

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4420-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	umber	Dia	Duffer						
Pin Name	SPDIP, SOIC	QFN	Ріп Туре	Туре	Description					
MCLR/Vpp/RE3 MCLR	1	26	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.					
VPP			Р		Programming voltage input.					
RE3			I	ST	Digital input.					
OSC1/CLKI/RA7 OSC1	9	6	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode: CMOS otherwise.					
CLKI			I	CMOS	External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)					
RA7			I/O	TTL	General purpose I/O pin.					
OSC2/CLKO/RA6 OSC2	10	7	ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.					
CLKO			0	—	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.					
RA6			I/O	TTL	General purpose I/O pin.					
Legend: TTL = TTL com ST = Schmitt ⁻	Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input									

TABLE 1-2: PIC18F2420/2520 PINOUT I/O DESCRIPTIONS

O = Output

= Power

Ρ

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

NOTES:

NOTES:

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1: 1 = Enables all high-priority interrupts 0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts <u>When IPEN = 1:</u> 1 = Enables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB<7:4> pins changed state (must be cleared in software) 0 = None of the RB<7:4> pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

						D 44/ 4	
R/W-1	R/W-1	0-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	СМІР	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7	OSCFIP: Osc 1 = High prio 0 = Low prior	sillator Fail Inter rity rity	rrupt Priority b	it			
bit 6	CMIP: Compa	arator Interrupt	Priority bit				
	1 = High prio 0 = Low prior	rity rity					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	EEIP: Data E	EPROM/Flash	Write Operatio	on Interrupt Pric	ority bit		
	1 = High prio 0 = Low prio	rity rity					
bit 3	BCLIP: Bus (Collision Interru	pt Priority bit				
	1 = High prio 0 = Low prio	rity rity					
bit 2	HLVDIP: High	n/Low-Voltage I	Detect Interrup	t Priority bit			
	1 = High prio 0 = Low prio	rity rity					
bit 1	TMR3IP: TM	R3 Overflow Inf	errupt Priority	bit			
	1 = High prio	ority					
	0 = Low prior	rity					
bit 0	CCP2IP: CCF	P2 Interrupt Pri	ority bit				
	1 = High prio 0 = Low prio	rity rity					

REGISTER 9-9: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52		
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	PORTA Da	PORTA Data Latch Register (Read and Write to Data Latch)							
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	Register				52		
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	51		
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	51		
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51		

TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

14.2 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 14-2). When the RD16 control bit (T3CON<7>) is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

14.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in Section 12.0 "Timer1 Module".

14.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

14.5 Resetting Timer3 Using the CCP Special Event Trigger

If either of the CCP modules is configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCP1M<3:0> or CCP2M<3:0> = 1011), this signal will reset Timer3. It will also start an A/D conversion if the A/D module is enabled (see **Section 15.3.4** "**Special Event Trigger**" for more information).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP module, the write will take precedence.

Note: The Special Event Triggers from the CCP2 module will not set the TMR3IF interrupt flag bit (PIR1<0>).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR2	OSCFIF	CMIF		EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE		EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
TMR3L	Timer3 Reg	gister Low B	yte						51
TMR3H	Timer3 Reg	gister High B	yte						51
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	50
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	51

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

C	CP1CON<7:6>	SIGNAL	0 Duty	>	PR2 + 1
				— Period —	
00	(Single Output)	P1A Modulated			
		P1A Modulated			
10	(Half-Bridge)	P1B Modulated	 1 1 1	ı ı ı	
		P1A Active		1 	
01	(Full-Bridge,	P1B Inactive	 1 1 1	- 	
01	Forward)	P1C Inactive	 1 1 1	1 1 	
		P1D Modulated		 	
		P1A Inactive	 1 1 1		1 1 1
11	(Full-Bridge, Reverse)	P1B Modulated			
		P1C Active	 ! !	I 	
		P1D Inactive	 1 1 	1 1 	י י י

FIGURE 16-2: PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 16-3: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

00	(Single Output)	P1A Modulated				
		P1A Modulated				i
10	(Half-Bridge)	P1B Modulated		Delay ⁽¹⁾	Delay	ĺ
		P1A Active		1 1 		1 1
0.1	(Full-Bridge,	P1B Inactive		 		
• Forward)	P1C Inactive		1 1 1	1 1 1	1 1 1	
		P1D Modulated		- 		
		P1A Inactive		1 1 1	1 1	ı
11	(Full-Bridge,	P1B Modulated				
Reverse)	P1C Active				1 1 1	
	P1D Inactive				 	
Rela	ationships:					•
• P • D	eriod = 4 * Tosc * (uty Cycle = Tosc * elay = 4 * Tosc * (F	PR2 + 1) * (TMR2 Pres (CCPR1L<7:0>:CCP1(PWM1CON<6:0>)	cale Va CON<5	alue) :4>) * (TMR2 Prescal	e Value)	

17.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCL output is forced to '0'. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has

already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2 C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 17-12).

		SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)			
0.3	—	_	_	—	_	_	—	_	_	_	_	_			
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103			
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51			
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12			
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_			
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_			
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_			

TABLE 18-3	BAUD RATES FOR ASYNCHRONOUS MODES	

	SYNC = 0, BRGH = 0, BRG16 = 0									
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51	
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12	
2.4	2.404	0.16	25	2.403	-0.16	12	—	—	—	
9.6	8.929	-6.99	6	—	_	_	_	_	_	
19.2	20.833	8.51	2	—	_	_	_	_	_	
57.6	62.500	8.51	0	—	_	_	—	_	_	
115.2	62.500	-45.75	0	_	_	_	_	_	_	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	
0.3		_	_		_	_	_			_	_	_	
1.2	—	—	—	—	—	—	—	—	—	—	—	—	
2.4	—	—	—	—	—	—	2.441	1.73	255	2.403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_	

	SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fosc = 1.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)		
0.3	—	_	_	_	_	_	0.300	-0.16	207		
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51		
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25		
9.6	9.615	0.16	25	9.615	-0.16	12	—	—	—		
19.2	19.231	0.16	12	_	—	—	—	—	_		
57.6	62.500	8.51	3	—	—	—	—	—	_		
115.2	125.000	8.51	1	—	—	—	—	—			

18.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RX pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.

- 3. Ensure bits, CREN and SREN, are clear.
- 4. If interrupts are desired, set enable bit, RCIE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 7. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCIE, was set.
- 8. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit, CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51	
RCREG	EUSART R	eceive Regi	ster						51	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51	
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	51	
SPBRGH	BRGH EUSART Baud Rate Generator Register High Byte									
SPBRG EUSART Baud Rate Generator Register Low Byte									51	
Legend: -	– = unimple	mented, rea	d as '0'. Sha	aded cells a	re not used	for synchron	ous master	reception.		

Note 1: Reserved in 28-pin devices; always maintain these bits clear.

22.2 HLVD Setup

The following steps are needed to set up the HLVD module:

- 1. Write the value to the HLVDL<3:0> bits that selects the desired HLVD trip point.
- Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- Enable the HLVD interrupt, if interrupts are desired, by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>). An interrupt will not be generated until the IRVST bit is set.

22.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B. Depending on the application, the HLVD module does not need to be operating constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled.

22.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification parameter D420, may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36.

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (refer to Figure 22-2 or Figure 22-3).

FIGURE 24-1:	GENERAL FORMAT FOR INSTRUCTIONS	
	Byte-oriented file register operations	Example Instruction
	15 10 9 8 7 0 OPCODE d a f (FILE #) d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address	ADDWF MYREG, W, B
	Byte to Byte move operations (2-word)	
	15 12 11 0 OPCODE f (Source FILE #) 0 15 12 11 0 1111 f (Destination FILE #) 0 f = 12-bit file register address 12	MOVFF MYREG1, MYREG2
	Bit-oriented file register operations	
	1512 119 8 70OPCODEb (BIT #)af (FILE #)b = 3-bit position of bit in file register (f) $a = 0$ to force Access Bank $a = 1$ for BSR to select bankf = 8-bit file register address	BSF MYREG, bit, B
	Literal operations	
	15 8 7 0 OPCODE k (literal) k k = 8-bit immediate value k k	MOVLW 7Fh
	Control operations	
	CALL, GOTO and Branch operations	
	15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal)	GOTO Label
	n = 20-bit immediate value	
	15 8 7 0 OPCODE S n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) S = Fast bit	CALL MYFUNC
	15 11 10 0 OPCODE n<10:0> (literal)	BRA MYFUNC
	15 8 7 0 OPCODE n<7:0> (literal)	BC MYFUNC

