

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4520-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Number Pin Buffer					
Pin Name	SPDIP, SOIC	QFN	Туре	Туре	Description
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	21	18	I/O I I I	TTL ST ST Analog	Digital I/O. External interrupt 0. PWM Fault input for CCP1. Analog input 12.
RB1/INT1/AN10 RB1 INT1 AN10	22	19	I/O I I	TTL ST Analog	Digital I/O. External interrupt 1. Analog input 10.
RB2/INT2/AN8 RB2 INT2 AN8	23	20	I/O I I	TTL ST Analog	Digital I/O. External interrupt 2. Analog input 8.
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	24	21	I/O I I/O	TTL Analog ST	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM2 output.
RB4/KBI0/AN11 RB4 KBI0 AN11	25	22	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog input 11.
RB5/KBI1/PGM RB5 KBI1 PGM	26	23	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	27	24	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	28	25	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL com ST = Schmitt O = Output	npatible in Trigger ir	nput nput wit	h CM0	OS levels	CMOS = CMOS compatible input or output s I = Input P = Power

TABLE 1-2: PIC18F2420/2520 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.7 Clock Sources and Oscillator Switching

Like previous PIC18 devices, the PIC18F2420/2520/ 4420/4520 family includes a feature that allows the device clock source to be switched from the main oscillator to an alternate low-frequency clock source. PIC18F2420/2520/4420/4520 devices offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- · Secondary oscillators
- · Internal oscillator block

The **primary oscillators** include the External Crystal and Resonator modes, the External RC modes, the External Clock modes and the internal oscillator block. The particular mode is defined by the FOSC<3:0> Configuration bits. The details of these modes are covered earlier in this chapter. The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

PIC18F2420/2520/4420/4520 devices offer the Timer1 oscillator as a secondary oscillator. This oscillator, in all power-managed modes, is often the time base for functions such as a Real-Time Clock (RTC).

Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T13CKI and RC1/T1OSI pins. Like the LP Oscillator mode circuit, loading capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in **Section 12.3 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor.

The clock sources for the PIC18F2420/2520/4420/4520 devices are shown in Figure 2-8. See **Section 23.0 "Special Features of the CPU"** for Configuration register details.

FIGURE 2-8: PIC18F2420/2520/4420/4520 CLOCK DIAGRAM

FIGURE 4-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

6.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 6-1. These operations on the TBLPTR only affect the low-order 21 bits.

6.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the five LSbs of the Table Pointer register (TBLPTR<4:0>) determine which of the 32 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 16 MSbs of the TBLPTR (TBLPTR<21:6>) determine which program memory block of 32 bytes is written to. For more detail, see **Section 6.5 "Writing to Flash Program Memory"**.

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 6-3:

TABLE POINTER BOUNDARIES BASED ON OPERATION

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

]				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF				
bit 7							bit 0				
Legend:											
R = Readable	R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7	OSCFIF: Osc	illator Fail Inter	rupt Flag bit								
	1 = Device os	scillator failed,	clock input has	changed to IN	ITOSC (must b	be cleared in so	ftware)				
	0 = Device cl	ock operating									
bit 6	CMIF: Compa	arator Interrupt	Flag bit								
	1 = Compara	tor input has cl	nanged (must l	be cleared in so	oftware)						
		tor input has no	ot changed								
DIT 5	Unimplement	ted: Read as ()'								
bit 4	EEIF: Data El	=PROM/Flash	Write Operatio	n Interrupt Flag	g bit						
	1 = The write	operation is co	omplete (must	be cleared in s	oftware)						
hit 2	BCLIE: Buc C		nt Elog hit	nas not been s							
bit 5	1 = A bus col	lision occurred	(must be clea	red in software	`						
	0 = No bus co	ollision occurre	d)						
bit 2	HLVDIF: High	/Low-Voltage	Detect Interrup	t Flag bit							
	1 = A high/low	w-voltage cond	ition occurred	(direction deter	mined by VDII	RMAG bit, HLVI	DCON<7>)				
	0 = A high/low	w-voltage cond	ition has not o	ccurred	2		,				
bit 1	TMR3IF: TMF	R3 Overflow Int	errupt Flag bit								
	1 = TMR3 reg	gister overflowe	ed (must be cle	eared in softwa	re)						
	0 = TMR3 reg	gister did not ov	verflow								
bit 0	CCP2IF: CCF	2 Interrupt Flag	g bit								
	Capture mode	<u>e:</u>			<i></i>						
	1 = A TMR1	register capture	e occurred (mu	ist be cleared in	n software)						
		register captu	re occurred								
	1 = A TMR1	<u>register compa</u>	re match occu	rred (must be c	leared in softw	vare)					
	0 = No TMR1	register comp	are match occ	urred							
	PWM mode:										
	Unused in this	s mode.									

