X QC FET QA FET Driver Driver P1A Load P1B FET FET Driver Driver P1C ΩD OP V-P1D

FIGURE 16-7: EXAMPLE OF FULL-BRIDGE OUTPUT MODE APPLICATION

16.4.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows user to control the forward/ reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of 4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1, 4 or 16, depending on the value of the T2CKPS<1:0> bits (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 16-8.

Note that in the Full-Bridge Output mode, the CCP1 module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 16-9 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the outputs P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices, QC and QD (see Figure 16-7), for the duration of 't'. The same phenomenon will occur to power devices, QA and QB, for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

17.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

17.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- · Data Transfer
- · A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

17.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its Idle state (Figure 17-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 17-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

NOTES:

18.1.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 18-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Rate Detect must receive a byte with the value 55h (ASCII "U", which is also the LIN bus Sync character) in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG begins counting up, using the preselected clock source on the first rising edge of RX. After eight bits on the RX pin or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGH:SPBRG register pair. Once the 5th edge is seen (this should correspond to the Stop bit), the ABDEN bit is automatically cleared.

If a rollover of the BRG occurs (an overflow from FFFFh to 0000h), the event is trapped by the ABDOVF status bit (BAUDCON<7>). It is set in hardware by BRG rollovers and can be set or cleared by the user in software. ABD mode remains active after rollover events and the ABDEN bit remains set (Figure 18-2).

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. Note that the BRG clock will be configured by the BRG16 and BRGH bits. Independent of the BRG16 bit setting, both the SPBRG and SPBRGH will be used as a 16-bit counter. This allows the user to verify that no carry occurred for 8-bit modes by checking for 00h in the SPBRGH register. Refer to Table 18-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCIF interrupt is set once the fifth rising edge on RX is detected. The value in the RCREG needs to be read to clear the RCIF interrupt. The contents of RCREG should be discarded.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Rate Detection will occur on the byte *following* the Break character.
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.

TABLE 18-4:BRG COUNTERCLOCK RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/128
1	0	Fosc/128
1	1	Fosc/32

Note: During the ABD sequence, SPBRG and SPBRGH are both used as a 16-bit counter, independent of BRG16 setting.

18.1.3.1 ABD and EUSART Transmission

Since the BRG clock is reversed during ABD acquisition, the EUSART transmitter cannot be used during ABD. This means that whenever the ABDEN bit is set, TXREG cannot be written to. Users should also ensure that ABDEN does not become set during a transmit sequence. Failing to do this may result in unpredictable EUSART operation.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	51
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	52
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	PORTA Da	ta Latch Re	egister (Rea	d and Write	to Data Lat	ch)	52
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	Register				52

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA<7:6> and their direction and latch bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits are read as '0'.

NOTES:

XORWF Exclus	ive OR	W with f
--------------	--------	----------

Synta	ax:	XORWF	f {,d {,a}}		
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Oper	ation:	(W) .XOR.	(f) \rightarrow des	t	
Statu	s Affected:	N, Z			
Enco	ding:	0001	10da	ffff	ffff
Desc	ription:	Exclusive C register 'f'. in W. If 'd' is in the regis If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enab in Indexed mode wher Section 24 Bit-Oriente Literal Offs	DR the co If 'd' is '0', s '1', the r ter 'f' (def the Access the BSR is (default). and the ex led, this in Literal Of never $f \leq S$ 2.3 "Byte d Instruces the Mode	ntents of the result is s fault). s Bank i s used to ttended i nstruction fset Add 05 (5Fh) e-Oriem ctions ir " for det	f W with ult is stored tored back s selected. o select the nstruction n operates ressing . See ted and h Indexed ails.
Word	ls:	1			
Cycle	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read register 'f'	Proce Data	ss a d	Write to estination
<u>Exan</u>	nple:	XORWF	REG, 1,	0	
	Before Instruc REG W After Instructic REG W	tion = AFh = B5h on = 1Ah = B5h			

26.4 AC (Timing) Characteristics

26.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	tters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	tters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	pecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

