

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2520-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pi	Pin Number			Buffer	Description
Fill Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTE is a bidirectional I/O port.
RE0/RD/AN5	8	25	25			
RE0				I/O	ST	Digital I/O.
RD				I	TTL	Read control for Parallel Slave Port
AN5				1	Analog	(see also WR and CS pins). Analog input 5.
RE1/WR/AN6	9	26	26	•	, maiog	
RE1	9	20	20	I/O	ST	Digital I/O.
WR				I	TTL	Write control for Parallel Slave Port
						(see \overline{CS} and \overline{RD} pins).
AN6				I	Analog	Analog input 6.
RE2/CS/AN7	10	27	27		0T	
RE2 CS				I/O	ST TTL	Digital I/O. Chip Select control for Parallel Slave Port
00				1		(see related $\overline{\text{RD}}$ and $\overline{\text{WR}}$).
AN7				I.	Analog	
RE3			_	_	_	See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 30,	6, 29	Р	_	Ground reference for logic and I/O pins.
		31				
Vdd	11, 32		7, 28	Р	—	Positive supply for logic and I/O pins.
		28, 29	40.40			
NC	_	13	12, 13, 33, 34	_	_	No Connect.
Legend: TTL = TTL c	•	•				CMOS = CMOS compatible input or output
	itt Trigge	er input v	with CM	OS lev		= Input
O = Outpu	ıt				F	P = Power

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

4.2 Master Clear (MCLR)

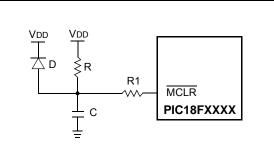
The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In PIC18F2420/2520/4420/4520 devices, the $\overline{\text{MCLR}}$ input can be disabled with the MCLRE Configuration bit. When $\overline{\text{MCLR}}$ is disabled, the pin becomes a digital input. See **Section 10.5** "**PORTE, TRISE and LATE Registers**" for more information.

4.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.


To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the \overrightarrow{POR} bit (RCON<1>). The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. \overrightarrow{POR} is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

FIGURE 4-2:

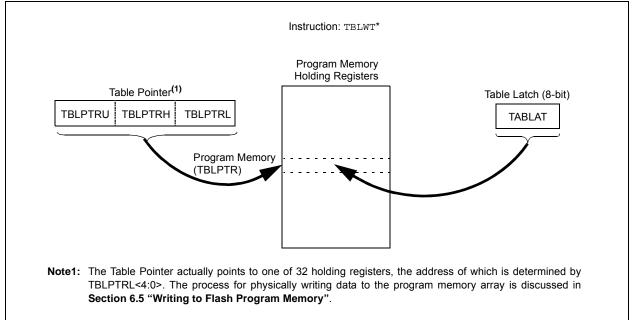
EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \ k\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.

4.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used in software to determine the nature of the Reset. Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.


TABLE 4-3:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION
	FOR RCON REGISTER

Condition	Program	Program RCON Register					STKPTR Register	
Condition	Counter	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	0	0	0	0
RESET Instruction	0000h	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	u	0	u	u
MCLR Reset during Power-Managed Run Modes	0000h	u	1	u	u	u	u	u
MCLR Reset during Power-Managed Idle Modes and Sleep Mode	0000h	u	1	0	u	u	u	u
WDT Time-out during Full Power or Power-Managed Run Mode	0000h	u	0	u	u	u	u	u
MCLR Reset during Full-Power Execution	0000h	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	1
WDT Time-out during Power-Managed Idle or Sleep Modes	PC + 2	u	0	0	u	u	u	u
Interrupt Exit from Power-Managed Modes	PC + 2 ⁽¹⁾	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

FIGURE 6-2: TABLE WRITE OPERATION

6.2 Control Registers

Several control registers are used in conjunction with the $\tt TBLRD$ and $\tt TBLWT$ instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 6-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see **Section 23.0 "Special Features of the CPU"**). When clear, memory selection access is determined by EEPGD. The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is									
	read as '1'. This can indicate that a write									
	operation was prematurely terminated by									
	a Reset, or a write operation was									
	attempted improperly.									

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.

9.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable registers (PIE1 and PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 9-6: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit ⁽¹⁾
	 Enables the PSP read/write interrupt Disables the PSP read/write interrupt
bit 6	ADIE: A/D Converter Interrupt Enable bit
	1 = Enables the A/D interrupt0 = Disables the A/D interrupt
bit 5	RCIE: EUSART Receive Interrupt Enable bit
	 1 = Enables the EUSART receive interrupt 0 = Disables the EUSART receive interrupt
bit 4	TXIE: EUSART Transmit Interrupt Enable bit
	 1 = Enables the EUSART transmit interrupt 0 = Disables the EUSART transmit interrupt
bit 3	SSPIE: Master Synchronous Serial Port Interrupt Enable bit
	1 = Enables the MSSP interrupt0 = Disables the MSSP interrupt
bit 2	CCP1IE: CCP1 Interrupt Enable bit
	1 = Enables the CCP1 interrupt0 = Disables the CCP1 interrupt
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
	1 = Enables the TMR2 to PR2 match interrupt0 = Disables the TMR2 to PR2 match interrupt
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit
	1 = Enables the TMR1 overflow interrupt
	0 = Disables the TMR1 overflow interrupt

