Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 25MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, HLVD, POR, PWM, WDT | | Number of I/O | 25 | | Program Memory Size | 32KB (16K x 16) | | Program Memory Type | FLASH | | EEPROM Size | 256 x 8 | | RAM Size | 1.5K x 8 | | Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V | | Data Converters | A/D 10x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SOIC (0.295", 7.50mm Width) | | Supplier Device Package | 28-SOIC | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic18f2520-e-so | #### Pin Diagrams (Cont.'d) - RC2/CCP1/P1A - RC1/T10SI/CCP2⁽¹⁾ NC 44-pin TQFP RC6/TX/CK RC5/SDO RC4/SDI/SDA RD3/PSP3 RD2/PSP2 RD1/PSP1 RD0/PSP0 NC RC7/RX/DT 32 RC0/T10SO/T13CKI RD4/PSP4 RD5/PSP5/P1B -□ 31 OSC2/CLKO/RA6 OSC1/CLKI/RA7 RD6/PSP6/P1C 29 PIC18F4420 Vss RD7/PSP7/P1D 28 VDD Vss PIC18F4520 27 RE2/CS/AN7 V_{DD} 26 RE1/WR/AN6 RB0/INT0/FLT0/AN12 **>** □□□ RE0/RD/AN5 RB1/INT1/AN10 **→**□□ RA5/AN4/SS/HLVDIN/C2OUT RB2/INT2/AN8 →□□ 10 RB3/AN9/CCP2⁽¹⁾ NC RB4/KB10/AN11 + RB5/KB11/PGM + RB6/KB12/PGC + RB7/KB13/PGD + RB7/KB13/PGD -MCLR/VPP/RE3 -RA0/AN0 -RA1/AN1 -RA2/AN2/VREF -/CVREF + RC4/SDI/SDA RC3/SCK/SC RD3/PSP3 RD2/PSP2 RD1/PSP1 RD0/PSP0 RC5/SDO 44-pin QFN OSC2/CLKO/RA6 RC7/RX/DT RD4/PSP4 32 OSC1/CLKI/RA7 2 RD5/PSP5/P1B 31 Vss 3 RD6/PSP6/P1C 30 Vss RD7/PSP7/P1D PIC18F4420 29 Vdd 5 Vss 28 V_{DD} 6 PIC18F4520 27 RE2/CS/AN7 V_{DD} 26 RE1/WR/AN6 8 RB0/INT0/FLT0/AN12 RE0/RD/AN5 25 24 23 9 RB1/INT1/AN10 RA5/AN4/SS/HLVDIN/C2OUT 10 RA4/T0CKI/C1OUT RB2/INT2/AN8 RB4/KBI0/AN11 - RB5/KBI1/PGM - RB6/KBI2/PGC - RB7/KBI3/PGD - MCLR/PP/KE3 - MCLR/PP/KE3 - RA0/AN1 - RA1/AN1 -RB3/AN9/CCP2(1) RA2/AN2/VREF-/CVREF RA3/AN3/VREF+ Note 1: RB3 is the alternate pin for CCP2 multiplexing. TABLE 1-2: PIC18F2420/2520 PINOUT I/O DESCRIPTIONS (CONTINUED) | | Pin Nu | ımber | Pin | Buffer | | |---|----------------|-------|-------------------|--------------------|--| | Pin Name | SPDIP,
SOIC | QFN | Туре | | Description | | | | | | | PORTC is a bidirectional I/O port. | | RC0/T10SO/T13CKI
RC0
T10SO
T13CKI | 11 | 8 | I/O
O
I | ST
—
ST | Digital I/O.
Timer1 oscillator output.
Timer1/Timer3 external clock input. | | RC1/T1OSI/CCP2
RC1
T1OSI
CCP2 ⁽²⁾ | 12 | 9 | I/O
I
I/O | ST
Analog
ST | Digital I/O.
Timer1 oscillator input.
Capture 2 input/Compare 2 output/PWM2 output. | | RC2/CCP1
RC2
CCP1 | 13 | 10 | I/O
I/O | ST
ST | Digital I/O.
Capture 1 input/Compare 1 output/PWM1 output. | | RC3/SCK/SCL
RC3
SCK
SCL | 14 | 11 | I/O
I/O
I/O | ST
ST
ST | Digital I/O.
Synchronous serial clock input/output for SPI mode.
Synchronous serial clock input/output for I ² C™ mode. | | RC4/SDI/SDA
RC4
SDI
SDA | 15 | 12 | I/O
I
I/O | ST
ST
ST | Digital I/O.
SPI data in.
I ² C data I/O. | | RC5/SDO
RC5
SDO | 16 | 13 | I/O
O | ST
— | Digital I/O.
