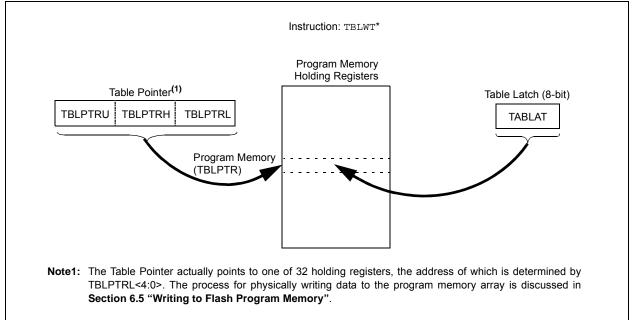


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2520t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 6-2: TABLE WRITE OPERATION

6.2 Control Registers

Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 6-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see **Section 23.0 "Special Features of the CPU"**). When clear, memory selection access is determined by EEPGD. The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is
	read as '1'. This can indicate that a write
	operation was prematurely terminated by
	a Reset, or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RC0/T1OSO/	RC0	0	0	DIG	LATC<0> data output.
T13CKI		1	Ι	ST	PORTC<0> data input.
	T10S0	x	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O.
	T13CKI	1	Ι	ST	Timer1/Timer3 counter input.
RC1/T1OSI/CCP2	RC1	0	0	DIG	LATC<1> data output.
		1	Ι	ST	PORTC<1> data input.
	T1OSI	x	I	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.
	CCP2 ⁽¹⁾	0	0	DIG	CCP2 compare and PWM output; takes priority over port data.
		1	Ι	ST	CCP2 capture input.
RC2/CCP1/P1A	RC2	0	0	DIG	LATC<2> data output.
		1	Ι	ST	PORTC<2> data input.
	CCP1	0	0	DIG	ECCP1 compare or PWM output; takes priority over port data.
		1	Ι	ST	ECCP1 capture input.
	P1A ⁽²⁾	0	0	DIG	ECCP1 Enhanced PWM output, channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RC3/SCK/SCL	RC3	0	0	DIG	LATC<3> data output.
		1	Ι	ST	PORTC<3> data input.
	SCK	0	0	DIG	SPI clock output (MSSP module); takes priority over port data.
		1	Ι	ST	SPI clock input (MSSP module).
	SCL	0	0	DIG	I ² C [™] clock output (MSSP module); takes priority over port data.
		1	Ι	I ² C/SMB	I ² C clock input (MSSP module); input type depends on module setting
RC4/SDI/SDA	RC4	0	0	DIG	LATC<4> data output.
		1	Ι	ST	PORTC<4> data input.
	SDI	1	I	ST	SPI data input (MSSP module).
	SDA	1	0	DIG	I ² C data output (MSSP module); takes priority over port data.
		1	I	I ² C/SMB	I ² C data input (MSSP module); input type depends on module setting.
RC5/SDO	RC5	0	0	DIG	LATC<5> data output.
		1	Ι	ST	PORTC<5> data input.
	SDO	0	0	DIG	SPI data output (MSSP module); takes priority over port data.
RC6/TX/CK	RC6	0	0	DIG	LATC<6> data output.
		1	I	ST	PORTC<6> data input.
	ТХ	1	0	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as output.
	СК	1	0	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.
		1	I	ST	Synchronous serial clock input (EUSART module).
RC7/RX/DT	RC7	0	0	DIG	LATC<7> data output.
		1	1	ST	PORTC<7> data input.
	RX	1	I	ST	Asynchronous serial receive data input (EUSART module).
	DT	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
		1	Ι	ST	Synchronous serial data input (EUSART module). User must configure as an input.

TABLE 10-5: PORTC I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; $I^2C/SMB = I^2C/SMB$ us input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

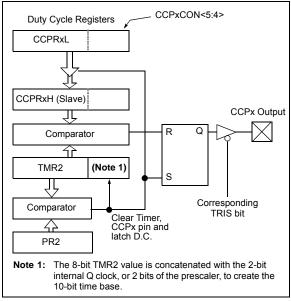
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. Alternate assignment is RB3.

2: Enhanced PWM output is available only on PIC18F4520 devices.