Note 1: This bit is unimplemented on 28-pin devices and will read as '0'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	PORTA Da	ta Latch Re	gister (Rea	d and Write	to Data Lat	ch)	52
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	Register				52
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	51
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	51
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51

TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

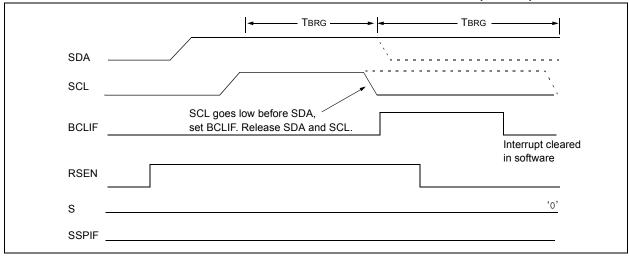
17.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 17-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 17-30.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 17-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 17-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

18.1 Baud Rate Generator (BRG)

The BRG is a dedicated, 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free-running timer. In Asynchronous mode, bits, BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>), also control the baud rate. In Synchronous mode, BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 18-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 18-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 18-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

18.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG register pair.

18.1.2 SAMPLING

The data on the RX pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 18-1:BAUD RATE FORMULAS

C	Configuration Bits		BRG/EUSART Mode	Baud Rate Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula		
0	0	0	8-Bit/Asynchronous	Fosc/[64 (n + 1)]		
0	0	1	8-Bit/Asynchronous	$E_{0000}/[16(p+1)]$		
0	1	0	16-Bit/Asynchronous	Fosc/[16 (n + 1)]		
0	1	1	16-Bit/Asynchronous			
1	0	x	8-Bit/Synchronous	Fosc/[4 (n + 1)]		
1	1 x		16-Bit/Synchronous			

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

20.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins, RA0 through RA5, as well as the on-chip voltage reference (see Section 21.0 "Comparator Voltage Reference Module"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register.

The CMCON register (Register 20-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 20-1.

REGISTER 20-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1		
C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0		
bit 7	•					•	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk					nown				

bit 7 C2OUT: Comparator 2 Output bit $ \frac{When C2INV = 0:}{1 = C2 VIN + C2 VIN-} \\ 0 = C2 VIN + C2 VIN- When C2INV = 1: 1 = C2 VIN + C2 VIN- 0 = C1 VIN + C1 VIN- 0 = C2 Output Inversion bit 1 = C2 output inverted 0 = C2 output not inverted$
bit 6 $ \frac{1}{1} = C2 VIN+ > C2 VIN- 0 = C2 VIN+ < C2 VIN- \frac{When C2INV = 1:}{1 = C2 VIN+ < C2 VIN-} \\ 0 = C2 VIN+ > C2 VIN- 0 = C2 VIN+ > C2 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN- \frac{When C1INV = 1:}{1 = C1 VIN+ > C1 VIN-} \\ 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C2 VIN+ > C1 VIN- VIN+ > C1 VIN+ > C1 VIN+ $
bit 6 $\frac{When C2INV = 1:}{1 = C2 VIN+ < C2 VIN-}$ $0 = C2 VIN+ > C2 VIN-$ bit 6 $C1OUT: Comparator 1 Output bit$ $\frac{When C1INV = 0:}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $\frac{When C1INV = 1:}{1 = C1 VIN+ < C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $1 = C1 VIN+ > C1 VIN-$ bit 5 C2INV: Comparator 2 Output Inversion bit $1 = C2 output inverted$
bit 6 $1 = C2 VIN + C2 VIN - 0 = C2 VIN + C2 VIN - 0 = C2 VIN + C2 VIN - 0 = C1 OUT: Comparator 1 Output bit \frac{When C1INV = 0:}{1 = C1 VIN + C1 VIN - 0} = C1 VIN + C1 VIN - 0 = C1 VIN + C1 VIN + C1 VIN - 0 = C1 VIN + C1 $
bit 6 $0 = C2 V_{IN} + > C2 V_{IN}$ bit 6 $C1OUT: Comparator 1 Output bit$ $\frac{When C1INV = 0:}{1 = C1 V_{IN} + > C1 V_{IN}}$ $0 = C1 V_{IN} + < C1 V_{IN}$ $\frac{When C1INV = 1:}{1 = C1 V_{IN} + < C1 V_{IN}}$ $0 = C1 V_{IN} + < C1 V_{IN}$ bit 5 C2INV: Comparator 2 Output Inversion bit $1 = C2 output inverted$
bit 6 C1OUT: Comparator 1 Output bit $\frac{When C1INV = 0:}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $\frac{When C1INV = 1:}{1 = C1 VIN+ < C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 output inverted
$\frac{When C1INV = 0:}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $\frac{When C1INV = 1:}{1 = C1 VIN+ < C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5 $C2INV: Comparator 2 Output Inversion bit$ $1 = C2 output inverted$
$1 = C1 VIN+ > C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $\frac{When C1INV = 1:}{1 = C1 VIN+ < C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5 $C2INV: Comparator 2 Output Inversion bit$ $1 = C2 output inverted$
0 = C1 VIN+ < C1 VIN- When C1INV = 1: 1 = C1 VIN+ < C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 output inverted
When $C1INV = 1$: $1 = C1 VIN+ < C1 VIN 0 = C1 VIN+ > C1 VIN-$ bit 5 C2INV : Comparator 2 Output Inversion bit $1 = C2$ output inverted
bit 5 $ \begin{array}{r} 1 = C1 \ VIN+ < C1 \ VIN-\\ 0 = C1 \ VIN+ > C1 \ VIN-\\ \hline C2INV: Comparator 2 \ Output Inversion \ bit\\ 1 = C2 \ output inverted \end{array} $
bit 5 $C2INV$: Comparator 2 Output Inversion bit 1 = C2 output inverted
bit 5 C2INV : Comparator 2 Output Inversion bit 1 = C2 output inverted
1 = C2 output inverted
bit 4 C1INV : Comparator 1 Output Inversion bit
1 = C1 output inverted
0 = C1 output not inverted
bit 3 CIS: Comparator Input Switch bit
When CM<2:0> = 110:
1 = C1 VIN- connects to RA3/AN3/VREF+
C2 VIN- connects to RA2/AN2/VREF-/CVREF
0 = C1 VIN- connects to RA0/AN0
C2 VIN- connects to RA1/AN1
bit 2-0 CM<2:0> : Comparator Mode bits
Figure 20-1 shows the Comparator modes and the CM<2:0> bit settings.

