

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2420-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number			Pin	Buffer	Description
	PDIP	QFN	TQFP	Туре	Туре	Description
MCLR/VPP/RE3	1	18	18			Master Clear (input) or programming voltage (input).
MCLR				I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP				Р		Programming voltage input.
RE3				Ι	ST	Digital input.
OSC1/CLKI/RA7	13	32	30			Oscillator crystal or external clock input.
OSC1				I	ST	Oscillator crystal input or external clock source input. ST buffer when configured in RC mode;
						analog otherwise.
CLKI				Ι	CMOS	External clock source input. Always associated with
						pin function, OSC1. (See related OSC1/CLKI,
RA7				I/O	TTL	OSC2/CLKO pins.) General purpose I/O pin.
OSC2/CLKO/RA6	14	33	31			Oscillator crystal or clock output.
OSC2		00	01	0		Oscillator crystal output. Connects to crystal
						or resonator in Crystal Oscillator mode.
CLKO				0		In RC mode, OSC2 pin outputs CLKO which
						has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6				I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL co	ompatibl	e input			. (CMOS = CMOS compatible input or output
	tt Trigge	r input v	with CM	OS lev		= Input
O = Output	t				F	P = Power

TABLE 1-3: PIC18F4420/4520 PINOUT I/O DESCRIPTIONS

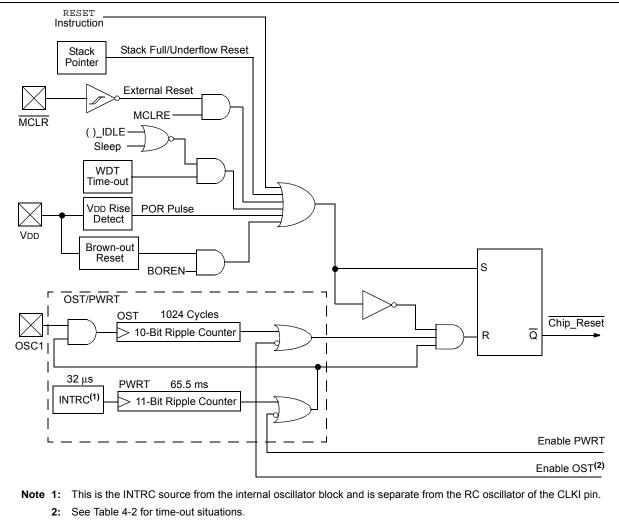
Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

4.0 RESET

The PIC18F2420/2520/4420/4520 devices differentiate between various kinds of Reset:

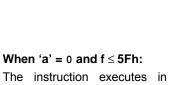
- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset


This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.1.2.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 23.2 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.6 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.4 "Brown-out Reset (BOR)".

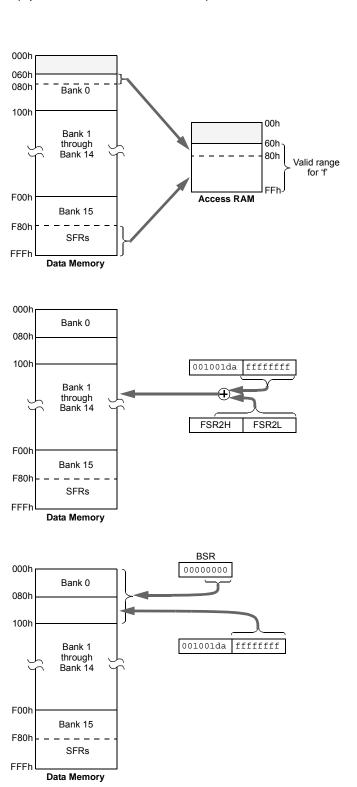

FIGURE 5-9: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When 'a' = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations 060h to 07Fh (Bank 0) and F80h to FFFh (Bank 15) of data memory.

Locations below 60h are not available in this addressing mode.



Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is now: ADDWF [k], dwhere 'k' is the same as 'f'.