SPI data out. | | RC6/TX/CK
RC6
TX
CK | 17 | 14 | I/O
O
I/O | ST
—
ST | Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT). | | RC7/RX/DT
RC7
RX
DT | 18 | 15 | I/O
I
I/O | ST
ST
ST | Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK). | | RE3 | | _ | _ | _ | See MCLR/VPP/RE3 pin. | | Vss | 8, 19 | 5, 16 | Р | _ | Ground reference for logic and I/O pins. | | VDD | 20 | 17 | Р | _ | Positive supply for logic and I/O pins. | Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels O = Output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set. 2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared. TABLE 1-3: PIC18F4420/4520 PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name | Piı | n Numb | er | Pin | Buffer | Description | |--|------|--------|------|---------------------------------------|-------------------------------------|--| | Pili Name | PDIP | QFN | TQFP | Туре | Туре | Description | | RA0/AN0
RA0
AN0 | 2 | 19 | 19 | I/O
I | TTL
Analog | PORTA is a bidirectional I/O port. Digital I/O. Analog input 0. | | RA1/AN1
RA1
AN1 | 3 | 20 | 20 | I/O
I | TTL
Analog | Digital I/O.
Analog input 1. | | RA2/AN2/VREF-/CVREF
RA2
AN2
VREF-
CVREF | 4 | 21 | 21 | I/O
I
I
O | TTL
Analog
Analog
Analog | Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output. | | RA3/AN3/VREF+
RA3
AN3
VREF+ | 5 | 22 | 22 | I/O
I
I | TTL
Analog
Analog | Digital I/O.
Analog input 3.
A/D reference voltage (high) input. | | RA4/T0CKI/C1OUT
RA4
T0CKI
C1OUT | 6 | 23 | 23 | I/O
I
O | ST
ST
— | Digital I/O.
Timer0 external clock input.
Comparator 1 output. | | RA5/AN4/SS/HLVDIN/
C2OUT
RA5
AN4
SS
HLVDIN
C2OUT | 7 | 24 | 24 | I/O

 | TTL
Analog
TTL
Analog
— | Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output. | | RA6 | | | | | | See the OSC2/CLKO/RA6 pin. | | RA7 | | | | | | See the OSC1/CLKI/RA7 pin. | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set. 2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared. ## 7.6 Operation During Code-Protect Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled. The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to **Section 23.0** "**Special Features of the CPU**" for additional information. ## 7.7 Protection Against Spurious Write There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33). The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction. ## 7.8 Using the Data EEPROM The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory. A simple data EEPROM refresh routine is shown in Example 7-3. **Note:** If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124. ### **EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE** ``` CLRF EEADR ; Start at address 0 BCF EECON1, CFGS ; Set for memory ; Set for Data EEPROM EECON1, EEPGD BCF ; Disable interrupts BCF INTCON, GIE BSF EECON1, WREN ; Enable writes ; Loop to refresh array gool EECON1, RD ; Read current address BSF MOVLW 55h MOVWF EECON2 ; Write 55h MOVLW 0AAh ; MOVWF EECON2 ; Write OAAh BSF EECON1, WR BTFSC EECON1, WR ; Set WR bit to begin write ; Wait for write to complete BRA $-2 INCFSZ EEADR, F ; Increment address BRA LOOP ; Not zero, do it again BCF EECON1, WREN ; Disable writes BSF INTCON, GIE ; Enable interrupts ``` NOTES: #### 12.1 **Timer1 Operation** Timer1 can operate in one of these modes: - Timer - · Synchronous Counter - · Asynchronous Counter The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>). When TMR1CS is cleared (= 0), Timer1 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer1 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled. When Timer1 is enabled, the RC1/T1OSI and RC0/ T1OSO/T13CKI pins become inputs. This means the values of TRISC<1:0> are ignored and the pins are read as '0'. #### **FIGURE 12-1: TIMER1 BLOCK DIAGRAM** #### **FIGURE 12-2:** TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE) ## REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER 2 (I²C™ MODE) | R/W-0 |-------|---------|----------------------|----------------------|---------------------
--------------------|---------------------|--------------------| | GCEN | ACKSTAT | ACKDT ⁽²⁾ | ACKEN ⁽¹⁾ | RCEN ⁽¹⁾ | PEN ⁽¹⁾ | RSEN ⁽¹⁾ | SEN ⁽¹⁾ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 GCEN: General Call Enable bit (Slave mode only) 1 = Enables interrupt when a general call address (0000h) is received in the SSPSR 0 = General call address disabled. bit 6 ACKSTAT: Acknowledge Status bit (Master Transmit mode only) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave bit 5 ACKDT: Acknowledge Data bit (Master Receive mode only)(2) 1 = Not Acknowledge 0 = Acknowledge bit 4 **ACKEN:** Acknowledge Sequence Enable bit (Master Receive mode only)⁽¹⁾ 1 = Initiates Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence Idle bit 3 RCEN: Receive Enable bit (Master mode only)⁽¹⁾ 1 = Enables Receive mode for I²C 0 = Receive Idle bit 2 **PEN:** Stop Condition Enable bit (Master mode only)⁽¹⁾ 1 = Initiates Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle bit 1 RSEN: Repeated Start Condition Enable bit (Master mode only)⁽¹⁾ 1 = Initiates Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle bit 0 SEN: Start Condition Enable/Stretch Enable bit(1) In Master mode: 1 = Initiates Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) o = Clock stretching is disabled **Note 1:** For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, these bits may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled). 