9.5 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag bits is discussed in more detail in **Section 4.1 "RCON Register"**.

REGISTER 9-10: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽¹⁾	R/W-0
IPEN	SBOREN	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit
	1 = Enable priority levels on interrupts
	 Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: Software BOR Enable bit ⁽¹⁾
	For details of bit operation, see Register 4-1.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 4-1.
bit 3	TO: Watchdog Timer Time-out Flag bit
	For details of bit operation, see Register 4-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 4-1.
bit 1	POR: Power-on Reset Status bit ⁽¹⁾
	For details of bit operation, see Register 4-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 4-1.

Note 1: Actual Reset values are determined by device configuration and the nature of the device Reset. See Register 4-1 for additional information.

TABLE 10-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52
LATB	FB PORTB Data Latch Register (Read and Write to Data Latch)								
TRISB	PORTB Data Direction Register								
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP		RBIP	49
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	49
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	51

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

10.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	40/44-pin devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 10-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation as long as the Enhanced CCP module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit, PSPMODE, enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits, PFCG<3:0> (ADCON1<3:0>), must also be set to a value in the range of '1010' through '1111'.

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{RD}}$ lines are first detected low. The data in PORTD is read out and the OBF bit is clear. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken. The timing for the control signals in Write and Read modes is shown in Figure 10-3 and Figure 10-4, respectively.

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
									on page
TMR0L	Timer0 Register Low Byte								
TMR0H	Timer0 Register High Byte								
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
TOCON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	50
TRISA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52

 TABLE 11-1:
 REGISTERS ASSOCIATED WITH TIMER0

Legend: Shaded cells are not used by Timer0.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

12.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 12-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

12.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

12.5 Resetting Timer1 Using the CCP Special Event Trigger

If either of the CCP modules is configured to use Timer1 and generate a Special Event Trigger in Compare mode (CCP1M<3:0> or CCP2M<3:0> = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 15.3.4 "Special Event Trigger"** for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note: The Special Event Triggers from the CCP2 module will not set the TMR1IF interrupt flag bit (PIR1<0>).

12.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 12.3 "Timer1 Oscillator**") gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

EUSART ASYNCHRONOUS 18.2.2 RECEIVER

The receiver block diagram is shown in Figure 18-6. The data is received on the RX pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- Initialize the SPBRGH:SPBRG registers for the 1. appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCIE.
- If 9-bit reception is desired, set bit, RX9. 4
- 5. Enable the reception by setting bit, CREN.
- 6. Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- 7. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-6:

SETTING UP 9-BIT MODE WITH 18.2.3 ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH:SPBRG registers for the 1. appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- If interrupts are required, set the RCEN bit and 3. select the desired priority level with the RCIP bit.
- Set the RX9 bit to enable 9-bit reception. 4.
- 5. Set the ADDEN bit to enable address detect.
- Enable reception by setting the CREN bit. 6.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- Read the RCSTA register to determine if any 8. error occurred during reception, as well as read bit 9 of data (if applicable).
- Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

NOTES:

BTF	SC	Bit Test Fil	le, Skip if Cl	ear	BTFSS		Bit Test File	e, Skip if Se	t
Syntax:		BTFSC f, b {,a}			Syntax:		BTFSS f, b {,a}		
Operands:		$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$			Operand	ls:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Oper	ration:	skip if (f)	skip if (f) = 0			n:	skip if (f)	= 1	
Statu	is Affected:	None			Status A	ffected:	None		
Enco	oding:	1011	1011 bbba ffff ffff			g:	1010	bbba fff	f ffff
Description:		If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details		Descript	ion:	If bit 'b' in register 'f' is '1', then the net instruction is skipped. If bit 'b' is '1', th the next instruction fetched during the current instruction execution is discard and a NOP is executed instead, makin this a two-cycle instruction. If 'a' is '0', the Access Bank is selected 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented a Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		hen the next b' is '1', then during the n is discarded ead, making is selected. If select the instruction on operates dressing). Oriented and in Indexed etails.	
Words:		1			Words:		1		
Cycles:		1(2)Note: 3 cycles if skip and followed by a 2-word instruction.		Cycles:		1(2) Note: 3 cycles if skip and followed by a 2-word instruction.			
QC	ycle Activity:				Q Cycle	e Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read	Process	No		Decode	Read	Process	No
lf sk	ip.	Tegister i	Dala	operation	lf skip:		register i	Dala	operation
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation	C	peration	operation	operation	operation
lf sk	tip and followed	d by 2-word instruction:			lf skip a	If skip and followed by 2-word instruction:			
	Q1	Q2	Q3 No	Q4		Q1 No	Q2	Q3 No	Q4
	operation	operation	operation	operation	c	peration	operation	operation	operation
	No operation	No operation	No operation	No operation	с	No operation	No operation	No operation	No operation
Example: Before Instruct PC After Instructio If FLAG< PC If FLAG< PC		HERE BTFSC FLAG, 1, 0 FALSE : TRUE : tion = address (HERE) n 1> = 0; = address (TRUE) 1> = 1; = address (FALSE)		<u>Example</u> Bef Afte	ore Instruct PC er Instruction If FLAG PC If FLAG PC	HERE BTFSS FLAG, 1, 0 FALSE : TRUE : ction = address (HERE) ion <1> = 0; = address (FALSE) <1> = 1; = address (TRUE)			

RRNCF		Rotate	Rotate Right f (No Carry)					
Synta	ax:	RRNCF	RRNCF f {,d {,a}}					
Oper	rands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Oper	ration:	(f <n>) → (f<0>) →</n>	de de	est <n 1<br="" –="">est<7></n>	>,			
Statu	is Affected:	N, Z	N, Z					
Enco	oding:	0100		00da	fff	f	ffff	
Description:		The cont one bit to is placed b If 'a' is '0 selected is '1', the per the E If 'a' is '0 set is en in Indexe mode wh Section Bit-Oriel Literal C	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3			Q4	
	Decode	Read	Read		Process V		Vrite to	
		register 'f	9	Data	а	des	stination	
<u>Exar</u>	<u>nple 1</u> : Before Instruc REG After Instructic REG	RRNCF tion = 1101 on = 1110	F _ 0 _ 1	REG, 1, 111 011	0			
Exan	<u>nple 2</u> :	RRNCF	F	REG, 0,	0			
Before Instruction		tion						
	W	= ?						
	REG After Instructio	= 1101 on	. 0	111				
	W	= 1110) 1	011				
	REG	= 1101	. 0	TTT				

SETF	Set f						
Syntax:	SETF f{,a	SETF f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
Operation:	$FFh\tof$	$FFh\tof$					
Status Affected:	None						
Encoding:	0110	100a ffi	ff ffff				
Description:	The content are set to F If 'a' is '0', tt If 'a' is '1', tt GPR bank (If 'a' is '0' an set is enable in Indexed I mode when Section 24. Bit-Oriente Literal Offs	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write register 'f'				
Example:	SETF	REG, 1					
Before Instruction REG = 5Ah After Instruction REG = FFh							

FIGURE 27-6: TYPICAL TIOSC DELTA CURRENT vs. VDD ACROSS TEMP. (DEVICE IN SLEEP,

© 2008 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dime	ension Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е	1.27 BSC					
Overall Height	А	_	_	2.65			
Molded Package Thickness	A2	2.05	_	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E	10.30 BSC					
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (optional)	h	0.25	_	0.75			
Foot Length	L	0.40	_	1.27			
Footprint	L1	1.40 REF					
Foot Angle Top	φ	0°	_	8°			
Lead Thickness	С	0.18	_	0.33			
Lead Width	b	0.31	_	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensio	Dimension Limits		NOM	MAX			
Number of Pins N 40							
Pitch	е	.100 BSC					
Top to Seating Plane	А	-	-	.250			
Molded Package Thickness	A2	.125	-	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	Е	.590	-	.625			
Molded Package Width	E1	.485	-	.580			
Overall Length	D	1.980	-	2.095			
Tip to Seating Plane	L	.115	-	.200			
Lead Thickness	С	.008	-	.015			
Upper Lead Width	b1	.030	-	.070			
Lower Lead Width	b	.014	_	.023			
Overall Row Spacing §	eB	_	_	.700			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B