

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2520-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4 Brown-out Reset (BOR)

PIC18F2420/2520/4420/4520 devices implement a BOR circuit that provides the user with a number of configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits. There are a total of four BOR configurations which are summarized in Table 4-1.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below VBOR (parameter D005) for greater than TBOR (parameter 35) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the Brown-out Reset does not automatically enable the PWRT.

4.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<6>). Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as '0'. Placing the BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note:	Even when BOR is under software control,
	the Brown-out Reset voltage level is still
	set by the BORV<1:0> Configuration bits;
	it cannot be changed in software.

4.4.2 DETECTING BOR

When BOR is enabled, the BOR bit always resets to '0' on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any POR event. If BOR is '0' while POR is '1', it can be reliably assumed that a BOR event has occurred.

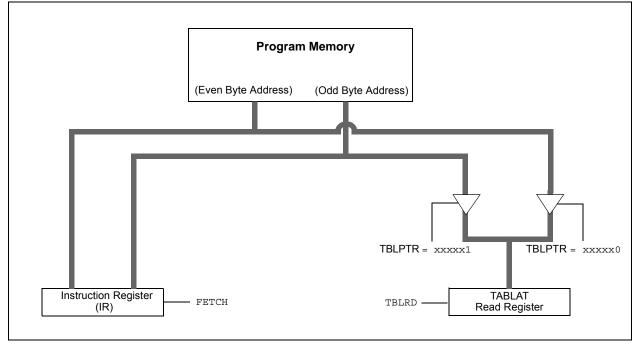
4.4.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

BOR Con	figuration	Status of	
BOREN1	BOREN0	SBOREN (RCON<6>)	BOR Operation
0	0 Unavailable		BOR disabled; must be enabled by reprogramming the Configuration bits.
0	1	Available	BOR enabled in software; operation controlled by SBOREN.
1	0	Unavailable	BOR enabled in hardware in Run and Idle modes, disabled during Sleep mode.
1			BOR enabled in hardware; must be disabled by reprogramming the Configuration bits.

TABLE 4-1: BOR CONFIGURATIONS


6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

MOVLW MOVWF MOVLW MOVLW MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW		Load TBLPTR with the base address of the word
110 V W1			
TBLRD*+	-	;	read into TABLAT and increment
MOVF	TABLAT, W	;	get data
MOVWF	WORD EVEN		
TBLRD*+		;	read into TABLAT and increment
MOVFW	TABLAT, W	;	get data
MOVF	WORD_ODD		
	MOVWF MOVLW MOVWF MOVLW MOVWF MOVF MOVVF TBLRD*4 MOVFW	MOVWF TBLPTRU MOVLW CODE_ADDR_HIGH MOVWF TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL TBLRD*+ MOVF TABLAT, W MOVWF WORD_EVEN TBLRD*+ MOVFW TABLAT, W	MOVWF TBLPTRU ; MOVUW CODE_ADDR_HIGH MOVWF TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL TBLRD*+ ; MOVF TABLAT, W ; MOVWF WORD_EVEN TBLRD*+ ; MOVFW TABLAT, W ;

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0			
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD			
bit 7							bit 0			
Legend:		S = Settable	bit (cannot be	cleared in softwa	are)					
R = Readab	le bit	W = Writable		U = Unimplem	-	d as '0'				
-n = Value a	t POR	'1' = Bit is se	t	ʻ0' = Bit is clea		x = Bit is unkr	iown			
bit 7	1 = Access	Flash program	memory	I Memory Select	bit					
 bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit 1 = Access Configuration registers 0 = Access Flash program or data EEPROM memory 										
bit 5	Unimpleme	nted: Read as	0'							
bit 4	FREE: Flash	n Row Erase Er	able bit							
		ion of erase op		ressed by TBLP	TR on the ne	ext WR comman	nd (cleared by			
bit 3	WRERR: Fla	ash Program/Data EEPROM Error Flag bit ⁽¹⁾								
	operatio	operation is pre on, or an improp e operation cor	er write attemp	inated (any Rese ot)	et during self-	timed programr	ning in norma			
bit 2		h Program/Data	•	rite Enable bit						
0.112	1 = Allows v	vrite cycles to F write cycles to F	lash program/o	data EEPROM						
bit 1	WR: Write C	ontrol bit								
	(The op can only		med and the bi ared) in softwa							
bit 0	RD: Read C		ŗ.							
	be set (r		oftware. RD bit	s one cycle. RD cannot be set w						
Note 1. V				GS bits are not cl	leared This a	llows tracing of	the error			