2: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive. ## 17.4.17.3 Bus Collision During a Stop Condition Bus collision occurs during a Stop condition if: - After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out. - After the SCL pin is deasserted, SCL is sampled low before SDA goes high. The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 17-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 17-32). FIGURE 17-31: BUS COLLISION DURING A STOP CONDITION (CASE 1) FIGURE 18-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN) TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reset
Values
on page | |---------|--|-------------|-------------|------------|-------|--------|--------|--------|----------------------------| | INTCON | GIE/GIEH | PEIE/GIEL | TMR0IE | INT0IE | RBIE | TMR0IF | INT0IF | RBIF | 49 | | PIR1 | PSPIF ⁽¹⁾ | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | 52 | | PIE1 | PSPIE ⁽¹⁾ | ADIE | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | 52 | | IPR1 | PSPIP ⁽¹⁾ | ADIP | RCIP | TXIP | SSPIP | CCP1IP | TMR2IP | TMR1IP | 52 | | RCSTA | SPEN RX9 SREN CREN ADDEN FERR OERR RX9D | | | | | | | | | | TXREG | EUSART Transmit Register | | | | | | | | | | TXSTA | CSRC | TX9 | TXEN | SYNC | SENDB | BRGH | TRMT | TX9D | 51 | | BAUDCON | ABDOVF | RCIDL | RXDTP | TXCKP | BRG16 | _ | WUE | ABDEN | 51 | | SPBRGH | BRGH EUSART Baud Rate Generator Register High Byte | | | | | | | | | | SPBRG | EUSART E | Baud Rate G | enerator Re | gister Low | Byte | | • | | 51 | **Legend:** — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission. Note 1: Reserved in 28-pin devices; always maintain these bits clear. # 19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE The Analog-to-Digital (A/D) Converter module has 10 inputs for the 28-pin devices and 13 for the 40/44-pin devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number. The module has five registers: - A/D Result High Register (ADRESH) - A/D Result Low Register (ADRESL) - A/D Control Register 0 (ADCON0) - A/D Control Register 1 (ADCON1) - A/D Control Register 2 (ADCON2) The ADCON0 register, shown in Register 19-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 19-2, configures the functions of the port pins. The ADCON2 register, shown in Register 19-3, configures the A/D clock source, programmed acquisition time and justification. ### REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-------|-------|-------|-------|---------|-------| | _ | _ | CHS3 | CHS2 | CHS1 | CHS0 | GO/DONE | ADON | | bit 7 | | | | | | | bit 0 | ## Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown ### bit 7-6 Unimplemented: Read as '0' bit 5-2 CHS<3:0>: Analog Channel Select bits 0000 = Channel 0 (AN0) 0001 = Channel 1 (AN1) 0010 = Channel 2 (AN2) 0011 = Channel 3 (AN3) 0100 = Channel 4 (AN4) 0101 = Channel 5 (AN5) $^{(1,2)}$ 0110 = Channel 6 $(AN6)^{(1,2)}$ 0111 = Channel 7 (AN7) $^{(1,2)}$ 1000 = Channel 8 (AN8) 1001 = Channel 9 (AN9) 1010 = Channel 10 (AN10) 1011 = Channel 11 (AN11) 1100 = Channel 12 (AN12) 1101 = Unimplemented)(2) 1110 = Unimplemented)(2) 1111 = Unimplemented)(2) bit 1 GO/DONE: A/D Conversion Status bit When ADON = 1: 1 = A/D conversion in progress 0 = A/D Idle bit 0 ADON: A/D On bit 1 = A/D Converter module is enabled 0 = A/D Converter module is disabled Note 1: These channels are not implemented on 28-pin devices. 2: Performing a conversion on unimplemented channels will return a floating input measurement. ### 22.2 HLVD Setup The following steps are needed to set up the HLVD module: - 1. Write the value to the HLVDL<3:0> bits that selects the desired HLVD trip point. - 2. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0). - 3. Enable the HLVD module by setting the HLVDEN bit. - 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt. - 5. Enable the HLVD interrupt, if interrupts are desired, by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>). An interrupt will not be generated until the IRVST bit is set. #### 22.3 **Current Consumption** When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B. Depending on the application, the HLVD module does not need to be operating constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled. #### 22.4 **HLVD Start-up Time** The internal reference voltage of the HLVD module, specified in electrical specification parameter D420, may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36. The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (refer