When 'a' = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

5.5.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

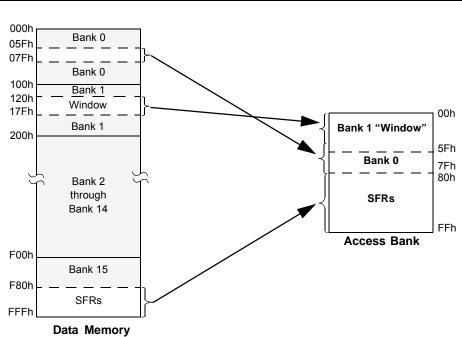
The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom half of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 5.3.2 "Access Bank**"). An example of Access Bank remapping in this addressing mode is shown in Figure 5-10. Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before.

5.6 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 24.2 "Extended Instruction Set"**.

FIGURE 5-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

Example Situation:


ADDWF f, d, a FSR2H:FSR2L = 120h

Locations in the region from the FSR2 Pointer (120h) to the pointer plus 05Fh (17Fh) are mapped to the bottom of the Access RAM (000h-05Fh).

Locations in Bank 0 from 060h to 07Fh are mapped, as usual, to the middle half of the Access Bank.

Special Function Registers at F80h through FFFh are mapped to 80h through FFh, as usual.

Bank 0 addresses below 5Fh can still be addressed by using the BSR.

6.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 6-1. These operations on the TBLPTR only affect the low-order 21 bits.

6.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the five LSbs of the Table Pointer register (TBLPTR<4:0>) determine which of the 32 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 16 MSbs of the TBLPTR (TBLPTR<21:6>) determine which program memory block of 32 bytes is written to. For more detail, see **Section 6.5 "Writing to Flash Program Memory"**.

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

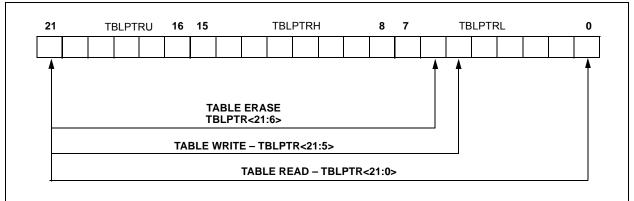

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 6-3:

TABLE POINTER BOUNDARIES BASED ON OPERATION

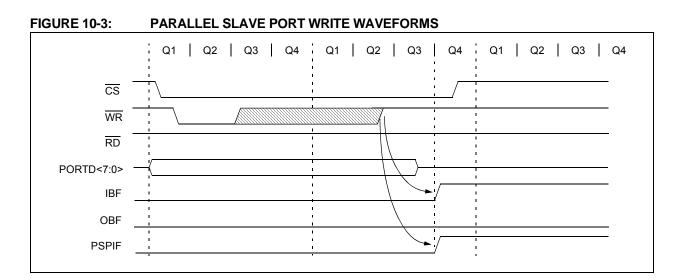
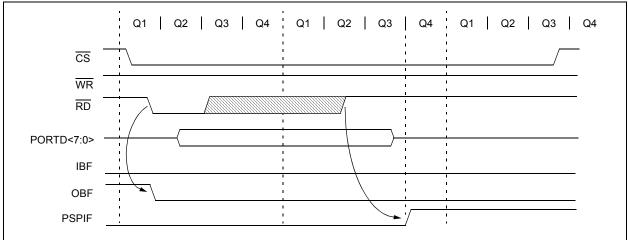