FIGURE 27-37: INTOSC FREQUENCY vs. VDD, TEMPERATURE (-40°C, +25°C, +85°C, +125°C)

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIM	ETERS
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

PWM (CCP Module)	
Associated Registers	146
Auto-Shutdown (CCP1 Only)	145
Duty Cycle	144
Example Frequencies/Resolutions	145
Period	144
Setup for PWM Operation	145
TMR2 to PR2 Match	144
PWM (ECCP Module)	149
CCPR1H:CCPR1L Registers	149
Direction Change in Full-Bridge	
Output Mode	154
Duty Cycle	150
Effects of a Reset	159
Enhanced PWM Auto-Shutdown	156
Example Frequencies/Resolutions	150
Full-Bridge Mode	153
Full-Bridge Output Mode Application Example	154
Half-Bridge Mode	152
Half-Bridge Output Mode Applications Example	152
Operation in Power-Managed Modes	159
Operation with Fail-Safe Clock Monitor	159
Output Configurations	150
Output Relationships (Active-High)	151
Output Relationships (Active-Low)	151
Period	149
Programmable Dead-Band Delay	156
Setup for PWM Operation	159
Start-up Considerations	158
TMR2 to PR2 Match	149

Q

Q Clock......145, 150

RAM See Data Memory	
RBIF Bit	1(
RC Oscillator	
RCIO Oscillator Mode	
RC IDLE Mode	
RC RUN Mode	
RCALL	
RCON Register	
Bit Status During Initialization	
Reader Response	4
Register File	
Register File Summary	64–
Registers	
ADCON0 (A/D Control 0)	2
ADCON1 (A/D Control 1)	2
ADCON2 (A/D Control 2)	2
BAUDCON (Baud Rate Control)	2
CCP1CON (ECCP Control,	
40/44-Pin Devices)	1
CCPxCON (CCPx Control, 28-Pin Devices)	1
CMCON (Comparator Control)	2
CONFIG1H (Configuration 1 High)	2
CONFIG2H (Configuration 2 High)	2
CONFIG2L (Configuration 2 Low)	2
CONFIG3H (Configuration 3 High)	2
CONFIG4L (Configuration 4 Low)	2
CONFIG5H (Configuration 5 High)	2
CONFIG5L (Configuration 5 Low)	2
CONFIG6H (Configuration 6 High)	2
CONFIG6L (Configuration 6 Low)	2
CONFIG7H (Configuration 7 High)	2