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	
IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	
bit 7	L						bit	
Legend:								
R = Readab	le hit	W = Writable	bit	II = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR		'1' = Bit is se		'0' = Bit is cle		x = Bit is unknown		
bit 7	IBF: Input B	uffer Full Status	bit					
		has been receiv has been rece	ed and waiting i ived	to be read by t	he CPU			
bit 6	OBF: Output	t Buffer Full Sta	tus bit					
		out buffer still ho out buffer has b	olds a previously een read	y written word				
bit 5	IBOV: Input	Buffer Overflow	Detect bit (in N	/licroprocessor	mode)			
		ccurred when a low occurred	previously input	word has not b	een read (must	be cleared in so	oftware)	
bit 4	PSPMODE:	Parallel Slave I	Port Mode Sele	ct bit				
		Slave Port mod purpose I/O mo						
bit 3	Unimpleme	nted: Read as	ʻ0 '					
bit 2	TRISE2: RE	2 Direction Cor	ntrol bit					
	1 = Input							
	0 = Output							
bit 1	-	1 Direction Cor	ntrol bit					
	1 = Input 0 = Output							
bit 0	•	0 Direction Cor	ntrol bit					
	1 = Input							

REGISTER 10-1: TRISE REGISTER (40/44-PIN DEVICES ONLY)

15.4 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP2 pin is multiplexed with a PORTB or PORTC data latch, the appropriate TRIS bit must be cleared to make the CCP2 pin an output.

Note:	Clearing the CCP2CON register will force
	the RB3 or RC1 output latch (depending on
	device configuration) to the default low
	level. This is not the PORTB or PORTC I/O
	data latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

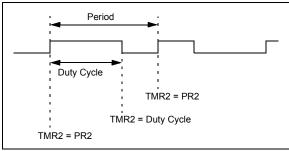
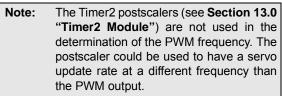

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.4.4** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

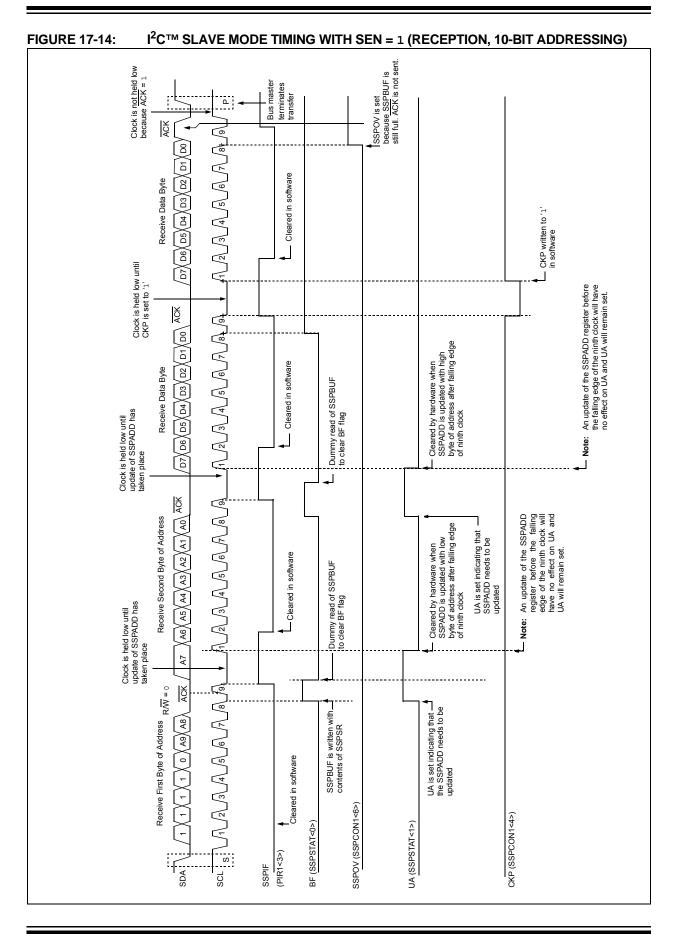

EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set (exception: if PWM duty cycle = 0%, the CCPx pin will not be set)
- The PWM duty cycle is latched from CCPRxL into CCPRxH


15.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPRxL register and to the CCPxCON<5:4> bits. Up to 10-bit resolution is available. The CCPRxL contains the eight MSbs and the CCPxCON<5:4> bits contain the two LSbs. This 10-bit value is represented by CCPRxL:CCPxCON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 15-2:

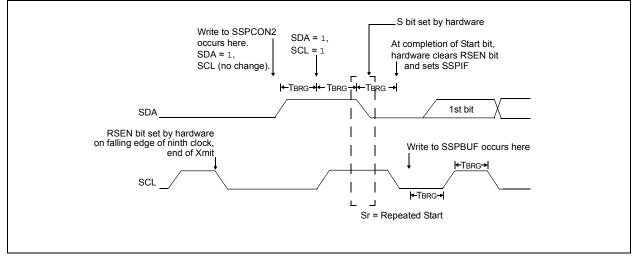
```
PWM Duty Cycle = (CCPRxL:CCPxCON<5:4>) •
Tosc • (TMR2 Prescale Value)
```

CCPRxL and CCPxCON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPRxH until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPRxH is a read-only register.