TABLE 10-7:	PORTD I/O SUMMARY											
Pin	Function	TRIS Setting	I/O	l/O Type	Description							
RD0/PSP0	RD0	0	0	DIG	LATD<0> data output.							
		1	Ι	ST	PORTD<0> data input.							
	PSP0	x	0	DIG	PSP read data output (LATD<0>); takes priority over port data.							
		x	Ι	TTL	PSP write data input.							
RD1/PSP1	RD1	0	0	DIG	LATD<1> data output.							
		1	-	ST	PORTD<1> data input.							
	PSP1	x	0	DIG	PSP read data output (LATD<1>); takes priority over port data.							
		x	-	TTL	PSP write data input.							
RD2/PSP2	RD2	0	0	DIG	LATD<2> data output.							
		1	I	ST	PORTD<2> data input.							
	PSP2	x	0	DIG	PSP read data output (LATD<2>); takes priority over port data.							
		x	Ι	TTL	PSP write data input.							
RD3/PSP3	RD3	0	0	DIG	LATD<3> data output.							
		1	Ι	ST	PORTD<3> data input.							
	PSP3	x	0	DIG	PSP read data output (LATD<3>); takes priority over port data.							
		x	I	TTL	PSP write data input.							
RD4/PSP4	RD4	0	0	DIG	LATD<4> data output.							
		1	Ι	ST	PORTD<4> data input.							
	PSP4	x	0	DIG	PSP read data output (LATD<4>); takes priority over port data.							
		x	-	TTL	PSP write data input.							
RD5/PSP5/P1B	RD5	0	0	DIG	LATD<5> data output.							
		1	I	ST	PORTD<5> data input.							
	PSP5	x	0	DIG	PSP read data output (LATD<5>); takes priority over port data.							
		x	Ι	TTL	PSP write data input.							
	P1B	0	0	DIG	ECCP1 Enhanced PWM output, channel B; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.							
RD6/PSP6/P1C	RD6	0	0	DIG	LATD<6> data output.							
		1	Ι	ST	PORTD<6> data input.							
	PSP6	x	0	DIG	PSP read data output (LATD<6>); takes priority over port data.							
		x	-	TTL	PSP write data input.							
	P1C	0	0	DIG	ECCP1 Enhanced PWM output, channel C; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.							
RD7/PSP7/P1D	RD7	0	0	DIG	LATD<7> data output.							
		1	-	ST	PORTD<7> data input.							
	PSP7	x	0	DIG	PSP read data output (LATD<7>); takes priority over port data.							
		x	I	TTL	PSP write data input.							
	P1D	0	0	DIG	ECCP1 Enhanced PWM output, channel D; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.							


TABLE 10-7:	PORTD I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

PIC18F2420/2520/4420/4520

FIGURE 10-4: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 10-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	52
LATD	PORTD Da	ita Latch Reg	jister (Read	and Write to	Data Latch)			52
TRISD	PORTD Da	ta Direction I	Register						52
PORTE	—	—	—	_	RE3	RE2	RE1	RE0	52
LATE	—	_	_	_	_	LATE Data	Latch Regis	ster	52
TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	52
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IF	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	51

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page					
TMR0L	L Timer0 Register Low Byte													
TMR0H	Timer0 Reg	ister High By	/te						50					
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49					
TOCON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	50					
TRISA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52					

 TABLE 11-1:
 REGISTERS ASSOCIATED WITH TIMER0

Legend: Shaded cells are not used by Timer0.

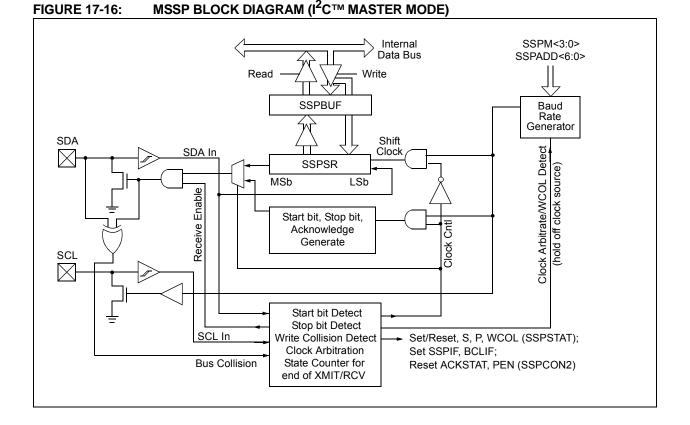
Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt, if enabled):

- Start condition
- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmit
- Repeated Start