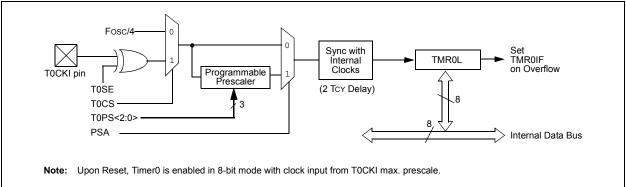
REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

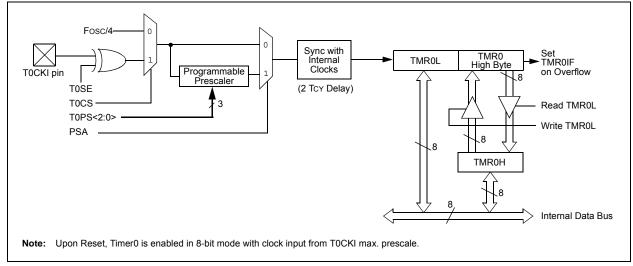
11.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected with the TOCS bit (TOCON<5>). In Timer mode (TOCS = 0), the module increments on every clock by default unless a different prescaler value is selected (see **Section 11.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.


An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

11.2 Timer0 Reads and Writes in 16-Bit Mode


TMR0H is not the actual high byte of Timer0 in 16-bit mode; it is actually a buffered version of the real high byte of Timer0 which is not directly readable nor writable (refer to Figure 11-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 11-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 11-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

TABLE 12-2:	REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
TMR1L	IR1L Timer1 Register Low Byte								
TMR1H	Timer1 Register High Byte								50
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	50

Legend: Shaded cells are not used by the Timer1 module.

Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

16.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULE

Note:	The ECCP module is implemented only in
	40/44-pin devices.

In PIC18F4420/4520 devices, CCP1 is implemented as a standard CCP module with Enhanced PWM capabilities. These include the provision for 2 or 4 output channels, user-selectable polarity, dead-band control and automatic shutdown and restart. The enhanced features are discussed in detail in **Section 16.4 "Enhanced PWM Mode"**. Capture, Compare and single output PWM functions of the ECCP module are the same as described for the standard CCP module.

The control register for the Enhanced CCP module is shown in Register 16-2. It differs from the CCPxCON registers in PIC18F2420/2520 devices in that the two Most Significant bits are implemented to control PWM functionality.

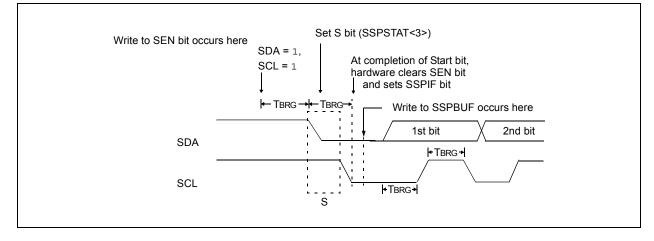
REGISTER 16-1: CCP1CON: ECCP CONTROL REGISTER (40/44-PIN DEVICES)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

