

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2420t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	umber	Dia	Duffer					
Pin Name	SPDIP, SOIC	QFN	Ріп Туре	Туре	Description				
MCLR/Vpp/RE3 MCLR	1	26	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.				
VPP			Р		Programming voltage input.				
RE3			I	ST	Digital input.				
OSC1/CLKI/RA7 OSC1	9	6	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode: CMOS otherwise.				
CLKI			I	CMOS	External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)				
RA7			I/O	TTL	General purpose I/O pin.				
OSC2/CLKO/RA6 OSC2	10	7	ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
CLKO			0	—	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.				
RA6			I/O	TTL	General purpose I/O pin.				
Legend: TTL = TTL com ST = Schmitt ⁻	ipatible in Trigger ir	nput nput wit	h CMC	DS levels	CMOS = CMOS compatible input or output s I = Input				

TABLE 1-2: PIC18F2420/2520 PINOUT I/O DESCRIPTIONS

O = Output

= Power

Ρ

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
ADRESH	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADRESL	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	2420	2520	4420	4520	00 0000	00 0000	uu uuuu
ADCON1	2420	2520	4420	4520	00 0qqq (6)	00 0qqq ⁽⁶⁾	uu uuuu
ADCON2	2420	2520	4420	4520	0-00 0000	0-00 0000	u-uu uuuu
CCPR1H	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1L	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
CUPICON	2420	2520	4420	4520	00 0000	00 0000	uu uuuu
CCPR2H	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2L	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	2420	2520	4420	4520	00 0000	00 0000	uu uuuu
BAUDCON	2420	2520	4420	4520	0100 0-00	0100 0-00	uuuu u-uu
PWM1CON	2420	2520	4420	4520	0000 0000	0000 0000	սսսս սսսս
ECCD148	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
ECCETAS	2420	2520	4420	4520	0000 00	0000 00	uuuu uu
CVRCON	2420	2520	4420	4520	0000 0000	0000 0000	սսսս սսսս
CMCON	2420	2520	4420	4520	0000 0111	0000 0111	սսսս սսսս
TMR3H	2420	2520	4420	4520	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3L	2420	2520	4420	4520	xxxx xxxx	սսսս սսսս	սսսս սսսս
T3CON	2420	2520	4420	4520	0000 0000	uuuu uuuu	uuuu uuuu
SPBRGH	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
SPBRG	2420	2520	4420	4520	0000 0000	0000 0000	սսսս սսսս
RCREG	2420	2520	4420	4520	0000 0000	0000 0000	սսսս սսսս
TXREG	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
TXSTA	2420	2520	4420	4520	0000 0010	0000 0010	սսսս սսսս
RCSTA	2420	2520	4420	4520	0000 000x	0000 000x	uuuu uuuu
EEADR	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
EEDATA	2420	2520	4420	4520	0000 0000	0000 0000	uuuu uuuu
EECON2	2420	2520	4420	4520	0000 0000	0000 0000	0000 0000
EECON1	2420	2520	4420	4520	xx-0 x000	uu-0 u000	uu-0 u000

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: The Reset value of the PCFG bits depends on the value of the PBADEN Configuration bit (CONFIG3H<1>). When PBADEN = 1, PCFG<2:0> = 000; when PBADEN = 0, PCFG<2:0> = 111.

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
IBF	OBF	IBOV	PSPMODE		TRISE2	TRISE1	TRISE0
bit 7			•				bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit /	IBF: Input Bu	ffer Full Status	bit				
	1 = A word ha	as been receiv has been recei	ed and waiting t	to be read by th	ne CPU		
bit 6	OBF: Output	Buffer Full Sta	tus bit				
	1 = The outpu	ut buffer still ho	lds a previously	y written word			
	0 = The outpu	ut buffer has be	een read				
bit 5	IBOV: Input B	Buffer Overflow	Detect bit (in N	/licroprocessor	mode)		
	1 = A write oc	curred when a	previously input	word has not b	een read (must	be cleared in se	oftware)
	0 = No overflo	ow occurred					
bit 4	PSPMODE: F	Parallel Slave F	Port Mode Sele	ct bit			
	1 = Parallel S 0 = General p	lave Port mode	e ide				
bit 3		ted: Read as '	0'				
bit 2	TRISE2: RE2	Direction Con	trol bit				
	1 = Input						
	0 = Output						
bit 1	TRISE1: RE1	Direction Con	trol bit				
	1 = Input						
	0 = Output						
bit 0	TRISE0: RE0	Direction Con	trol bit				
	1 = Input						
	0 = Output						

REGISTER 10-1: TRISE REGISTER (40/44-PIN DEVICES ONLY)

12.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 12-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

12.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

12.5 Resetting Timer1 Using the CCP Special Event Trigger

If either of the CCP modules is configured to use Timer1 and generate a Special Event Trigger in Compare mode (CCP1M<3:0> or CCP2M<3:0> = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 15.3.4 "Special Event Trigger"** for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note: The Special Event Triggers from the CCP2 module will not set the TMR1IF interrupt flag bit (PIR1<0>).