EUSART ASYNCHRONOUS 18.2.2 RECEIVER

The receiver block diagram is shown in Figure 18-6. The data is received on the RX pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

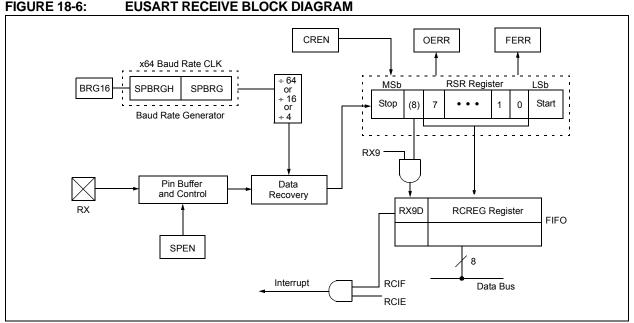

- Initialize the SPBRGH:SPBRG registers for the 1. appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCIE.
- If 9-bit reception is desired, set bit, RX9. 4
- 5. Enable the reception by setting bit, CREN.
- 6. Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- 7. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-6:

SETTING UP 9-BIT MODE WITH 18.2.3 ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH:SPBRG registers for the 1. appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- If interrupts are required, set the RCEN bit and 3. select the desired priority level with the RCIP bit.
- Set the RX9 bit to enable 9-bit reception. 4.
- 5. Set the ADDEN bit to enable address detect.
- Enable reception by setting the CREN bit. 6.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- Read the RCSTA register to determine if any 8. error occurred during reception, as well as read bit 9 of data (if applicable).
- Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

18.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

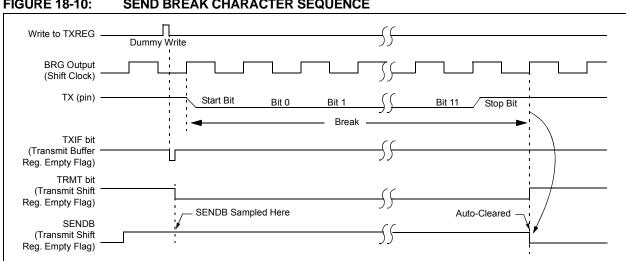
The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 18-10 for the timing of the Break character sequence.

18.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

- Configure the EUSART for the desired mode. 1.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- Write '55h' to TXREG to load the Sync character 4. into the transmit FIFO buffer.
- After the Break has been sent, the SENDB bit is 5. reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.


18.2.6 **RECEIVING A BREAK CHARACTER**

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in Section 18.2.4 "Auto-Wake-up on Sync Break Character". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXIF interrupt is observed.

FIGURE 18-10: SEND BREAK CHARACTER SEQUENCE

18.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTA<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to configure the TX and RX pins to CK (clock) and DT (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CK line. Clock polarity is selected with the TXCKP bit (BAUDCON<4>); setting TXCKP sets the Idle state on CK as high, while clearing the bit sets the Idle state as low. This option is provided to support Microwire devices with this module.

18.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION

The EUSART transmitter block diagram is shown in Figure 18-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available).

Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG is empty and the TXIF flag bit (PIR1<4>) is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF is set regardless of the state of enable bit, TXIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREG register.

While flag bit, TXIF, indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

	Q1Q2Q	23Q4 Q1Q2	Q3Q4 Q1Q2	Q3Q4 Q1Q2	Q3Q4Q1Q	2 Q3 Q4	Q3Q4 C	1Q2Q3Q4	Q1Q2Q30	24 Q1 Q2Q3Q4	Q1Q2Q3Q4	Q1 Q2 Q3 Q4	Q1Q2Q3	Q4
RC7/RX/DT			bit 0	bit 1		2	->- <u>+</u>	bit 7	bit 0 X	bit 1 X	<u> </u>		bit 7	
RC6/TX/CK ((TXCKP = 0)	; <u> </u>						;				<u>-</u>	<u> </u>		
RC6/TX/CK (TXCKP = 1)					╶┊┚	<u></u>	-Ļ			ļ	Ļ.			
Write to TXREG Reg		Write W	ord 1	Write Wor	d 2		1 1 1		1 1 1	<u> </u> 	1 1 1	-55	1 1 1	-'
TXIF bit (Interrupt Fla	g)	 			<u>∼¦</u>				:ſ		 	<u></u>	; ;	_; ;
TRMT bit		1	1 1 1						, 1 1 1	 	1 1 1	}}	ļ	
TXEN bit	<u>'1'</u>	1 1 1	1 1 1			<u>{</u> }			1 1	• •	1 1 1	<u>}</u>	۱ ، ۱	1'
Note: Syn	c Maste	r mode, S	PBRG = 0,	continuous	transmis	sion of two	8-bit woi	rds.						