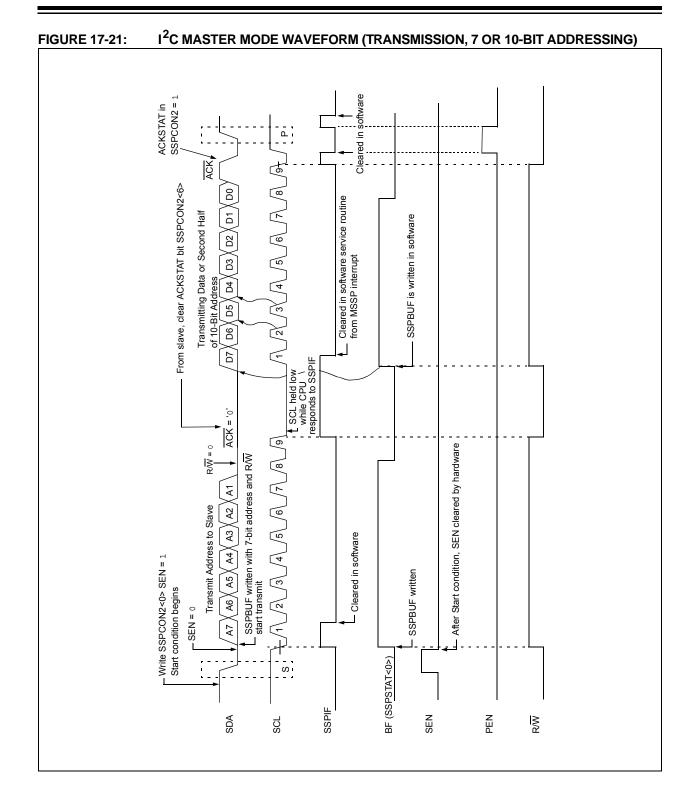
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 P1M<1:0>: Enhanced PWM Output Configuration bits If CCP1M3:CCP1M2 = 00, 01, 10: xx = P1A assigned as capture/compare input/output; P1B, P1C, P1D assigned as port pins If CCP1M3:CCP1M2 = 11: 00 = Single output, P1A modulated; P1B, P1C, P1D assigned as port pins 01 = Full-bridge output forward, P1D modulated; P1A active; P1B, P1C inactive 10 = Half-bridge output, P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins 11 = Full-bridge output reverse, P1B modulated; P1C active; P1A, P1D inactive DC1B<1:0>: PWM Duty Cycle bit 1 and bit 0 bit 5-4 Capture mode: Unused. Compare mode: Unused. PWM mode: These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in CCPR1L. bit 3-0 CCP1M<3:0>: Enhanced CCP Mode Select bits 0000 = Capture/Compare/PWM off (resets ECCP module) 0001 = Reserved 0010 = Compare mode, toggle output on match 0011 = Capture mode 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, initialize CCP1 pin low; set output on compare match (set CCP1IF) 1001 = Compare mode, initialize CCP1 pin high; clear output on compare match (set CCP1IF) 1010 = Compare mode, generate software interrupt only; CCP1 pin reverts to I/O state 1011 = Compare mode, trigger special event (ECCP resets TMR1 or TMR3, sets CCP1IF bit) 1100 = PWM mode, P1A, P1C active-high; P1B, P1D active-high 1101 = PWM mode, P1A, P1C active-high; P1B, P1D active-low 1110 = PWM mode, P1A, P1C active-low; P1B, P1D active-high 1111 = PWM mode, P1A, P1C active-low; P1B, P1D active-low

17.4.8 I²C MASTER MODE START CONDITION TIMING


To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note: If, at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.


17.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 17-19: FIRST START BIT TIMING

17.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

17.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

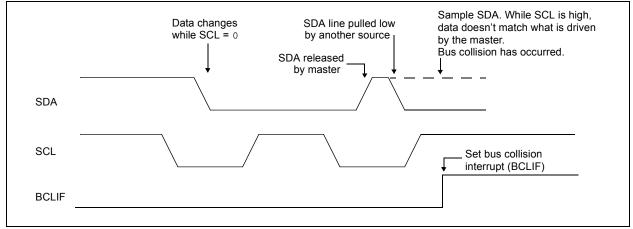
The states where arbitration can be lost are:

- · Address Transfer
- · Data Transfer
- · A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