17.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

17.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 17-20: REPEATED START CONDITION WAVEFORM

19.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 19-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

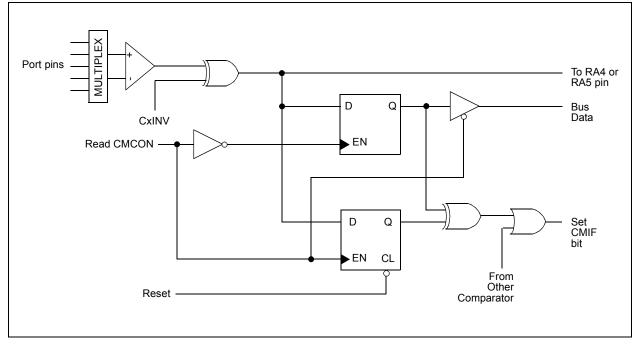
EQUATION 19-1: ACQUISITION TIME

TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient = TAMP + TC + TCOFF

EQUATION 19-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) ln(1/2048)

EQUATION 19-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME


TACQ	=	TAMP + TC + TCOFF		
TAMP	=	0.2 µs		
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs		
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ				
Тс	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2047) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.05 μs		
TACQ	=	$0.2 \ \mu s + 1 \ \mu s + 1.2 \ \mu s$ 2.4 \ \ \ \ \ \ \ \ s		

To calculate the minimum acquisition time, Equation 19-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 19-3 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V ightarrow Rss$ = 2 k Ω
Temperature	=	85°C (system max.)

FIGURE 20-3: COMPARATOR OUTPUT BLOCK DIAGRAM

20.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register
	(C1OUT or C2OUT) should occur when a
	read operation is being executed (start of
	the Q2 cycle), then the CMIF (PIR2<6>)
	interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit, CMIF.

A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

20.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

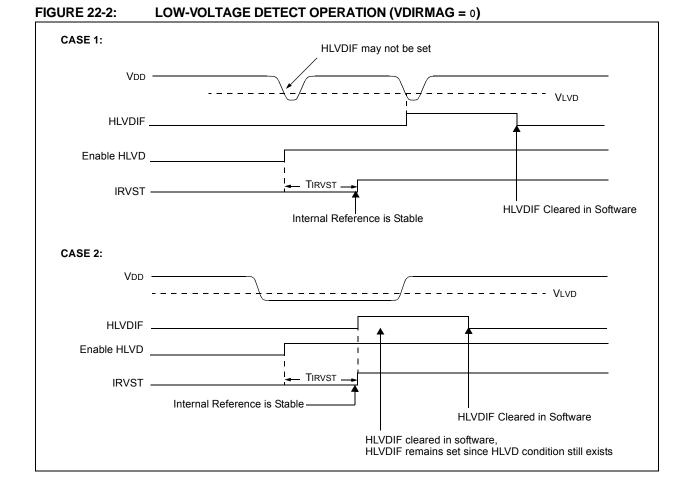
20.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM<2:0> = 111). However, the input pins (RA0 through RA3) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting of the PCFG<3:0> bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.

22.2 HLVD Setup

The following steps are needed to set up the HLVD module:

- 1. Write the value to the HLVDL<3:0> bits that selects the desired HLVD trip point.
- Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- Enable the HLVD interrupt, if interrupts are desired, by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>). An interrupt will not be generated until the IRVST bit is set.


22.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B. Depending on the application, the HLVD module does not need to be operating constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled.

22.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification parameter D420, may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36.

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (refer to Figure 22-2 or Figure 22-3).

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status	Notes
		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL C	OPERAT	TIONS							
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit)2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	IORY ←	PROGRAM MEMORY OPERATION	NS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