to Figure 22-2 or Figure 22-3). **FIGURE 22-2: LOW-VOLTAGE DETECT OPERATION (VDIRMAG = 0)** ### REGISTER 23-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h) | R/P-1 | U-0 | U-0 | U-0 | U-0 | R/P-0 | R/P-1 | R/P-1 | |-------|-----|-----|-----|-----|---------|--------|--------| | MCLRE | _ | _ | _ | _ | LPT1OSC | PBADEN | CCP2MX | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed u = Unchanged from programmed state bit 7 MCLRE: MCLR Pin Enable bit 1 = MCLR pin enabled; RE3 input pin disabled 0 = RE3 input pin enabled; MCLR disabled bit 6-3 **Unimplemented:** Read as '0' bit 2 LPT10SC: Low-Power Timer1 Oscillator Enable bit 1 = Timer1 configured for low-power operation0 = Timer1 configured for higher power operation bit 1 PBADEN: PORTB A/D Enable bit (Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.) 1 = PORTB<4:0> pins are configured as analog input channels on Reset 0 = PORTB<4:0> pins are configured as digital I/O on Reset bit 0 CCP2MX: CCP2 MUX bit 1 = CCP2 input/output is multiplexed with RC10 = CCP2 input/output is multiplexed with RB3 ### REGISTER 23-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h) | R/P-1 | R/P-0 | U-0 | U-0 | U-0 | R/P-1 | U-0 | R/P-1 | |-------|-------|-----|-----|-----|-------|-----|--------| | DEBUG | XINST | _ | _ | _ | LVP | _ | STVREN | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed u = Unchanged from programmed state bit 7 **DEBUG:** Background
Debugger Enable bit 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug bit 6 XINST: Extended Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode) bit 5-3 **Unimplemented:** Read as '0' bit 2 LVP: Single-Supply ICSP™ Enable bit 1 = Single-Supply ICSP enabled 0 = Single-Supply ICSP disabled bit 1 **Unimplemented:** Read as '0' bit 0 STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset #### **BRA Unconditional Branch** Syntax: BRA n Operands: $-1024 \le n \le 1023$ Operation: (PC) + 2 + $2n \rightarrow PC$ Status Affected: None Encoding: 1101 Description: Add the 2's complement number, '2n', to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction. 0nnn nnnn nnnn Words: 1 Cycles: 2 Q Cycle Activity: | Q1 | Q2 | Q3 | Q4 | |-----------|--------------|-----------------|-------------| | Decode | Read literal | Process
Data | Write to PC | | No | No | No | No | | operation | operation | operation | operation | Example: HERE BRA Jump Before Instruction PC address (HERE) After Instruction PC address (Jump) **BSF** Bit Set f Syntax: BSF f, b {,a} Operands: $0 \le f \le 255$ $0 \le b \le 7$ $a\in \left[0,1\right]$ Operation: $1 \rightarrow f < b >$ Status Affected: None Encoding: ffff 1000 ffff bbba Description: Bit 'b' in register 'f' is set. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and **Bit-Oriented Instructions in Indexed** Literal Offset Mode" for details. Words: Cycles: 1 Q Cycle Activity: | Q1 | Q2 | Q3 | Q4 | |--------|--------------|---------|--------------| | Decode | Read | Process | Write | | | register 'f' | Data | register 'f' | Example: BSF FLAG_REG, 7, 1 Before Instruction FLAG_REG 0Ah After Instruction FLAG_REG 8Ah | Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No | decremented placed in Williams placed in Williams placed back of the result which is alread a NOP in it a two-cyc of 'a' is 'o', to off 'a' is 'o', to off 'a' is 'o' a set is enable in Indexed off mode when section 24 Bit-Oriented Literal Offs of 1 (2) Note: 3 cycles and williams placed in the section 24 bit-Oriented Literal Offs of 1 (2) | est, t = 0 11da ffff ts of register 'f ed. If 'd' is '0', 'f. If 'd' is '1', th k in register 'f' is '0', the nex eady fetched, s executed ins le instruction. he Access Bar he BSR is use (default). nd the extendo | r' are the result is the result is (default). t instruction, is discarded stead, making the is selected. d to select the ed instruction ction operates Addressing Fh). See iented and is in Indexed details. | Oper
Statu
Enco
Desc
Word
Cycle | rands: ration: us Affected: oding: cription: | decremented placed in Williams placed back instruction, discarded a instruction. If 'a' is 'o', till 'a' is 'o', till 'a' is 'o' at set is enabli in Indexed mode where Section 24 Bit-Oriented Literal Offs 1 1(2) Note: 3 c | est, t ≠ 0 | the result is e result is (default). next dy fetched, is kecuted ycle ak is selected. d to select the ed instruction operates addressing [-h]. See iented and s in Indexed details. | |--|---|---|--|--|---
---|---|---| | Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and followed b | d ∈ [0,1] a ∈ [0,1] a ∈ [0,1] (f) − 1 → de skip if result None 0010 The content decremente placed in We placed back if the result which is almand a NoP if it a two-cyc. If 'a' is '0', the set is enable in Indexed I | t = 0 11da ffff ts of register 'f ed. If 'd' is '0', /. If 'd' is '1', th k in register 'f is '0', the nex eady fetched, s executed ins le instruction. he Access Ban he BSR is use (default). nd the extend ed, this instruct Literal Offset / lever f ≤ 95 (5 2.3 "Byte-Or ed Instruction set Mode" for color of the skip and a 2-word instruction | f' are the result is ne result is (default). t instruction, is discarded stead, making nk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and us in Indexed details. d followed action. | Oper