17.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its Idle state (Figure 17-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 17-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

EXAMPLE 18-1: CALCULATING BAUD RATE ERROR

l	For a device with Fost	c of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:
l	Desired Baud Rate	= Fosc/(64 ([SPBRGH:SPBRG] + 1))
l	Solving for SPBRGH:	SPBRG:
l	Х	= ((Fosc/Desired Baud Rate)/64) – 1
l		= ((1600000/9600)/64) - 1
l		= [25.042] = 25
l	Calculated Baud Rate	= 1600000/(64 (25 + 1))
l		= 9615
l	Error	= (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate
l		= (9615 - 9600)/9600 = 0.16%
н		

TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	EUSART Baud Rate Generator Register High Byte								51
SPBRG	PBRG EUSART Baud Rate Generator Register Low Byte								

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7		I	I				bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7	ADFM: A/D R 1 = Right justi 0 = Left justifie		elect bit				
bit 6	Unimplement	ted: Read as '	כי				
bit 5-3	ACQT<2:0>:	A/D Acquisition	n Time Select	bits			
	$111 = 20 \text{ TAD}$ $110 = 16 \text{ TAD}$ $101 = 12 \text{ TAD}$ $100 = 8 \text{ TAD}$ $011 = 6 \text{ TAD}$ $010 = 4 \text{ TAD}$ $001 = 2 \text{ TAD}$ $000 = 0 \text{ TAD}^{(1)}$						
bit 2-0	111 = FRC (cl 110 = Fosc/6 101 = Fosc/1 100 = Fosc/4	6 ock derived fro 2	m A/D RC osc	sillator) ⁽¹⁾			

REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

19.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 19-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

EQUATION 19-1: ACQUISITION TIME

TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient = TAMP + TC + TCOFF

EQUATION 19-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) ln(1/2048)

EQUATION 19-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ature c	oefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ s.
Тс	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2047) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.05 μs
TACQ	=	$0.2 \ \mu s + 1 \ \mu s + 1.2 \ \mu s$ 2.4 \ \ \ \ \ \ \ \ s

To calculate the minimum acquisition time, Equation 19-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 19-3 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V ightarrow Rss$ = 2 k Ω
Temperature	=	85°C (system max.)

REGISTER 23-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—				—	—	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1	Unimplemented: Read as '0'
bit 0	SWDTEN: Software Controlled Watchdog Timer Enable bit ⁽¹⁾
	1 = Watchdog Timer is on

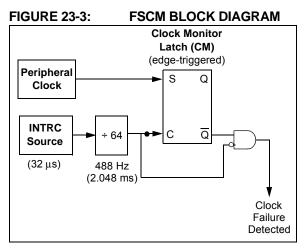
0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	48
WDTCON		—			_			SWDTEN ⁽²⁾	50

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.


Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 4.4 "Brown-out Reset (BOR)".

2: This bit has no effect if the Configuration bit, WDTEN, is enabled.

23.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 23-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 23-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the fail-safe condition) and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 3.1.4 "Multiple Sleep Commands" and Section 23.3.1 "Special Considerations for Using Two-Speed Start-up" for more details.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF<2:0> bits prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

23.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF<2:0> bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, fail-safe clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