CVRCON (Comparator Voltage
Reference Control)239
DEVID1 (Device ID 1)257
DEVID2 (Device ID 2)
ECCP1AS (ECCP Auto-Shutdown Control) 157
EECON1 (EEPROM Control 1) 75, 84
HLVDCON (High/Low-Voltage Detect Control) 243
INTCON (Interrupt Control)
INTCON2 (Interrupt Control 2)
INTCON3 (Interrupt Control 3)
IPR1 (Peripheral Interrupt Priority 1)
IPR2 (Peripheral Interrupt Priority 2) 101
OSCCON (Oscillator Control) 30
OSCTUNE (Oscillator Tuning) 27
PIE1 (Perinheral Interrunt Enable 1) 98
PIE2 (Perinheral Interrupt Enable 2) 00
PIP1 (Peripheral Interrupt Pequest (Flag) 1) 06
PIP2 (Peripheral Interrupt Request (Flag) 2) 07
DWM1CON (DWM Dood Bond Dolov)
P VVIVI I COIN (P VVIVI Dead-Baliu Deidy)
RCON (Reset Control)
RCSTA (Receive Status and Control)
SSPCON1 (MSSP Control 1, I ² C Mode) 1/2
SSPCON1 (MSSP Control 1, SPI Mode) 163
SSPCON2 (MSSP Control 2, I ² C Mode) 173
SSPSTAT (MSSP Status, I ² C Mode) 171
SSPSTAT (MSSP Status, SPI Mode) 162
STATUS
STKPTR (Stack Pointer)55
T0CON (Timer0 Control) 123
T1CON (Timer1 Control) 127
T2CON (Timer2 Control) 133
T3CON (Timer3 Control) 135
TRISE (PORTE/PSP Control) 118
TRISE (PORTE/PSP Control)
TRISE (PORTE/PSP Control)
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299Return Address Stack54
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299Return Address Stack54Return Stack Pointer (STKPTR)55
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299Return Address Stack54Retvin Start, Ointer (STKPTR)395
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299Return Address Stack54Return Stack Pointer (STKPTR)395Rel CF299
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299Return Address Stack54Return Stack Pointer (STKPTR)395RLCF299RUCF300
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299Return Address Stack54Return Stack Pointer (STKPTR)355Revision History395RLCF300RECF300
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299Return Address Stack54Return Stack Pointer (STKPTR)55Revision History395RLCF209RLNCF300RRCF301
TRISE (PORTE/PSP Control)118TXSTA (Transmit Status and Control)202WDTCON (Watchdog Timer Control)259RESET297Reset State of Registers48Resets41, 249Brown-out Reset (BOR)249Oscillator Start-up Timer (OST)249Power-on Reset (POR)249Power-up Timer (PWRT)249RETFIE298RETLW298RETURN299Return Address Stack54Return Stack Pointer (STKPTR)55Revision History395RLCF209RLNCF300RRNCF301
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETLW 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 299 RLNCF 300 RRNCF 301 S S
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETLW 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 209 RLNCF 300 RRNCF 301 S SCK
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETLW 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 300 RRCF 300 RRCF 301 S SCK SCK 161
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETLW 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 300 RRCF 300 RRNCF 301 S SCK SDI 161
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 209 RLCF 300 RRCF 300 RRNCF 301 S SCK 161 SD 161 SD 161
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 299 RLCF 300 RRCF 300 RRNCF 301 S SCK SCK 161 SD 161 SE 161 SE 161 SE 38 SEC RUN Mode 34
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 209 RLCF 300 RRCF 300 RRCF 300 RRCF 301 S 55 SCK 161 SD 161 SD 161 SD 161 SE 38 SEC_RUN Mode 34 Serial Clock, SCK 161
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 299 RLNCF 300 RRCF 300 RRCF 301 S SCK SCK 161 SD 161 SD 161 SE 301 S 302 SCK 161 SE 301 Serial Clock, SCK 161 Serial Clock, SCK 161
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 299 RLNCF 300 RRCF 300 RRCF 300 RRCF 301 S 50 SCK 161 SD 161 SD 161 SE 38 SEC_RUN Mode 34 Serial Clock, SCK 161 Serial Data In (SDI) 161
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 299 RLNCF 300 RRCF 300 RRCF 300 RRCF 301 S 55 SCK 161 SD 161 SD 161 SE 38 SEC_RUN Mode 34 Serial Data In (SDI) 161 Serial Data Out (SDO) 161 Serial Data Out (SDO) 161 Serial Derinberal Interface. See SPI Mode
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 299 RLNCF 300 RRCF 300 RRCF 300 RRCF 301 S 50 SCK 161 SDI 161 SDO 161 SEC_RUN Mode 34 Serial Clock, SCK 161 Serial Data In (SDI) 161 Serial Data Out (SDO) 161 Serial Peripheral Interface. See SPI Mode. 301
TRISE (PORTE/PSP Control) 118 TXSTA (Transmit Status and Control) 202 WDTCON (Watchdog Timer Control) 259 RESET 297 Reset State of Registers 48 Resets 41, 249 Brown-out Reset (BOR) 249 Oscillator Start-up Timer (OST) 249 Power-on Reset (POR) 249 Power-up Timer (PWRT) 249 RETFIE 298 RETLW 298 RETURN 299 Return Address Stack 54 Return Stack Pointer (STKPTR) 55 Revision History 395 RLCF 299 RLNCF 300 RRCF 300 RRCF 300 RRCF 300 RCF 301 S 55 SCK 161 SDI 161 SEC_IDLE Mode 38 SEC_RUN Mode 34 Serial Clock, SCK 161 Serial Data In (SDI) 161 Serial Peripheral Interface. See SPI Mode. <td< td=""></td<>