Statu
Enco
Desc
Word
Cycle | ration: us Affected: oding: cription: ds: es: | $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ $(f) - 1 \rightarrow de$ skip if result None 0100 The content decremented placed in White placed back instruction, discarded a placed in the result instruction. If 'a' is '0', the second of the result instruction in the second seco | est, It ≠ 0 11da ffff ats of register 'f ed. If 'd' is '0', the ed. If 'd' is '1', the k in register 'f' t is not '0', the which is alrea aking it a two-c aking it a two-c the Access Bar he BSR is used (default). und the extende led, this instruct Literal Offset A never f ≤ 95 (5l 1.2.3 "Byte-Ori ed Instruction set Mode" for | the result is e result is (default). next dy fetched, is kecuted ycle ak is selected. d to select the ed instruction operates addressing [-h]. See iented and s in Indexed details. | | Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and followed b | None 0010 The content decrements placed in W placed back If the result which is almand a NOP i it a two-cyc If 'a' is '0', tl If 'a' is '1', tl GPR bank (If 'a' is '0' a set is enabl in Indexed I mode when Section 24 Bit-Oriente Literal Offs 1 1(2) Note: 3 cy by a | t = 0 11da ffff ts of register 'f ed. If 'd' is '0', /. If 'd' is '1', th k in register 'f is '0', the nex eady fetched, s executed ins le instruction. he Access Ban he BSR is use (default). nd the extend ed, this instruct Literal Offset / lever f ≤ 95 (5 2.3 "Byte-Or ed Instruction set Mode" for color of the skip and a 2-word instruction | f' are the result is ne result is (default). t instruction, is discarded stead, making nk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and us in Indexed details. d followed action. | Statu
Enco
Desc
Word
Cycle | us Affected: oding: cription: ds: es: | None 0100 The content decrements placed in William placed back instruction, discarded a instruction. If 'a' is 'o', till 'a' is 'o', till 'a' is 'o' at set is enabli in Indexed mode wher Section 24 Bit-Orients Literal Offs 1 1(2) Note: 3 0 | ats of register 'f ed. If 'd' is '0', 't v. If 'd' is '1', the k in register 'f' t is not '0', the which is alread and a NOP is exaking it a two-che Access Barche BSR is used (default). Inde the extended ext | the result is e result is (default). next dy fetched, is kecuted ycle ak is selected. d to select the ed instruction operates addressing [-h]. See iented and s in Indexed details. | | Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and followed b | The content decrements placed in W placed back If the result which is almand a NOP i it a two-cyc If 'a' is '0', tl If 'a' is '1', tl GPR bank (If 'a' is '0' a set is enabl in Indexed I mode when Section 24 Bit-Oriente Literal Offs 1 1(2) Note: 3 cy by a | ts of register 'f' ed. If 'd' is '1', the ed. If 'd' is '1', the ed. If 'd' is '1', the in register 'f' is '0', the nex eady fetched, s executed ins le instruction. The Access Bar The BSR is use (default). The extended, this instruct Literal Offset A The ever f ≤ 95 (5) 2.3 "Byte-Or The distriction The extended of | f' are the result is ne result is (default). t instruction, is discarded stead, making nk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and us in Indexed details. d followed action. | Enco
Desc
Word
Cycle | ds: | The content decrements placed in W placed back instruction, discarded a instruction. If 'a' is '0', ti f' a' is '1', ti GPR bank If 'a' is '0' a set is enabl in Indexed mode wher Section 24 Bit-Oriente Literal Offs 1 1(2) Note: 3 0 | this of register 'f' ed. If 'd' is '0', '1 ed. If 'd' is '1', th k in register 'f' is not '0', the which is alrea and a NOP is ex aking it a two-c the Access Bar he BSR is used (default). und the extende led, this instruct Literal Offset A never f ≤ 95 (5l 3.2.3 "Byte-Ori ed Instruction set Mode" for | the result is e result is (default). next dy fetched, is kecuted ycle ak is selected. d to select the ed instruction operates addressing [-h]. See iented and s in Indexed details. | | Words: Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and followed b | The content decrements placed in W placed back If the result which is almand a NOP i it a two-cyc If 'a' is '0', tl If 'a' is '1', tl GPR bank If 'a' is '0' a set is enabl in Indexed I mode when Section 24 Bit-Oriente Literal Offs 1 1(2) Note: 3 cy by a | ts of register 'f' ed. If 'd' is '1', the ed. If 'd' is '1', the ed. If 'd' is '1', the in register 'f' is '0', the nex eady fetched, s executed ins le instruction.