FIGURE 18-11: SYNCHRONOUS TRANSMISSION

19.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If the ACQT<2:0> bits are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

19.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert as analog inputs. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit, in Configuration Register 3H, configures PORTB pins to reset as analog or digital pins by controlling how the PCFG bits in ADCON1 are reset.

REGISTER 23-4: CON	NFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)
--------------------	--

R/P-1	U-0	U-0	U-0	U-0	R/P-0	R/P-1	R/P-1
MCLRE	—	—	_	_	LPT1OSC	PBADEN	CCP2MX
bit 7	•						bit 0
Legend:							
R = Readable b	bit	P = Programm	nable bit	U = Unimpler	mented bit, read	as '0'	
-n = Value whe	n device is unp	programmed		u = Unchang	ed from progran	nmed state	
bit 7	MCLRE: MCL	R Pin Enable	bit				
	$1 = \overline{MCLR}$ pin	enabled; RE3	input pin disa	bled			
	0 = RE3 input	pin enabled; N	ICLR disable	d			
bit 6-3	Unimplement	ted: Read as '	o'				
bit 2	LPT1OSC: Lo	ow-Power Time	er1 Oscillator E	Enable bit			
		onfigured for lov					
	0 = Timer1 co	onfigured for hig	gher power op	eration			
bit 1	/	RTB A/D Enat					
	•				B<4:0> pin confi	•	
		•	•	• •	annels on Rese	t	
h # 0		1:0> pins are co	Singuleu as u		esei		
bit 0	CCP2MX: CC			504			
		ut/output is mu					
	$0 = CCP2 \ln p$	ut/output is mu	inplexed with	RDJ			

REGISTER 23-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	R/P-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG	XINST	—	_	_	LVP	_	STVREN
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is	unprogrammed	u = Unchanged from programmed state

DEBUG: Background Debugger Enable bit
 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug
XINST: Extended Instruction Set Enable bit
 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
Unimplemented: Read as '0'
LVP: Single-Supply ICSP™ Enable bit 1 = Single-Supply ICSP enabled 0 = Single-Supply ICSP disabled
Unimplemented: Read as '0'
STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset

PIC18F2420/2520/4420/4520

RET	URN	Return fro	om Subrouti	ne	RL	CF	Rotate Le	ft f through	Carry
Synta	ax:	RETURN {s}		Syn	tax:	RLCF f {,d {,a}}			
Oper	ands:	s ∈ [0,1]			Ope	rands:	$0 \leq f \leq 255$		
Oper	ation:	$(TOS) \rightarrow PO$	С;				d ∈ [0,1]		
		$(BSRS) \rightarrow I$	\rightarrow STATUS, BSR, CLATH are un	changed	·	ration: us Affected:	$a \in [0,1]$ (f <n>) → de (f<7>) → C (C) → dest C, N, Z</n>	3	
Statu	s Affected:	None		Ū				0.1.1 5.5	
Enco	dina:	0000	0000 000	001s		oding: cription:	0011	01da ffi	
Desc	ription:	popped and is loaded in 's'= 1, the c registers, W are loaded i registers, W	a subroutine. T I the top of the to the program ontents of the /S, STATUSS into their corre /, STATUS and pdate of these ault).	stack (TOS) counter. If shadow and BSRS, sponding d BSR. If	Des		one bit to th flag. If 'd' is W. If 'd' is ' in register ' If 'a' is 'o', t selected. If select the C If 'a' is 'o' a	he left through ('0', the result 1', the result is f' (default). he Access Ba (a' is '1', the B GPR bank (de	the Carry is placed in s stored back onk is SR is used to fault). ed instruction
Word	ls:	1					•	Indexed Liter	
Cycle	es:	2					-	mode whene See Section .	
QC	ycle Activity:						"Byte-Orie	nted and Bit-	Oriented
	Q1	Q2	Q3	Q4			Instruction Mode" for o		Literal Offset
	Decode	No operation	Process Data	POP PC from stack				- registe	er f
	No operation	No operation	No operation	No operation	Wor	ds:	1		
					Сус	les:	1		
_					Q(Cycle Activity:			
<u>Exan</u>		RETURN				Q1	Q2	Q3	Q4
	After Instruction PC = To					Decode	Read register 'f'	Process Data	Write to destination
					<u>Exa</u>	mple:	RLCF	REG, 0,	0
						Before Instru REG C	ction = 1110 0 = 0	110	
						After Instructi REG W C	ion = 1110 0 = 1100 1 = 1		

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

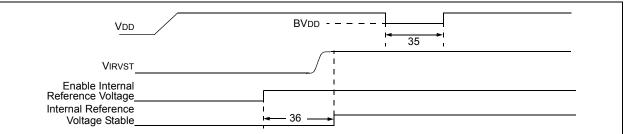
PIC18LF2420/2520/4420/4520 (Industrial) PIC18F2420/2520/4420/4520 (Industrial, Extended) Param No. Device		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrialStandard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for extended								
										Тур
			Supply Current (IDD) ⁽²⁾							
	PIC18LF2X2X/4X20	250	350	μA	-40°C					
		260	350	μΑ	+25°C	VDD = 2.0V				
		250	350	μΑ	+85°C]				
	PIC18LF2X2X/4X20	550	650	μΑ	-40°C					
		480	640	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz			
		460	600	μΑ	+85°C		(PRI_RUN , EC oscillator)			
	All devices	1.2	1.5	mA	-40°C					
		1.1	1.4	mA	+25°C	VDD = 5.0V				
		1.0	1.3	mA	+85°C	י0.0 – 5.00				
	Extended devices only	1.0	3.0	mA	+125°C					
	PIC18LF2X2X/4X20	0.72	1.0	mA	-40°C					
		0.74	1.0	mA	+25°C	VDD = 2.0V				
		0.74	1.0	mA	+85°C					
	PIC18LF2X2X/4X20	1.3	1.8	mA	-40°C					
		1.3	1.8	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI_RUN ,			
		1.3	1.8	mA	+85°C		EC oscillator)			
	All devices	2.7	4.0	mA	-40°C					
		2.6	4.0	mA	+25°C	VDD = 5.0V				
		2.5	4.0	mA	+85°C	י0.0 – 5.00				
	Extended devices only	2.6	5.0	mA	+125°C					
	Extended devices only	8.4	13	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz			
		11	16	mA	+125°C	VDD = 5.0V	(PRI_RUN , EC oscillator)			
	All devices	15	20	mA	-40°C					
		15	20	mA	+25°C	VDD = 4.2V				
		15	20	mA	+85°C		Fosc = 40 MHz			
	All devices	20	25	mA	-40°C		(PRI_RUN , EC oscillator)			
		20	25	mA	+25°C	VDD = 5.0V				
		20	25	mA	+85°C					

Legend: Shading of rows is to assist in readability of the table.


Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

FIGURE 26-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

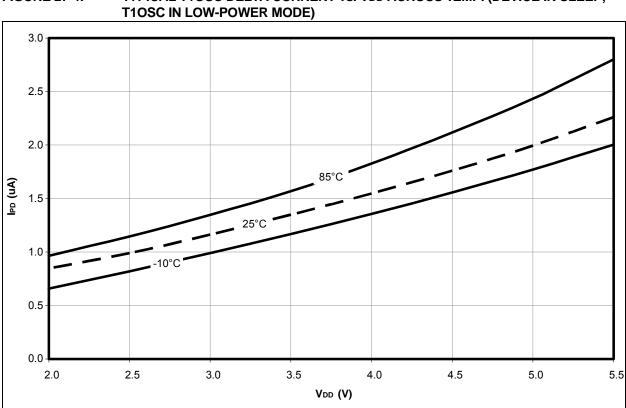
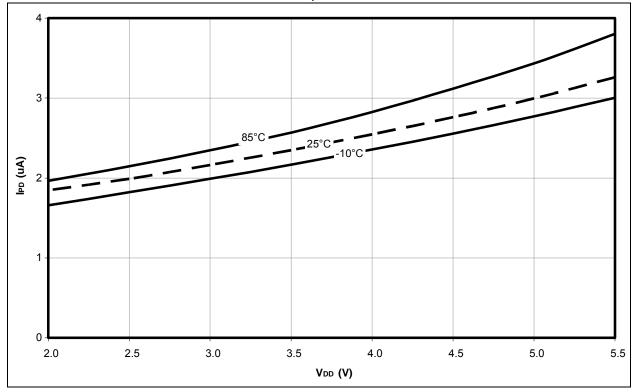
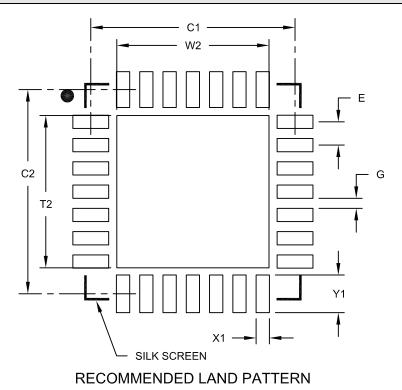

FIGURE 26-9: BROWN-OUT RESET TIMING

TABLE 26-10:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS


Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2		_	μs	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.4	4.1	4.71	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	55.6	65.5	75.4	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	_	μs	
35	TBOR	Brown-out Reset Pulse Width	200	_	_	μs	$VDD \le BVDD$ (see D005)
36	TIRVST	Time for Internal Reference Voltage to become Stable		20	50	μs	
37	Tlvd	High/Low-Voltage Detect Pulse Width	200	_	_	μs	$VDD \leq VLVD$
38	TCSD	CPU Start-up Time		10	_	μs	
39	TIOBST	Time for INTOSC to Stabilize	_	1	_	μs	

© 2008 Microchip Technology Inc.

FIGURE 27-4: TYPICAL TIOSC DELTA CURRENT vs. VDD ACROSS TEMP. (DEVICE IN SLEEP,


MAXIMUM T1OSC DELTA CURRENT vs. VDD ACROSS TEMP. (DEVICE IN SLEEP, **FIGURE 27-5: TIOSC IN LOW-POWER MODE)**

© 2008 Microchip Technology Inc.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch E		0.65 BSC			
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