23.4.2 EXITING FAIL-SAFE OPERATION

The fail-safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

COMF	Complem	ent f		CPFSEQ	Compare	f with W, SI	kip if f = W
Syntax:	COMF f	{,d {,a}}		Syntax:	CPFSEQ	f {,a}	
Operands:	0 ≤ f ≤ 255			Operands:	$0 \leq f \leq 255$		
	d ∈ [0,1]				a ∈ [0,1]		
	a ∈ [0,1]			Operation:	(f) - (W),	(14.1)	
Operation:	$(\overline{f}) \rightarrow dest$				skip if (f) =	(vv) comparison)	
Status Affected:	N, Z			Status Affected:	None	ompanoon)	
Encoding:	0001	11da ff	ff ffff	Encoding:	0110	001a ff:	ff ffff
Description:	complemer	ts of register 'f nted. If 'd' is '0' /. If 'd' is '1', th	, the result is	Description:	Compares location 'f'	the contents of to the contents	f data memory of W by
		k in register 'f'				an unsigned s ien the fetched	
		-	nk is selected.			and a NOP is ex	
	,		d to select the			aking this a two	
	GPR bank	(default). Ind the extend	ed instruction		instruction.		
			ction operates			he Access Bai he BSR is use	
	in Indexed	Literal Offset A	Addressing		GPR bank		
		never f ≤ 95 (5				ind the extende	ed instruction
		.2.3 "Byte-Or ed Instruction				led, this instruc	
		set Mode" for				Literal Offset A never f ≤ 95 (5l	
Words:	1					.2.3 "Byte-Or	
Cycles:	1				Bit-Oriente	ed Instruction set Mode" for	s in Indexed
Q Cycle Activity:				Words:	1		
Q1	Q2	Q3	Q4	Cycles:	1(2)		
Decode	Read register 'f'	Process Data	Write to destination	,	Note: 3 c	ycles if skip ar a 2-word instru	
				Q Cycle Activity:			
Example:	COMF	REG, 0, 0		Q1	Q2	Q3	Q4
Before Instruc				Decode	Read	Process	No
REG After Instruction	= 13h			16 - 1-1	register 'f'	Data	operation
After Instructio REG	= 13h			If skip:	02	02	04
W	= ECh			Q1 No	Q2 No	Q3 No	Q4 No
				operation	operation	operation	operation
				If skip and followe	ed by 2-word in	struction:	• •
				Q1	Q2	Q3	Q4
				No	No	No	No
				operation No	operation No	operation No	operation No
				operation	operation	operation	operation
				<u> </u>	• •	. ·	
				Example:	HERE NEQUAL EQUAL	CPFSEQ REG : :	3, 0
				Before Instru	ction		
				PC Add		IRE	
				W	= ?		
				REG After Instruct	= ?		
				After Instruct If REG			
				IT REG PC	••	; Idress (EQUA	L)

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

PIC18LF2420/2520/4420/4520 (Industrial) PIC18F2420/2520/4420/4520 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for extended								
	Supply Current (IDD) ⁽²⁾									
	PIC18LF2X2X/4X20	250	350	μΑ	-40°C					
		260	350	μΑ	+25°C	VDD = 2.0V				
		250	350	μΑ	+85°C					
	PIC18LF2X2X/4X20	550	650	μΑ	-40°C					
		480	640	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz (PRI_RUN ,			
		460	600	μΑ	+85°C		EC oscillator)			
	All devices	1.2	1.5	mA	-40°C					
		1.1	1.4	mA	+25°C	VDD = 5.0V				
		1.0	1.3	mA	+85°C	VDD - 5.0V				
	Extended devices only	1.0	3.0	mA	+125°C					
	PIC18LF2X2X/4X20	0.72	1.0	mA	-40°C					
		0.74	1.0	mA	+25°C	VDD = 2.0V	_			
		0.74	1.0	mA	+85°C					
	PIC18LF2X2X/4X20	1.3	1.8	mA	-40°C					
		1.3	1.8	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI_RUN ,			
		1.3	1.8	mA	+85°C		EC oscillator)			
	All devices	2.7	4.0	mA	-40°C					
		2.6	4.0	mA	+25°C					
		2.5	4.0	mA	+85°C	VDD = 5.0V				
	Extended devices only	2.6	5.0	mA	+125°C					
	Extended devices only	8.4	13	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz			
		11	16	mA	+125°C	VDD = 5.0V	(PRI_RUN , EC oscillator)			
	All devices	15	20	mA	-40°C					
		15	20	mA	+25°C	VDD = 4.2V				
		15	20	mA	+85°C		Fosc = 40 MHz			
	All devices	20	25	mA	-40°C		(PRI_RUN , EC oscillator)			
		20	25	mA	+25°C	VDD = 5.0V				
		20	25	mA	+85°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