12.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 12.3 "Timer1 Oscillator**") gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

14.1 Timer3 Operation

Timer3 can operate in one of three modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/ T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 14-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

15.4 PWM Mode

In Pulse-Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP2 pin is multiplexed with a PORTB or PORTC data latch, the appropriate TRIS bit must be cleared to make the CCP2 pin an output.

Note:	Clearing the CCP2CON register will force
	the RB3 or RC1 output latch (depending on
	device configuration) to the default low
	level. This is not the PORTB or PORTC I/O
	data latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.4.4** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set (exception: if PWM duty cycle = 0%, the CCPx pin will not be set)
- The PWM duty cycle is latched from CCPRxL into CCPRxH

15.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPRxL register and to the CCPxCON<5:4> bits. Up to 10-bit resolution is available. The CCPRxL contains the eight MSbs and the CCPxCON<5:4> bits contain the two LSbs. This 10-bit value is represented by CCPRxL:CCPxCON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 15-2:

```
PWM Duty Cycle = (CCPRxL:CCPxCON<5:4>) •
Tosc • (TMR2 Prescale Value)
```

CCPRxL and CCPxCON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPRxH until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPRxH is a read-only register.

17.4 I²C Mode

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-Bit and 10-Bit Addressing modes.

Two pins are used for data transfer:

- Serial clock (SCL) RC3/SCK/SCL
- Serial data (SDA) RC4/SDI/SDA

The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

FIGURE 17-7: MSSP BLOCK DIAGRAM (I²C MODE)

17.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Control Register 2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

SSPCON1, SSPCON2 and SSPSTAT are the control and status registers in I^2C mode operation. The SSPCON1 and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD register holds the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPADD act as the Baud Rate Generator reload value.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

					SYNC	= 0, BRGH	I = 0, BRO	616 = 0				
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)
0.3	—	_	_	—	_	_	—	_	_	_	_	_
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_

TABLE 18-3	BAUD RATES FOR ASYNCHRONOUS MODES	

	SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)		
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51		
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12		
2.4	2.404	0.16	25	2.403	-0.16	12	—	—	—		
9.6	8.929	-6.99	6	—	_	_	_	_	_		
19.2	20.833	8.51	2	—	_	_	_	_	_		
57.6	62.500	8.51	0	—	_	_	—	_	_		
115.2	62.500	-45.75	0	_	_	_	_	_	_		

					SYNC	= 0, BRGH	l = 1, BRG	i16 = 0				
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)
0.3		_	_		_	_	_			_	_	_
1.2	—	—	—	—	—	—	—	—	—	—	—	—
2.4	—	—	—	—	—	—	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

		SYNC = 0, BRGH = 1, BRG16 = 0								
BAUD	Fost	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	
0.3	—	_	_	_	_	_	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	—	—	—	
19.2	19.231	0.16	12	—	—	—	—	—	_	
57.6	62.500	8.51	3	—	—	—	—	_	_	
115.2	125.000	8.51	1	—	—	—	—			

© 2008 Microchip Technology Inc.

FIGURE 20-3: COMPARATOR OUTPUT BLOCK DIAGRAM

20.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register
	(C1OUT or C2OUT) should occur when a
	read operation is being executed (start of
	the Q2 cycle), then the CMIF (PIR2<6>)
	interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit, CMIF.

A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

20.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

20.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM<2:0> = 111). However, the input pins (RA0 through RA3) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting of the PCFG<3:0> bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.

NOTES:

TABLE 24-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d	Destination select bit
	d = 0. store result in file register f
dest	Destination: either the WREG register or the specified register file location.
f	8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).
f	12-bit Register file address (000h to FFFh). This is the source address.
fd	12-bit Register file address (000h to FFFh). This is the destination address.
GIE	Global Interrupt Enable bit.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the table read and table write instructions.
	Only used with table read and table write instructions:
*	No change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
* -	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
n	The relative address (2's complement number) for relative branch instructions or the direct address for
DC	
PC	Program Counter Low Byte
рсн	Program Counter High Byte
рстати	Program Counter High Byte Latch
PCLATII	Program Counter Upper Byte Latch
	Power-down bit
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
s	Fast Call/Return mode select bit
	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
TBLPTR	21-bit Table Pointer (points to a Program Memory location).
TABLAT	8-bit Table Latch.
ТО	Time-out bit.
TOS	Top-of-Stack.
u	Unused or unchanged.
WDT WDEG	Watchdog Timer.
WREG	working register (accumulator).
x	compatibility with all Microchin software tools
7	7-bit offset value for indirect addressing of register files (source)
Za	7-bit offset value for indirect addressing of register files (destination).
{ }	Optional argument.
[text]	Indicates an indexed address.
(text)	The contents of text.
[expr] <n></n>	Specifies bit n of the register indicated by the pointer $expr$.
\rightarrow	Assigned to.
< >	Register bit field.
E	In the set of.
italics	User-defined term (font is Courier New).