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

PIC18LF2 (Indus	PIC18LF2420/2520/4420/4520 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F24 (Indus	20/2520/4420/4520 trial, Extended)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended									
Param No.	Device	Тур	Max	Units	Conditions						
	Supply Current (IDD) ⁽²⁾										
	PIC18LF2X2X/4X20	0.8	1.1	mA	-40°C						
		0.8	1.1	mA	+25°C	VDD = 2.0V					
		0.8	1.1	mA	+85°C						
	PIC18LF2X2X/4X20	1.3	1.7	mA	-40°C						
		1.3	1.7	mA	+25°C	VDD = 3.0V	FOSC = 4 MHZ				
		1.3	1.7	mA	+85°C		INTOSC source)				
	All devices	2.5	3.5	mA	-40°C						
		2.5	3.5	mA	+25°C						
		2.5	3.5	mA	+85°C	VDD - 5.0V					
	Extended devices only	2.5	3.5	mA	+125°C						
	PIC18LF2X2X/4X20	2.9	5	μA	-40°C						
		3.1	5	μA	+25°C	VDD = 2.0V					
		3.6	9.5	μΑ	+85°C						
	PIC18LF2X2X/4X20	4.5	8	μA	-40°C						
		4.8	8	μA	+25°C	VDD = 3.0V	FOSC = 31 kHz				
		5.8	15	μA	+85°C		INTRC source)				
	All devices	9.2	16	μA	-40°C						
		9.8	16	μA	+25°C						
		11.0	35	μA	+85°C	vuu – 5.0V					
	Extended devices only	21	160	μA	+125°C]					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

26.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 26-5 apply to all timing specifications unless otherwise noted. Figure 26-5 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F2420/2520/4420/4520 and PIC18LF2420/2520/4420/4520 families of devices specifically and only those devices.

TABLE 26-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)						
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
AC CHARACTERISTICS	Operating voltage VDD range as described in DC specification Section 26.1 and						
	Section 26.3.						
	LF parts operate for industrial temperatures only.						

FIGURE 26-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 26-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 26-9: BROWN-OUT RESET TIMING

TABLE 26-10:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2			μs	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.4	4.1	4.71	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	55.6	65.5	75.4	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	2	—	μs	
35	TBOR	Brown-out Reset Pulse Width	200		—	μs	$VDD \le BVDD$ (see D005)
36	TIRVST	Time for Internal Reference Voltage to become Stable	—	20	50	μs	
37	Tlvd	High/Low-Voltage Detect Pulse Width	200	—	—	μs	$VDD \leq VLVD$
38	TCSD	CPU Start-up Time	_	10	—	μs	
39	TIOBST	Time for INTOSC to Stabilize	_	1	_	μs	

FIGURE 26-22: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 26-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	<u>SYNC RCV (MASTER & SLAVE)</u> Data Hold before CK ↓ (DT hold time)	10		ns	
126	TckL2dtl	Data Hold after CK \downarrow (DT hold time)	15	_	ns	

TABLE 26-24:A/D CONVERTER CHARACTERISTICS:PIC18F2420/2520/4420/4520 (INDUSTRIAL)PIC18LF2420/2520/4420/4520 (INDUSTRIAL)

Param No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions
A01	NR	Resolution		_	10	bit	$\Delta VREF \ge 3.0V$	
A03	EIL	Integral Linearity	Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linear	ity Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A06	EOFF	Offset Error		—	_	<±2.0	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error		—		<±1	LSb	$\Delta VREF \ge 3.0V$
A10	—	Monotonicity	Guaranteed ⁽¹⁾			—	$VSS \leq VAIN \leq VREF$	
A20	$\Delta VREF$	Reference Voltag (VREFH – VREFL)	1.8 3		_	V V	VDD < 3.0V VDD ≥ 3.0V	
A21	Vrefh	Reference Voltag	e High	Vss	_	VREFH	V	
A22	Vrefl	Reference Voltag	e Low	Vss – 0.3V	_	VDD - 3.0V	V	
A25	VAIN	Analog Input Volta	age	VREFL	_	Vrefh	V	
A30	ZAIN	Recommended In Analog Voltage S	npedance of ource	—		2.5	kΩ	
A40	IAD	A/D Current from	PIC18FXXXX	—	180	—	μΑ	Average current during
		Vdd	PIC18 LF XX20	—	90	—	μΑ	conversion
A50	IREF	VREF Input Currer	—	_	5	μA	During VAIN acquisition.	
					150	μA	During A/D conversion cycle.	

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETERS			
Dimensio	Dimension Limits				
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	А	0.80 0.90 1			
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	0.20	_	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B