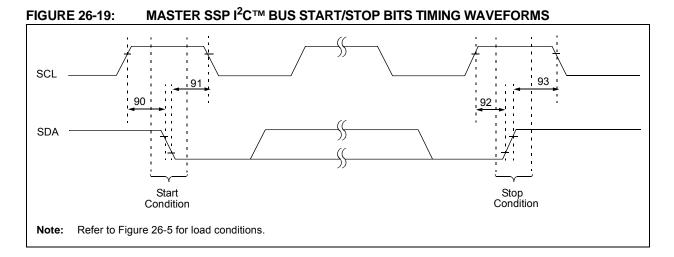
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

26.2

DC Characteristics: Power-Down and Supply Current PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

PIC18LF2 (Indus		•	rating (perature	•	ess otherwise states $4 \le +85^{\circ}$ C for indu	,			
PIC18F2420/2520/4420/4520 (Industrial, Extended)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Device	Тур	Max	Units		Conditio	ns		
	Supply Current (IDD) ⁽²⁾								
	All devices	7.5	10	mA	-40°C				
		7.4	10	mA	+25°C	VDD = 4.2V	Fosc = 4 MHz, 16 MHz internal		
		7.3	10	mA	+85°C	VDD - 4.2V	(PRI_RUN HS+PLL)		
	Extended devices only	8.0	12	mA	+125°C	1	(<u>.</u>		
	All devices	10	12	mA	-40°C		E		
		10	12	mA	+25°C	VDD = 5.0V	Fosc = 4 MHz, 16 MHz internal		
		9.7	12	mA	+85°C	VDD - 5.0V	(PRI_RUN HS+PLL)		
	Extended devices only	10	14	mA	+125°C		(
	All devices	15	20	mA	-40°C		Fosc = 10 MHz,		
		15	20	mA	+25°C	VDD = 4.2V	40 MHz internal		
		15	20	mA	+85°C]	(PRI_RUN HS+PLL)		
	All devices	20	25	mA	-40°C		Fosc = 10 MHz,		
		20	25	mA	+25°C	VDD = 5.0V	40 MHz internal		
		20	25	mA	+85°C]	(PRI_RUN HS+PLL)		


Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

- 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

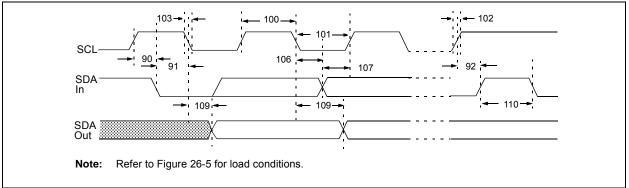


TABLE 26-20: MASTER SSP I²C[™] BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	I Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—		Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)			first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		generated
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)		1	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	1	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 26-20: MASTER SSP I²C[™] BUS DATA TIMING

High/Low-Voltage Detect	
Applications	
Associated Registers	
Characteristics	
Current Consumption	
Effects of a Reset	
Operation	
During Sleep	
Setup	
Start-up Time	
Typical Application	
HLVD. See High/Low-Voltage Detect.	

I

I/O Ports	105
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	
Baud Rate Generator	187
Bus Collision	
During a Repeated Start Condition	
During a Stop Condition	
Clock Arbitration	
Clock Stretching	
10-Bit Slave Receive Mode (SEN = 1)	
10-Bit Slave Transmit Mode	
7-Bit Slave Receive Mode (SEN = 1)	
7-Bit Slave Transmit Mode	
Clock Synchronization and the CKP bit (SEN = 1)	101
Effects of a Reset	
General Call Address Support	195
I ² C Clock Rate w/BRG	
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition Timing	
Transmission	
Multi-Master Communication, Bus	
Collision and Arbitration	
Multi-Master Mode	
Operation	
Read/Write Bit Information (R/W Bit)	
Registers	170
Serial Clock (RC3/SCK/SCL)	175
Slave Mode	
Addressing	174
Reception	175
Transmission	
Sleep Operation	
Stop Condition Timing	
ID Locations	
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	. 249, 266
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	
Indexed Literal Offset Mode	
Indirect Addressing	
INFSNZ Initialization Conditions for all Registers	
Instruction Cycle	
Clocking Scheme	
Instruction Flow/Pipelining	
Instruction Set	