TG f, b {,a} $\leq f \leq 255$ $\leq b < 7$ $\in [0,1]$ $\overline{\langle b \rangle} \rightarrow f < b >$ one 0111 bbba ffff ffff it 'b' in data memory location 'f' is iverted. 'a' is '0', the Access Bank is selected. 'a' is '0', the Access Bank is selected. 'a' is '1', the BSR is used to select the iPR bank (default). 'a' is '0' and the extended instruction et is enabled, this instruction operates indexed Literal Offset Addressing node whenever f ≤ 95 (5Fh). See	Syntax: Operands: Operation: Status Affected Encoding: Description: Words:	1110If the Over program wThe 2's co added to the incrementer instructionPC + 2 + 2 two-cycle1	bit is '1', $2n \rightarrow PC$ 0100 nm flow bit is '1', th	hen the ber, '2n', is e PC will have next ess will be
$ \leq b < 7 \\ \in [0,1] \\ \hline \\ $	Operation: Status Affected Encoding: Description: Words:	if Overflow (PC) + 2 + None 1110 If the Over program w The 2's co added to th increment instruction PC + 2 + 2 two-cycle 1	y bit is '1', $2n \rightarrow PC$ 1000 nmm flow bit is '1', th ill branch. mplement num ne PC. Since the ed to fetch the in , the new addressed 2n. This instruct	hen the ber, '2n', is e PC will have next ess will be
$\begin{array}{c} \in [0,1] \\ \hline \\ $	Status Affected Encoding: Description: Words:	(PC) + 2 + None 1110 If the Over program w The 2's co added to th increment instruction PC + 2 + 2 two-cycle	$2n \rightarrow PC$ 0100 nm flow bit is '1', th fill branch. mplement num he PC. Since the ed to fetch the is , the new address 2n. This instruct	hen the ber, '2n', is e PC will have next ess will be
one 0111 bbba ffff ffff it 'b' in data memory location 'f' is iverted. 'a' is '0', the Access Bank is selected. 'a' is '1', the BSR is used to select the PR bank (default). 'a' is '0' and the extended instruction et is enabled, this instruction operates Indexed Literal Offset Addressing	Encoding: Description: Words:	1110If the Over program wThe 2's co added to the incrementer instructionPC + 2 + 2 two-cycle1	flow bit is '1', th rill branch. mplement num re PC. Since th ed to fetch the i , the new addre 2n. This instruct	hen the ber, '2n', is e PC will have next ess will be
0111bbbaffffffffit 'b' in data memory location 'f' is overted.'a' is '0', the Access Bank is selected.'a' is '0', the BSR is used to select the iPR bank (default).'a' is '0' and the extended instruction et is enabled, this instruction operates Indexed Literal Offset Addressing	Description: Words:	If the Over program w The 2's co added to th increment instruction PC + 2 + 2 two-cycle	flow bit is '1', th rill branch. mplement num re PC. Since th ed to fetch the i , the new addre 2n. This instruct	hen the ber, '2n', is e PC will have next ess will be
it 'b' in data memory location 'f' is werted. 'a' is '0', the Access Bank is selected. 'a' is '1', the BSR is used to select the IPR bank (default). 'a' is '0' and the extended instruction et is enabled, this instruction operates Indexed Literal Offset Addressing	Description: Words:	program w The 2's co added to th incrementu instruction PC + 2 + 2 two-cycle	flow bit is '1', th rill branch. mplement num re PC. Since th ed to fetch the i , the new addre 2n. This instruct	ber, '2n', is e PC will have next ess will be
verted. 'a' is '0', the Access Bank is selected. 'a' is '1', the BSR is used to select the PR bank (default). 'a' is '0' and the extended instruction et is enabled, this instruction operates Indexed Literal Offset Addressing	Words:	program w The 2's co added to th incrementu instruction PC + 2 + 2 two-cycle	vill branch. mplement num ne PC. Since th ed to fetch the r , the new addre ?n. This instruct	ber, '2n', is e PC will have next ess will be
ection 24.2.3 "Byte-Oriented and it-Oriented Instructions in Indexed iteral Offset Mode" for details.	Cycles: Q Cycle Activi If Jump:	1(2) ity:		
		02	03	Q4
			Process	Write to PC
		'n'	Data	
Q2 Q3 Q4	No	No	No	No
Read Process Write		operation	operation	operation
gister 'f' Data register 'f'	•	Q2	Q3	Q4
IG PORTC, 4, 0			Process Data	No operation
0111 0101 [75h] 0110 0101 [65h]	PC After Instr If Ov	= a ruction verflow = 1 PC = a	ddress (Jump)
g	g PORTC, 4, 0 0111 0101 [75h]	Q2 Q3 Q4 Read process Write register 'f' Data register 'f' G PORTC, 4, 0 0111 0101 0110 0101 0110 0101 [65h] Example: PC After Instruction	Q2 Q3 Q4 Read Process Write jister 'f' Data register 'f' G PORTC, 4, 0 If No Jump: 0111 0101 [75h] Example: HERE 0110 0101 [65h] Example: HERE 0110 0101 [65h] PC = aa After Instruction If Overflow = 13 PC = aa If Overflow = 03	Q2 Q3 Q4 Read process lister 'f' Write register 'f' G PORTC, 4, 0 0111 0101 [75h] Example: 0110 0101 [65h] Example: HERE Before Instruction PC address (HERE After Instruction If Overflow If Overflow If Overflow If Overflow If Overflow