The Access Bar The BSR is use (default). The extended, this instruct Literal Offset A The ever f ≤ 95 (5) 2.3 "Byte-Or The distriction The extended of | f' are the result is ne result is (default). t instruction, is discarded stead, making nk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and us in Indexed details. d followed action. | Word
Cycle | ds: | The content decrements placed in W placed back instruction, discarded a instruction. If 'a' is '0', t If 'a' is '1', t If GPR bank If 'a' is '0' a set is enabl in Indexed mode wher Section 24 Bit-Oriente Literal Offs 1 1(2) Note: 3 c | this of register 'f' ed. If 'd' is '0', '1 ed. If 'd' is '1', th k in register 'f' is not '0', the which is alrea and a NOP is ex aking it a two-c the Access Bar he BSR is used (default). und the extende led, this instruct Literal Offset A never f ≤ 95 (5l 3.2.3 "Byte-Ori ed Instruction set Mode" for | the result is e result is (default). next dy fetched, is kecuted ycle ak is selected. d to select the ed instruction operates addressing [-h]. See iented and s in Indexed details. | | Words: Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and followed b | decrementer placed in W placed back If the result which is almand a NOP i it a two-cyc If 'a' is '0', the GPR bank (If 'a' is '0' a set is enabl in Indexed I mode when Section 24 Bit-Oriente Literal Offs 1 1(2) Note: 3 cy by a Q2 | ed. If 'd' is 'o', /. If 'd' is '1', th k in register 'f' is '0', the nex eady fetched, s executed ins le instruction. The Access Bar The BSR is use (default). The extending ext | the result is the result is the result is (default). It instruction, is discarded stead, making that is selected. It is selected to select the sed instruction operates addressing the sed in the sed in the sed in the sed details. | Word
Cycl | ds:
es: | decremented placed in Williams placed back instruction, discarded a instruction. If 'a' is 'o', till 'a' is 'o', till 'a' is 'o' at set is enabli in Indexed mode where Section 24 Bit-Oriented Literal Offs 1 1(2) Note: 3 c | ed. If 'd' is 'o', 'l V. If 'd' is '1', th k in register 'f' t is not '0', the which is alrea and a NOP is ex aking it a two-c the Access Bar the BSR is user (default). and the extende led, this instruct Literal Offset A thever f ≤ 95 (5) J.2.3 "Byte-Ori ed Instruction set Mode" for | the result is e result is (default). next dy fetched, is kecuted ycle hk is selected. d to select the ed instruction perates addressing Fh). See iented and s in Indexed details. | | Cycles: Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and followed b | 1(2)
Note: 3 cy
by a | a 2-word instru | iction. | Cycle | es: | 1
1(2)
Note: 3 (| cycles if skip a | nd followed | | Q Cycle Activity: Q1 Decode If skip: Q1 No operation If skip and followed b | Note: 3 cy
by a | a 2-word instru | iction. | Cycle | es: | 1(2)
Note: 3 (| | | | Q1 Decode If skip: Q1 No operation If skip and followed b | | Q3 | Q4 | QC | | Бу | a 2-word iristi | uction. | | Decode r If skip: Q1 No operation of skip and followed b | | Q3 | Q4 | QU | 'v colo A otiv (itv /: | | | | | If skip: Q1 No operation If skip and followed b | Rear | | 347.1 | | cycle Activity:
Q1 | Q2 | Q3 | Q4 | | If skip: Q1 No operation If skip and followed b | register 'f' | Process
Data | Write to destination | | Decode | Read | Process | Write to | | Q1 No operation of skip and followed by | regione i | 2010 | 40044 | | 200040 | register 'f' | Data | destination | | operation of | Q2 | Q3 | Q4 | lf sk | kip: | | | | | If skip and followed b | No | No | No | | Q1 | Q2 | Q3 | Q4 | | | operation | operation | operation | | No | No | No | No | | Q1 | by 2-word in | struction: | | 16 1 | operation | operation | operation | operation | | | Q2 | Q3 | Q4 | IT SK | kip and followe | • | | 0.4 | | No | No | No | No | | Q1 | Q2
No | Q3
No | Q4 | | operation o | operation
No | operation
No | operation
No | | No operation | operation | operation | No operation | | | operation | operation | operation | | No | No | No | No | | · | HERE
CONTINUE | DECFSZ
GOTO | CNT, 1, 1
LOOP | Exar | operation | | operation DCFSNZ TEM | operation | | Before Instruction | | | | | | | : | | | PC = After Instruction CNT = | = Address
= CNT - 1 | S (HERE) | | | TEMP After Instruction | =
on | ? | | | If CNT =
PC =
If CNT ≠
PC = | = 0;
= Addrood | (CONTINUE | !) | | TEMP
If TEMP | = | TEMP – 1,