IABLE Z	TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)								
Mnemo	onic,	Description	Cycles	16-Bit Instruction Word			Status		
Opera	nds	Description		MSb			LSb	Affected	Notes
BIT-ORIENTED OPERATIONS									
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS						•	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	xxxx	XXXX	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	s	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

~ 4 ~

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTE, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if 2: assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

	4 72.				NOLD)				
Mnem	ionic,	Description	Cycles	16-Bit Instruction Word				Status	Nataa
Operands		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL OPERATIONS									
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit)2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA ME	$MORY \leftrightarrow$	PROGRAM MEMORY OPERATION	IS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

CLRF	Clear f	CLRWDT	Clear Watchdog Timer
Syntax:	CLRF f {,a}	Syntax:	CLRWDT
Operands:	$0 \le f \le 255$	Operands:	None
	a ∈ [0,1]	Operation:	000h \rightarrow WDT,
Operation:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$		000h \rightarrow WDT postscaler, 1 $\rightarrow \overline{TO}$,
Status Affected	l: Z		$1 \rightarrow PD$
Encoding:	0110 101a ffff ffff	Status Affected:	TO, PD
Description:	Clears the contents of the specified	Encoding:	0000 0000 0000 0100
	register.	Description:	CLRWDT instruction resets the
	If 'a' is '1', the BSR is used to select the GPR bank (default).		scaler of the WDT. Status bits, TO and PD, are set.
	If 'a' is '0' and the extended instruction	Words:	1
	in Indexed Literal Offset Addressing	Cycles:	1
	mode whenever $f \le 95$ (5Fh). See	Q Cycle Activity:	
	Section 24.2.3 "Byte-Oriented and	Q1	Q2 Q3 Q4
	Literal Offset Mode" for details.	Decode	No Process No
Words:	1		operation Data operation
Cycles:	1	Example:	СТ. БМГГФ
Q Cycle Activi	ity:	Boforo Instruc	tion
Q1	Q2 Q3 Q4	WDT Co	punter = ?
Decod	e Read Process Write	After Instructio	on unter = 00h
		<u>WD</u> T Po	stscaler = 0
Example:	CLRF FLAG_REG, 1	TO PD	= 1 = 1
Before Ins FLA	struction G_REG = 5Ah		
FLA	$G_{REG} = 00h$		

	.LW	Subroutir	Subroutine Call Using WREG						
Synta	ax:	CALLW	CALLW						
Oper	ands:	None	None						
Oper	ation:	$(PC + 2) \rightarrow$ $(W) \rightarrow PCL$ $(PCLATH) \rightarrow$ $(PCLATU) \rightarrow$	$\begin{array}{l} (\text{PC}+2) \rightarrow \text{TOS}, \\ (\text{W}) \rightarrow \text{PCL}, \\ (\text{PCLATH}) \rightarrow \text{PCH}, \\ (\text{PCLATU}) \rightarrow \text{PCU} \end{array}$						
Statu	s Affected:	None	None						
Enco	ding:	0000	0000 000	01 0100					
Desc	πρισπ	pushed ont contents of existing val contents of latched into respectively executed as new next in Unlike CAL update W, S	to the return sta W are written ue is discarder PCLATH and PCH and PCI /. The second s a NOP instru- struction is fet L, there is no STATUS or BS	ack. Next, the to PCL; the d. Then, the PCLATU are J, cycle is ction while the ched. option to R.					
Word	ls:	1							
Cvcle	es:	2							
00	vcle Activity								
	Q1	Q2	Q3	04					
				Q 4					
	Decode	Read	PUSH PC to	No					
	Decode	Read WREG	PUSH PC to stack	No operation					
	Decode No operation	Read WREG No operation	PUSH PC to stack No operation	No operation No operation					