Syntax:CLRF f {.a}Operands: $0 \le f \le 255$ $a \in [0,1]$ Operation:Operation: $000h \rightarrow f$, $1 \rightarrow Z$ $1 \rightarrow Z$ Status Affected:ZEncoding: 0110 0110 $101a$ f 'a' is 'o', the Access Bank is selected.If 'a' is 'o', and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). SeeSection 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles:1Q Cycle Activity:Q 1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q2Q3Q4	, ,
$a \in [0,1]$ Operation: $000h \rightarrow f$, $1 \rightarrow Z$ Operation: $000h \rightarrow WDT$, $000h \rightarrow WDT postscalerStatus Affected:ZI \rightarrow \overline{TO},1 \rightarrow \overline{PD}I \rightarrow \overline{TO},1 \rightarrow \overline{PD}Status Affected:TO, \overline{PD}Description:Clears the contents of the specifiedregister.Status Affected:TO, \overline{PD}Encoding:0000 0000 000If 'a' is 'o', the Access Bank is selected.If 'a' is 'o', the Access Bank is selected.If 'a' is 'o' and the extended instructionset is enabled, this instruction operatesin Indexed Literal Offset Addressingmode whenever f \leq 95 (5Fh). SeeSection 24.2.3 "Byte-Oriented andBit-Oriented Instructions in IndexedLiteral Offset Mode" for details.Words:1Words:1Q1Q2Q3Q Cycle Activity:Q1Q2Q3DecodeNoProcessoperationDataData$,
Operation: $000h \rightarrow f,$ $1 \rightarrow Z$ $000h \rightarrow WDT$ postscalerStatus Affected:Z $1 \rightarrow \overline{D},$ $1 \rightarrow \overline{PD}$ Encoding: 0110 $101a$ ffffDescription:Clears the contents of the specified register.Status Affected: $\overline{TO}, \overline{PD}$ If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Words:1Q1Q2Q3Q Cycle Activity:Q1Q2Q3DecodeNoProcessoperationDataData	3
$1 \rightarrow Z$ $1 \rightarrow \overline{TO}$ Status Affected:Z $1 \rightarrow \overline{TO}$ Encoding: 0110 $101a$ ffffDescription:Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Status Affected: $\overline{TO}, \overline{PD}$ Words:1CLRWDT instruction result Words:Words:1Q Cycle Activity:Q1Q2Q3Q Cycle Activity:Q1Q2Q3DecodeNoProcessoperationDataDataQ Cycle Activity:Example:CLRWDTBefore InstructionExample:CLRWDT	,
Status Affected:Z $1 \rightarrow \overline{PD}$ Encoding:0110101affffffffDescription:Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Uoto1Words:1Q2Q3Q Cycles:1Q2Q3DecodeNoProcess OperationQ Cycle Activity:Example:CLRWDTQ Cycle Activity:Example:CLRWDT	
Status Affected:ZEncoding: 0110 $101a$ ffffffffDescription:Clears the contents of the specified register. 0000 0000 0000 If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).Description:CLRWDT instruction result Watchdog Timer. It also scaler of the WDT. Statu PD, are set.If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Words:1Q1Q2Q3DecodeNoProcess operationQ Cycle Activity:1Example:CLRWDTQ cycle Activity:Example:CLRWDT	
Encoding.0110101aIIIIIIIIDescription:Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Encoding:00000000000Words:1Cycles:1Q cycle Activity:Q1Q2Q3DecodeNoProcess operationQ cycle Activity:Example:CLRWDTQ cycle Activity:Example:CLRWDT	
Description: Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the Access Bank is selected. Description: If 'a' is 'o', the BSR is used to select the Scaler of the WDT. Statu GPR bank (default). PD, are set. If 'a' is 'o' and the extended instruction operates No in Indexed Literal Offset Addressing Q1 mode whenever f ≤ 95 (5Fh). See Q1 Section 24.2.3 "Byte-Oriented and Decode Bit-Oriented Instructions in Indexed Decode Literal Offset Mode" for details. Decode Words: 1 Cycles: 1 Q Cycle Activity: Example: CLRWDT CLRWDT	0.0
If 'a' is 'o', the Access Bank is selected. Watchdog Timer. It also scaler of the WDT. Statu PD, are set. If 'a' is '1', the BSR is used to select the GPR bank (default). Words: 1 If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Words: 1 Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Words: 1 Decode No Process operation Data Words: 1 Example: CLRWDT Example: CLRWDT Q Cycle Activity: Before Instruction Example: CLRWDT Before Instruction	
If 'a' is '1', the BSR is used to select the GPR bank (default). scaler of the WDT. Statu PD, are set. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Words: 1 Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Words: 1 Decode No Process Q Cycle Activity: 1 Decode Data Q Cycle Activity: CLRWDT Example: CLRWDT Q Cycle Activity: Before Instruction Example: CLRWDT	
If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Words: 1 Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q Cycle Activity: Q1 Q2 Q3 Words: 1 Decode No Process Q Cycles: 1 Decode No Process Q Cycle Activity: CLRWDT Example: CLRWDT Q Cycle Activity: Before Instruction Example: CLRWDT	
set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Cycles: 1 Words: 1 Q2 Q3 Decode No Process operation Vords: 1 Cycles: 1	
in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Cycles: 1 Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q Cycle Activity: Words: 1 Cycles: 1 Cycles: 1 Cycles: 1 Cycles: 1 Cycles: 1 Cycles: 1 Cycle Activity: CLRWDT Before Instruction	
Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Words: 1 Decode No Process operation Data Cycles: 1 Example: CLRWDT Q Cycle Activity: Estimate Before Instruction	
Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Words: 1 Decode No Process Data Cycles: 1 Example: CLRWDT Q Cycle Activity: Before Instruction Before Instruction	
Literal Offset Mode" for details. Decode No Process Words: 1 Decode No Data Cycles: 1 Example: CLRWDT Q Cycle Activity: Before Instruction	Q4
Words: 1 Cycles: 1 Q Cycle Activity: Example: CLRWDT Before Instruction	No
Q Cycle Activity: Before Instruction	operation
Q Cycle Activity: Before Instruction	
Decode Read Process Write After Instruction	
register 'f' Data register 'f' WDT Counter = 00h WDT Postscaler = 0	
$\overline{\text{TO}}$ = 1	
Example: CLRF FLAG_REG, 1 PD = 1	
Before Instruction FLAG REG = 5Ah	
After Instruction	
$FLAG_REG = 00h$	