0; | ZERO) | ### 25.0 DEVELOPMENT SUPPORT The PIC[®] microcontrollers are supported with a full range of hardware and software development tools: - · Integrated Development Environment - MPLAB® IDE Software - · Assemblers/Compilers/Linkers - MPASM™ Assembler - MPLAB C18 and MPLAB C30 C Compilers - MPLINK™ Object Linker/ MPLIB™ Object Librarian - MPLAB ASM30 Assembler/Linker/Library - Simulators - MPLAB SIM Software Simulator - Emulators - MPLAB ICE 2000 In-Circuit Emulator - MPLAB REAL ICE™ In-Circuit Emulator - · In-Circuit Debugger - MPLAB ICD 2 - · Device Programmers - PICSTART® Plus Development Programmer - MPLAB PM3 Device Programmer - PICkit™ 2 Development Programmer - Low-Cost Demonstration and Development Boards and Evaluation Kits ## 25.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: - · A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - Emulator (sold separately) - In-Circuit Debugger (sold separately) - · A full-featured editor with color-coded context - A multiple project manager - Customizable data windows with direct edit of contents - · High-level source code debugging - Visual device initializer for easy register initialization - · Mouse over variable inspection - Drag and drop variables from source to watch windows - · Extensive on-line help - Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers The MPLAB IDE allows you to: - Edit your source files (either assembly or C) - One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information) - · Debug using: - Source files (assembly or C) - Mixed assembly and C - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. # 26.3 DC Characteristics: PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) | DC CHA | ARACTE | RISTICS | | | | unless otherwise stated)
≤ +85°C for industrial | |--------------|--------|--|--------------------|----------|-------|---| | Param
No. | Symbol | Characteristic | Min | Max | Units | Conditions | | | VIL | Input Low Voltage | | | | | | | | I/O Ports: | | | | | | D030 | | with TTL Buffer | Vss | 0.15 VDD | V | VDD < 4.5V | | D030A | | | _ | 0.8 | V | $4.5V \le VDD \le 5.5V$ | | D031 | | with Schmitt Trigger Buffer | Vss | 0.2 VDD | V | | | D031A | | RC3 and RC4 | Vss | 0.3 VDD | V | I ² C™ enabled | | D031B | | | Vss | 0.8 | V | SMBus enabled | | D032 | | MCLR | Vss | 0.2 VDD | V | | | D033 | | OSC1 | Vss | 0.3 VDD | V | HS, HSPLL modes | | D033A | | OSC1 | Vss | 0.2 VDD | V | RC, EC modes ⁽¹⁾ | | D033B | | OSC1 | Vss | 0.3 | V | XT, LP modes | | D034 | \ / | T13CKI | Vss | 0.3 | V | | | | VIH | Input High Voltage I/O Ports: | | | | | | D040 | | with TTL Buffer | 0.25 VDD + 0.8V | VDD | V | VDD < 4.5V | | D040A | | with FTE Buller | 2.0 | VDD | V | 4.5V ≤ VDD ≤ 5.5V | | D040A | | with Schmitt Trigger Buffer |
0.8 VDD | VDD | V | 4.50 \(\) \(| | D041A | | RC3 and RC4 | 0.7 VDD | VDD | V | I ² C enabled | | D041R | | 100 and 104 | 2.1 | VDD | V | SMBus enabled | | D041B | | MCLR | 0.8 VDD | VDD | V | CIVIDUS CHADICA | | D042 | | OSC1 | 0.7 VDD | VDD | V | HS, HSPLL modes | | D043A | | OSC1 | 0.7 VDD
0.8 VDD | VDD | V | EC mode | | D043A | | OSC1 | 0.9 VDD | VDD | V | RC mode ⁽¹⁾ | | D043C | | OSC1 | 1.6 | VDD | V | XT, LP modes | | D044 | | T13CKI | 1.6 | VDD | V | | | | lı∟ | Input Leakage Current ^(2,3) | | | | | | D060 | | I/O Ports | _ | ±200 | nA | VDD < 5.5V,
VSS ≤ VPIN ≤ VDD, | | | | | | ±50 | nA | Pin at high-impedance
VDD < 3V,
VSS ≤ VPIN ≤ VDD,
Pin at high-impedance | | D061 | | MCLR | _ | ±1 | μΑ | $Vss \le VPIN \le VDD$ | | D063 | | OSC1 | – | ±1 | μΑ | $Vss \le VPIN \le VDD$ | | | IPU | Weak Pull-up Current | | | | | | D070 | IPURB | PORTB Weak Pull-up Current | 50 | 400 | μΑ | VDD = 5V, VPIN = VSS | **Note 1:** In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode. ^{2:} The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. ^{3:} Negative current is defined as current sourced by the pin. ## 26.4 AC (Timing) Characteristics ## 26.4.1 TIMING PARAMETER SYMBOLOGY The timing parameter symbols have been created using one of the following formats: | 1. TppS2ppS | | 3. Tcc:st | (I ² C specifications only) | |--|-----------------------------|-----------|--| | 2. TppS | | 4. Ts | (I ² C specifications only) | | Т | | | | | F | Frequency | Т | Time | | Lowercase letters (pp) and their meanings: | | | | | рр | | | | | СС | CCP1 | osc | OSC1 | | ck | CLKO | rd | RD | | cs | CS | rw | RD or WR | | di | SDI | sc | SCK | | do | SDO | ss | SS | | dt | Data in | tO | T0CKI | | io | I/O port | t1 | T13CKI | | mc | MCLR | wr | WR | | Uppercase | letters and their meanings: | | | | S | | | | | F | Fall | Р | Period | | Н | High | R | Rise | | I | Invalid (High-impedance) | V | Valid | | L | Low | Z | High-impedance | | I ² C only | | | | | AA | output access | High | High | | BUF | Bus free | Low | Low | | Tcc:st (I ² C | specifications only) | | | | CC | | | | | HD | Hold | SU | Setup | | ST | | | | | DAT | DATA input hold | STO | Stop condition | | STA | Start condition | | | ## 28.2 Package Details The following sections give the technical details of the packages. ## 28-Lead Skinny Plastic Dual In-Line (SP) - 300 mil Body [SPDIP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | INCHES | | |----------------------------|----------|----------|--------|-------| | Dimension | n Limits | MIN | NOM | MAX | | Number of Pins | N | | 28 | | | Pitch | е | .100 BSC | | | | Top to Seating Plane | Α | 1 | - | .200 | | Molded Package Thickness | A2 | .120 | .135 | .150 | | Base to Seating Plane | A1 | .015 | - | _ | | Shoulder to Shoulder Width | Е | .290 | .310 | .335 | | Molded Package Width | E1 | .240 | .285 | .295 | | Overall Length | D | 1.345 | 1.365 | 1.400 | | Tip to Seating Plane | L | .110 | .130 | .150 | | Lead Thickness | С | .008 | .010 | .015 | | Upper Lead Width | b1 | .040 | .050 | .070 | | Lower Lead Width | b | .014 | .018 | .022 | | Overall Row Spacing § | eВ | - | _ | .430 | ### Notes - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic. - 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-070B ## 28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | MILLIMETERS | 3 | |--------------------------|----------|-----------|-------------|------| | Dimension | n Limits | MIN | NOM | MAX | | Number of Pins | N | | 28 | | | Pitch | е | | 1.27 BSC | | | Overall Height | Α | _ | _ | 2.65 | | Molded Package Thickness | A2 | 2.05 | _ | _ | | Standoff § | A1 | 0.10 | _ | 0.30 | | Overall Width | Е | | 10.30 BSC | | | Molded Package Width | E1 | 7.50 BSC | | | | Overall Length | D | 17.90 BSC | | | | Chamfer (optional) | h | 0.25 | _ | 0.75 | | Foot Length | L | 0.40 | _ | 1.27 | | Footprint | L1 | 1.40 REF | | | | Foot Angle Top | ф | 0° | _ | 8° | | Lead Thickness | С | 0.18 | _ | 0.33 | | Lead Width | b | 0.31 | _ | 0.51 | | Mold Draft Angle Top | α | 5° | _ | 15° | | Mold Draft Angle Bottom | β | 5° | _ | 15° | ### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic. - 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. - BSC: Basic Dimension. Theoretically exact value shown without tolerances. - REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-052B | RA4/T0CKI/C1OUT | 13, 17 | PORTE | | |---|--------|--|-----| | RA5/AN4/SS/HLVDIN/C2OUT | 13, 17 | Associated Registers | 119 | | RB0/INT0/FLT0/AN12 | 14, 18 | LATE Register | 117 | | RB1/INT1/AN10 | 14, 18 | PORTE Register | | | RB2/INT2/AN8 | 14, 18 | PSP Mode Select (PSPMODE Bit) | | | RB3/AN9/CCP2 | 14, 18 | TRISE Register | | | RB4/KBI0/AN11 | | Power-Managed Modes | | | RB5/KBI1/PGM | | and A/D Operation | | | RB6/KBI2/PGC | • | and EUSART Operation | | | RB7/KBI3/PGD | | and Multiple Sleep Commands | | | RC0/T10S0/T13CKI | | and PWM Operation | | | RC1/T10SI/CCP2 | • | and SPI Operation | | | RC2/CCP1 | • | Clock Transitions and Status Indicators | | | | | Effects on Clock Sources | | | RC2/CCP1/P1A | | | | | RC3/SCK/SCL | * | Entering | | | RC4/SDI/SDA | • | Exiting Idle and Sleep Modes | | | RC5/SDO | • | by Interrupt | | | RC6/TX/CK | • | by Reset | 39 | | RC7/RX/DT | • | by WDT Time-out | | | RD0/PSP0 | | Without a Start-up Delay | | | RD1/PSP1 | 20 | Idle Modes | | | RD2/PSP2 | 20 | PRI_IDLE | 38 | | RD3/PSP3 | 20 | RC_IDLE | 39 | | RD4/PSP4 | 20 | SEC_IDLE | 38 | | RD5/PSP5/P1B | 20 | Run Modes | | | RD6/PSP6/P1C | 20 | PRI_RUN | | | RD7/PSP7/P1D | | RC_RUN | | | RE0/RD/AN5 | | SEC RUN | | | RE1/WR/AN6 | | Selecting | | | RE2/CS/AN7 | | Sleep Mode | | | VDD | | Summary (table) | | | Vss | • | Power-on Reset (POR) | | | | 15, 21 | Power-up Timer (PWRT) | | | Pinout I/O Descriptions PIC18F2420/2520 | 10 | | | | | | Time-out Sequence | | | PIC18F4420/4520 | | Power-up Delays | | | PIR Registers | | Power-up Timer (PWRT) | 31 | | PLL Frequency Multiplier | | Prescaler | 4=0 | | HSPLL Oscillator Mode | | Timer2 | | | Use with INTOSC | | Prescaler, Timer0 | | | POP | 296 | Prescaler, Timer2 | | | POR. See Power-on Reset. | | PRI_IDLE Mode | | | PORTA | | PRI_RUN Mode | | | Associated Registers | | Program Counter | 54 | | LATA Register | 105 | PCL, PCH and PCU Registers | 54 | | PORTA Register | 105 | PCLATH and PCLATU Registers | 54 | | TRISA Register | 105 | Program Memory | | | PORTB | | and Extended Instruction Set | 72 | | Associated Registers | 110 | Code Protection | 264 | | LATB Register | | Instructions | 58 | | PORTB Register | | Two-Word | | | RB7:RB4 Interrupt-on-Change Flag | | Interrupt Vector | | | (RBIF Bit) | 108 | Look-up Tables | | | TRISB Register | | Map and Stack (diagram) | |
| PORTC | 100 | Reset Vector | | | | 110 | | | | Associated Registers | | Program Verification and Code Protection | | | LATC Register | | Associated Registers | | | PORTC Register | | Programming, Device Instructions | 267 | | RC3/SCK/SCL Pin | | PSP. See Parallel Slave Port. | | | TRISC Register | 111 | Pulse-Width Modulation. See PWM (CCP Module) | | | PORTD | | and PWM (ECCP Module). | | | Associated Registers | 116 | PUSH | | | LATD Register | 114 | PUSH and POP Instructions | 55 | | Parallel Slave Port (PSP) Function | | PUSHL | 312 | | PORTD Register | | | | | TRISD Register | | | |