PIC18F2420/2520/4420/4520

CLKO and I/O Clock Synchronization Clock/Instruction Cycle	181
EUSART Synchronous Receive	
(Master/Slave)	359
EUSART Synchronous Transmission	
(Master/Slave)	358
Example SPI Master Mode (CKE = 0)	349
Example SPI Master Mode (CKE = 1)	
Example SPI Slave Mode (CKE = 0)	
Example SPI Slave Mode (CKE = 1)	
External Clock (All Modes Except PLL)	
Fail-Safe Clock Monitor (FSCM)	
First Start Bit Timing	189
Full-Bridge PWM Output	153
Half-Bridge PWM Output	
High/Low-Voltage Detect Characteristics	339
High-Voltage Detect Operation (VDIRMAG = 1)	
I ² Č Bus Data	354
I ² C Bus Start/Stop Bits	354
I ² C Master Mode (7 or 10-Bit Transmission)	
I ² C Master Mode (7-Bit Reception)	
I ² C Slave Mode (10-Bit Reception, SEN = 0)	
I^2C Slave Mode (10-Bit Reception, SEN = 1)	
I ² C Slave Mode (10-Bit Transmission)	
I^2C Slave Mode (7-Bit Reception, SEN = 0)	
I^2C Slave Mode (7-Bit Reception, SEN = 1)	
I ² C Slave Mode (7-Bit Transmission)	
I ² C Slave Mode General Call Address	
Sequence (7 or 10-Bit Addressing Mode)	184
I ² C Stop Condition Receive or Transmit Mode	
Low-Voltage Detect Operation (VDIRMAG = 0)	
Master SSP I ² C Bus Data	356
Master SSP I ² C Bus Start/Stop Bits	356
Parallel Slave Port (PIC18F4420/4520)	
Parallel Slave Port (PSP) Read	
Parallel Slave Port (PSP) Write	
PWM Auto-Shutdown (PRSEN = 0,	121
Auto-Restart Disabled)	150
PWM Auto-Shutdown (PRSEN = 1,	150
Auto-Restart Enabled)	150
PWM Direction Change	
PWM Direction Change at Near	155
100% Duty Cycle	155
PWM Output	
•	
Repeated Start Condition Reset, Watchdog Timer, Oscillator Start-up	190
Timer, Power-up Timer	
	245
Send Break Character Sequence	216
Send Break Character Sequence Slave Synchronization	216
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD,	216 167
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)	216 167 47
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode)	216 167 47 166
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0)	216 167 47 166 168
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1)	216 167 47 166 168 168
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN)	216 167 47 166 168 168 219
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission	216 167 166 168 168 219 217
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN)	216 167 166 168 168 219 217
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled	216 47 166 168 168 219 217 218
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)	216 47 166 168 168 219 217 218
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up	216 167 47 166 168 219 217 218 218
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)	216 167 47 166 168 219 217 218 218
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up	216 167 167 166 168 219 217 218 47 47

Time-out Sequence on Power-up
(MCLR Tied to VDD, VDD Rise < TPWRT)
Timer0 and Timer1 External Clock
Transition for Entry to Idle Mode
Transition for Entry to SEC_RUN Mode
Transition for Entry to Sleep Mode
Transition for Two-Speed Start-up
(INTOSC to HSPLL)
Transition for Wake from Idle to
Run Mode
Transition for Wake from Sleep (HSPLL)
Transition from RC_RUN Mode to
PRI_RUN Mode
Transition from SEC_RUN Mode to
PRI_RUN Mode (HSPLL)
Transition to RC_RUN Mode
Timing Diagrams and Specifications
A/D Conversion Requirements
Capture/Compare/PWM (CCP)
Requirements
CLKO and I/O Requirements
EUSART Synchronous Receive
Requirements
EUSART Synchronous Transmission
Requirements
Example SPI Mode Requirements
(Master Mode, CKE = 0)
Example SPI Mode Requirements
(Master Mode, CKE = 1)
Example SPI Mode Requirements
(Slave Mode, CKE = 0)
Example SPI Mode Requirements
(Slave Mode, CKE = 1)
External Clock Requirements
I ² C Bus Data Requirements (Slave Mode)
Master SSP I ² C Bus Data
Requirements
Master SSP I ² C Bus Start/Stop Bits
Requirements
Parallel Slave Port Requirements
(PIC18F4420/4520)
PLL Clock
Reset, Watchdog Timer, Oscillator Start-up
Timer, Power-up Timer and Brown-out
Reset Requirements
Timer0 and Timer1 External Clock
Requirements
Top-of-Stack Access
TRISE Register
PSPMODE Bit114
TSTFSZ
Two-Speed Start-up
Two-Word Instructions
Example Cases
TXSTA Register
BRGH Bit
עטר דער דער דער דער דער דער דער דער דער דע
V
Voltage Reference Specifications