NEGF	Negate f			
Syntax:	NEGF f	{,a}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in \ [0,1] \end{array}$			
Operation:	(\overline{f}) + 1 \rightarrow	f		
Status Affected:	N, OV, C, I	DC, Z		
Encoding:	0110	110a	ffff	ffff
Description:	Location 'f compleme data memo If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' a set is enab in Indexed mode whe Section 24 Bit-Orient Literal Off	nt. The reprint of the form of the form of the form of the BSR is (default), and the explored, this is Literal O never $f \leq 4.2.3$ "By ed Instru	esult is plac on 'f'. as Bank is s used to xtended in nstruction ffset Addre 95 (5Fh). te-Oriente ictions in	ced in the selected. select the struction operates essing See ed and Indexed
Words:	1			
Cycles:	1			

NOF	•	No Opera	ation			
Synta	ax:	NOP				
Oper	ands:	None				
Oper	ation:	No operati	No operation			
Statu	s Affected:	None				
Enco	ding:	0000	0000	000	00	0000
		1111	xxxx	XXX	x	xxxx
Desc	ription:	No operati	on.			
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q	3		Q4
	Decode	No	No)		No
		operation	opera	tion	ор	eration

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example: NEGF REG, 1

Before Instruction			
REG =	0011	1010	[3Ah]
After Instruction			
REG =	1100	0110	[C6h]

TBLRD Table Read

ТВ	LKD	Table Rea	u				
Syr	ntax:	TBLRD (*;	*+; *-	; +*)			
Оре	erands:	None					
Ope	eration:	if TBLRD *, (Prog Mem TBLPTR - N if TBLRD *+ (Prog Mem (TBLPTR) + if TBLRD *-, (Prog Mem (TBLPTR) - if TBLRD +* (TBLPTR) + (Prog Mem	No C , (TBL 1 → (TBL 1 → , 1 →	hange PTR) → TBL PTR) → TBL	$\hat{P};$ PTR; $\hat{P} \rightarrow TA$ $\hat{P} \rightarrow TA$ PTR; PTR,	ABLA ABLA	т, т,
Stat	tus Affected:	None					
Enc	coding:	0000	00	000	000	00	10nn nn=0 * =1 *+ =2 *- =3 +*
	scription:	TBLPT The TBLRD of TBLPTR • no chang • post-incre • post-decr	Mem mon PTF R (a the the as to e emer emer emer	nory (F y, a po R) is u 21-bit progra ddres > = 0:1 > = 1:1 uction blows nt	P.M.). 7 pointer o ised. t pointe am me s rangu Least S of Pro Word Most Si Progr Word u can m	Fo ad called er) po mory e. Signific ogran gnific am N	dress the d Table bints to 2. TBLPTR icant Byte n Memory cant Byte of Memory
Ma	rdo.	 pre-increi 	nem				
Wo		-					
	ches:	2					
Q	Cycle Activit	y. Q2		C	23		Q4
	Decode	No operation	1	Ν	lo ration	c	No peration