ADDLW	. 273
ADDWF	
ADDWF (Indexed Literal Offset Mode)	
ADDWFC	
ANDWF BC	
BC	
BN	
BNC	
BNN	
BNOV	. 278
BNZ	
BOV	. 281
BRA	. 279
BSF	
BSF (Indexed Literal Offset Mode)	. 315
BTFSC	
BTFSS	
BTG	
BZ	
CALL	
CLRF	
CLRWDT	
COMF	
CPFSEQ CPFSGT	
CPFSGT	
DAW	
DCFSNZ	
DECF	
DECFSZ	
Extended Instruction Set	
General Format	
GOTO	
INCF	. 288
INCFSZ	. 289
INFSNZ	. 289
IORLW	
IORWF	
LFSR	
MOVF	
MOVFF	
MOVLB	
MOVLW	
MULLW	
MULWF	
NEGE	
NEGF	. 295
NOP	. 295 . 295
NOP Opcode Field Descriptions	. 295 . 295 . 268
NOP	. 295 . 295 . 268 . 296
NOP Opcode Field Descriptions POP PUSH	. 295 . 295 . 268 . 296 . 296
NOP Opcode Field Descriptions POP	. 295 . 295 . 268 . 296 . 296 . 297
NOP Opcode Field Descriptions POP PUSH RCALL	. 295 . 295 . 268 . 296 . 296 . 297 . 297
NOP Opcode Field Descriptions POP PUSH RCALL RESET	. 295 . 295 . 268 . 296 . 296 . 297 . 297 . 298
NOP Opcode Field Descriptions POP PUSH RCALL RESET RETFIE	. 295 . 295 . 268 . 296 . 296 . 296 . 297 . 297 . 298 . 298
NOP Opcode Field Descriptions. POP PUSH. RCALL RESET. RETFIE RETLW RETURN RLCF	. 295 . 295 . 268 . 296 . 296 . 297 . 297 . 297 . 298 . 298 . 299 . 299
NOP Opcode Field Descriptions. POP PUSH. RCALL RESET. RETFIE RETLW RETURN. RLCF RLNCF. RLNCF	. 295 . 295 . 268 . 296 . 296 . 297 . 297 . 297 . 298 . 298 . 299 . 299 . 300
NOP Opcode Field Descriptions. POP PUSH. RCALL RESET. RETFIE RETLW RETURN RLCF RLNCF. RRCF.	. 295 . 295 . 268 . 296 . 296 . 297 . 297 . 297 . 298 . 298 . 299 . 299 . 300 . 300
NOP Opcode Field Descriptions. POP PUSH. RCALL RESET RETFIE RETTRIN RETURN RLCF RLNCF RRCF. RRNCF RRNCF	. 295 . 295 . 268 . 296 . 296 . 297 . 297 . 297 . 298 . 299 . 299 . 300 . 300 . 301
NOP Opcode Field Descriptions. POP PUSH. RCALL RESET. RETFIE RETTRIN RETURN. RLOF RLNCF. RRCF. RRNCF. SETF	. 295 . 295 . 268 . 296 . 296 . 297 . 297 . 297 . 297 . 298 . 299 . 299 . 300 . 300 . 301 . 301
NOP Opcode Field Descriptions. POP PUSH. RCALL RESET RETFIE RETTRIN RETURN RLCF RLNCF RRCF. RRNCF RRNCF	. 295 . 295 . 268 . 296 . 296 . 297 . 297 . 297 . 298 . 299 . 299 . 300 . 300 . 301 . 301 . 315

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com