ΜΟΥ	SF	Move Ind	lexed to	f				
Synta	x:	MOVSF [MOVSF [z _s], f _d					
Opera	ands:	$0 \le z_s \le 12$ $0 \le f_d \le 409$	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq f_d \leq 4095 \end{array}$					
Opera	ation:	((FSR2) +	$z_s) \rightarrow f_d$					
Status	Affected:	None						
Encoding: 1st word (source) 2nd word (destin.)		1110 1111	1110 1011 Ozzz zzzz 1111 ffff ffff ffff					
Descr	iption:	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset 'z _s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit litera 'f _d ' in the second word. Both addresse can be anywhere in the 4096-byte dat space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points t an indirect addressing register, the value returned will be 00b				ister are ister are gister is literal value of ination bit literal ddresses byte data use the s the points to		
Words	6:	2	2					
Cycle	S:	2						
QCy	cle Activity:	02	0.2			04		
Г	Decode	Q2 Determine	Detern	nino	1	Q4 Zead		
	Decoue	source addr	source	addr	SOL	irce reg		
-	Decode	No operation No dummy read	No opera	tion	۱ rec (Nrite jister 'f' dest)		
<u>Exam</u> E	<u>ple</u> : 3efore Instruc FSR2 Contents	MOVSF tion = 80	[05h],)h	REG2				
Þ	of 85h REG2 After Instructio	= 33 = 11 on	3h h					

FSR2 Contents

of 85h REG2

=

= = 80h

33h 33h

26.4 AC (Timing) Characteristics

26.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	tters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	tters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	pecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

© 2008 Microchip Technology Inc.

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

28-Lead SPDIP

Example

28-Lead SOIC

Example

28-Lead QFN

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

28.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins N		28			
Pitch	е	.100 BSC			
Top to Seating Plane	А	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	с	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Slave Select Synchronization	167 302
OSC1 and OSC2 Pin States	31
Software Simulator (MPLAB SIM)	318
Special Event Trigger, See Compare (ECCP Mode)	
Special Event Trigger, See Compare (ECCP Module).	
Special Event myger. See Compare (ECCF Module).	240
Special Function Registers	249
Mon	62
SDI Mode (MSSD)	
Approximated Degisters	160
Associated Registers	109
	109
	169
Enabling SPI I/O	105
Master Mode	100
	105
Operation	104
Operation in Power-Managed Modes	169
	101
Serial Data In	161
	161
Slave Mode	167
Slave Select	161
Slave Select Synchronization	167
SPI Clock	166
Typical Connection	165
SS	161
SSPOV	191
SSPOV Status Flag	191
SSPSTAT Register	
R/W Bit17	74, 175
Stack Full/Underflow Resets	56
STATUS Register	67
SUBFSR	313
SUBFWB	302
SUBLW	303
SUBULNK	313
SUBWF	303
SUBWFB	304
SWAPF	304

Т

Table Pointer Operations with	
TBLRD and TBLWT	
Table Reads/Table Writes	
TBLRD	305
TBLWT	306
Time-out in Various Situations (table)	45
Timer0	123
Associated Registers	125
Operation	124
Overflow Interrupt	125
Prescaler	125
Prescaler Assignment (PSA Bit)	125
Prescaler Select (T0PS2:T0PS0 Bits)	125
Prescaler. See Prescaler, Timer0.	
Reads and Writes in 16-Bit Mode	
Source Edge Select (T0SE Bit)	
Source Select (T0CS Bit)	
Switching Prescaler Assignment	125

Timer1	127
16-Bit Read/Write Mode	129
Associated Registers	132
Considerations in Asynchronous	
Counter Mode	131
Interrupt	130
Operation	128
Öscillator	. 127, 129
Oscillator Lavout Considerations	
Overflow Interrupt	127
Resetting, Using the CCP Special	
Event Trigger	130
Special Event Trigger (ECCP)	148
TMR1H Register	127
TMR1L Register	127
Use as a Real-Time Clock	130
Timer2	133
Associated Registers	134
Interrupt	134
Operation	133
Output	134
PR2 Register	. 144, 149
TMR2 to PR2 Match Interrupt	. 144, 149
Timer3	
16-Bit Read/Write Mode	137
Associated Registers	137
Operation	136
Oscillator	. 135. 137
Overflow Interrupt	. 135. 137
Special Event Trigger (CCP)	
TMR3H Register	135
TMR3L Register	135
Timing Diagrams	
A/D Conversion	360
Acknowledge Sequence	194
Asynchronous Reception	214
Asynchronous Transmission	212
Asynchronous Transmission (Back to Back)	212
Automatic Baud Rate Calculation	210
Auto-Wake-up Bit (WUE) During	
Normal Operation	215
Auto-Wake-up Bit (WUE) During Sleep	215
Baud Rate Generator with Clock Arbitration	188
BRG Overflow Sequence	210
BRG Reset Due to SDA Arbitration	
During Start Condition	197
Brown-out Reset (BOR)	345
Bus Collision During a Repeated	
Start Condition (Case 1)	198
Bus Collision During a Repeated	
Start Condition (Case 2)	198
Bus Collision During a Start	
Condition (SCL = 0)	197
Bus Collision During a Stop	
Condition (Case 1)	199
Bus Collision During a Stop	
Condition (Case 2)	199
Bus Collision During Start	
Condition (SDA only)	196
Bus Collision for Transmit and Acknowledge	195
Capture/Compare/PWM (All CCP Modules)	347