TBLRD Table Read (Continued)

Example1:	TBLRD	*+	;	
Before Instruction	on			
TABLAT TBLPTR MEMORY	(00A356h))	= = =	55h 00A356h 34h
After Instruction				
TABLAT TBLPTR			= =	34h 00A357h
Example2:	TBLRD	+*	;	
Before Instruction	on			
TABLAT TBLPTR MEMORY MEMORY After Instruction			= = =	AAh 01A357h 12h 34h
TABLAT TBLPTR			= =	34h 01A358h

No

operation

No operation

(Read Program Memory) No

operation

No operation

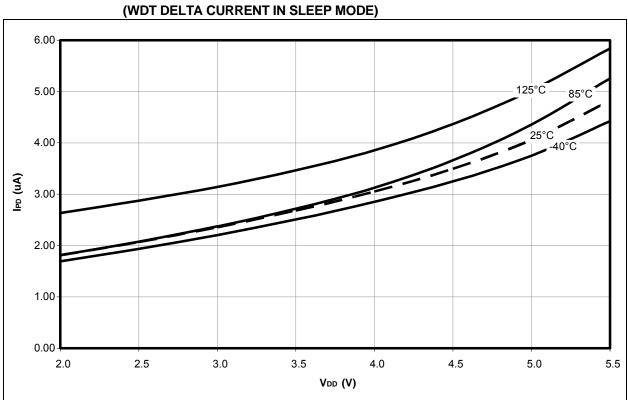
(Write TABLAT)

MOVSS	Move Inc	lexed to	Indexed	
Syntax:	MOVSS	[z _s], [z _d]		
Operands:	$0 \le z_s \le 12$ $0 \le z_d \le 12$			
Operation:	((FSR2) +	$z_s) \rightarrow ((F$	SR2) + z _d)
Status Affected:	None			
Encoding: 1st word (source) 2nd word (dest.)	1110 1111	1011 xxxx	lzzz xzzz	zzzz _s zzzz _d
Description	The conter moved to h addresses registers a 7-bit literal respective registers of the 4096-b (000h to F The MOVS: PCL, TOS destination If the resul an indirect value retur resultant d an indirect	the destin of the source determ offsets 'z ly, to the an be loc oyte data FFh). s instructi U, TOSH register. tant source addressi rned will b estination addressi	ation regis urce and du- nined by ac- s, or 'z _d ', value of FS ated anyw memory sp on cannot or TOSL a ce address ng register be 00h. If the address p ng register	ter. The estination dding the SR2. Both here in bace use the as the points to r, the points to r, the
Words:	2			
Cycles:	2			
Q Cycle Activity:				
Q1	Q2	Q	3	Q4

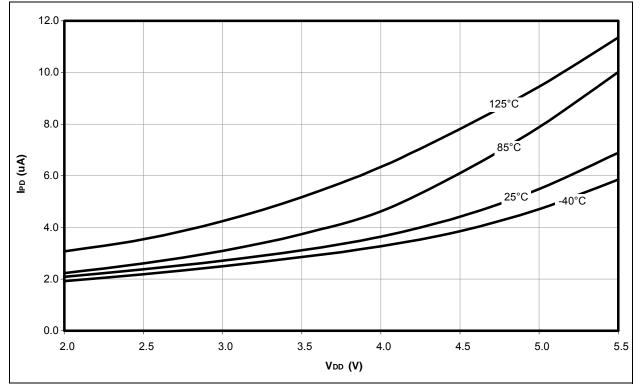
_	Q1	Q2	Q3	Q4
	Decode	Determine	Determine	Read
		source addr	source addr	source reg
	Decode	Determine dest addr	Determine dest addr	Write to dest reg

Example:	MOVSS	[05h],	[06h]
Before Instruction	on		
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	33h	

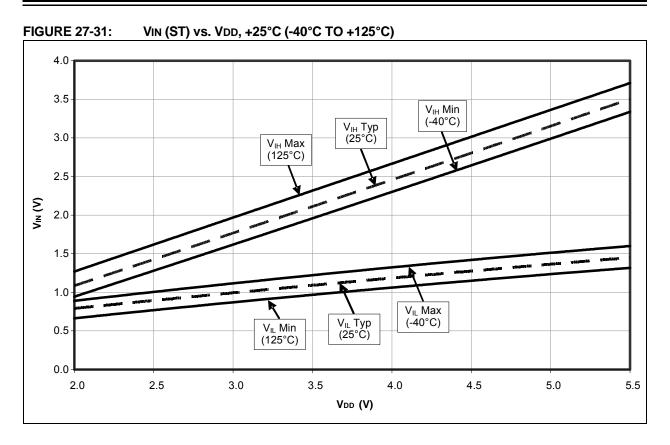
	Store Litera			
Syntax:	PUSHL k			
Operands:	$0 \leq k \leq 255$			
Operation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow			
Status Affected:	None			
Encoding:	1111	1010	kkkk	kkkk
	is decremen This instruct onto a softw	ion allows	users to	•
Words:	1			
Words: Cycles:	1 1			
	1			
Cycles:	1		Q3	Q4
Q Cycle Activity	1 y: Q2	.' Pro	Q3 ocess lata	Q4 Write to destination

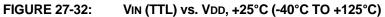

After Instruction		
FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h

	20-13.						
Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	4.0		μs	
			400 kHz mode	0.6		μs	
			MSSP module	1.5 Tcy			
101 TLO	TLOW	Clock Low Time	100 kHz mode	4.7		μs	
			400 kHz mode	1.3		μs	
			MSSP module	1.5 Tcy			
102 TR	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103 TF	TF	SDA and SCL Fall	100 kHz mode	_	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90 Tsu:sta	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μs	Only relevant for Repeated
			400 kHz mode	0.6	_	μs	Start condition
91	THD:STA		100 kHz mode	4.0		μs	After this period, the first
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated
106	06 THD:DAT	Data Input Hold	100 kHz mode	0		ns	
		Time	400 kHz mode	0	0.9	μs	
107	TSU:DAT		100 kHz mode	250	_	ns	(Note 2)
		Time	400 kHz mode	100		ns	
92 Tsu:sto	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs	
	Setup Time	400 kHz mode	0.6	_	μs		
109 Taa	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—		ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
D102	Св	Bus Capacitive Load	ding		400	pF	


TABLE 26-19: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.


2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement TSU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.



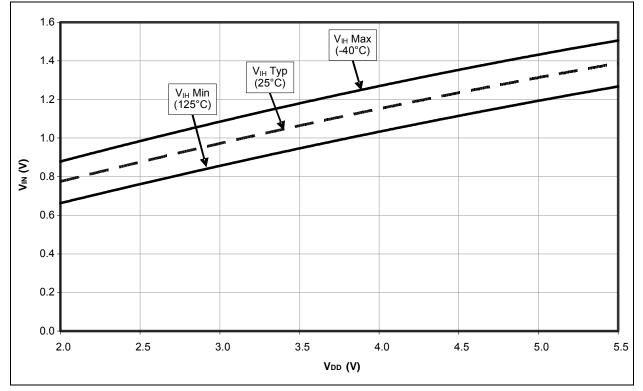
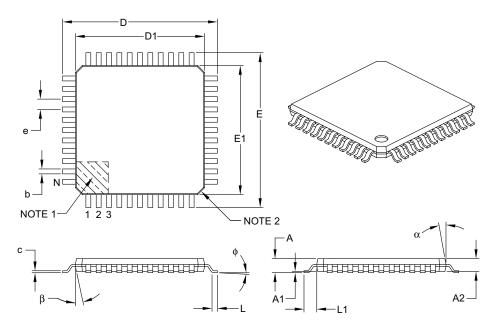

MAXIMUM WDT CURRENT vs. VDD ACROSS TEMPERATURE **FIGURE 27-10:** (WDT DELTA CURRENT IN SLEEP MODE)

FIGURE 27-9: TYPICAL WDT CURRENT vs. VDD ACROSS TEMPERATURE



© 2008 Microchip Technology Inc.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units MILLIMETERS		;	
Dimension Limits		MIN	NOM	MAX
Number of Leads	N	44		
Lead Pitch	е	0.80 BSC		
Overall Height	A	- – 1.20		
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

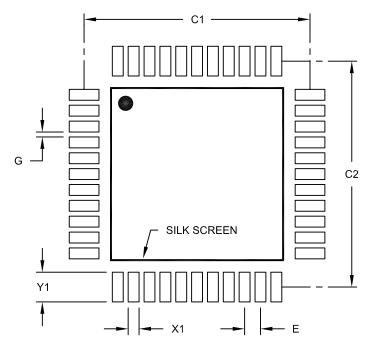
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Units Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A