NOTES:

After Instruction

FLAG_REG =

8Ah

BRA		Uncondition	al Branch		BSF	Bit Set f			
Syntax:	:	BRA n			Syntax:	BSF f, b	{,a}		
Operands: $-1024 \le n \le 1023$		Operands:	$0 \le f \le 255$						
Operati	ion:	(PC) + 2 + 2n	\rightarrow PC			0 ≤ b ≤ 7 a ∈ [0,1]			
Status A	Affected:	None			Operation:	a ∈ [0,1] 1 → f 			
Encodir	ng:	1101 0)nnn nnni	n nnnn	Status Affected:				
Descrip	otion:	Add the 2's co the PC. Since	•		Encoding:			ffff	
		mented to fetc new address v instruction is a	vill be PC + 2 ·	+ 2n. This	Description:	Bit 'b' in rea If 'a' is '0', f If 'a' is '1', f	he Access he BSR is	s Bank is	
Words:		1				GPR bank If 'a' is 'o' a	· /	andad ii	astruction
Cycles:		2				set is enab			
Q Cycl	le Activity:					in Indexed			•
	Q1	Q2	Q3	Q4		mode wher Section 24		• •	
	Decode	Read literal 'n'	Process Data	Write to PC		Bit-Oriente	ed Instruc	tions in	Indexed
	No	No	No	No	Words:	1			
	operation	operation	operation	operation	Cycles:	1			
					Q Cycle Activity:				
Exampl	<u>le:</u>	HERE	BRA Jump		Q1	Q2	Q3		Q4
	efore Instruc PC	= ade	dress (HERE)		Decode	Read register 'f'	Proces Data	-	Write egister 'f'
Af	ter Instructi PC		dress (Jump)		Example:	BSF 1	FLAG REG	. 7 1	
					Example. Before Instruc FLAG_R	tion	_	, /, I	-

INC	FSZ	Increment f, Skip if 0					
Synta	ax:	INCFSZ f	{,d {,a}}				
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ d $\in [0,1]$				
Oper	ation:	(f) + 1 \rightarrow de skip if result					
Statu	s Affected:	None					
Enco	ding:	0011	11da	ffff	ffff		
Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexec Literal Offset Mode" for details.				esult is sult is ault). ruction, scarded d, making selected. select the struction operates essing See ed and Indexed			
Word	ls:	1					
Cycle Q C	es: ycle Activity:	1(2) Note: 3 cyc by a		p and follo			
	Q1	Q2	Q3		Q4		
	Decode	Read register 'f'	Proce Data		Vrite to stination		
lf sk	ip:	<u> </u>		I			
	Q1	Q2	Q3		Q4		
	No	No	No		No		
lfek	operation	operation d by 2-word ins	operat		peration		
11 5K	Q1	Q2	Q3		Q4		
	No	No	No		No		
	operation	operation	operat	ion op	peration		
	No operation	No operation	No operat	ion or	No		
operation operation operation Example: HERE INCFSZ CNT, 1, 0 NZERO : ZERO :							
	Before Instruc PC After Instructic	tion = Address)			
	CNT If CNT PC If CNT PC	= CNT + 1 = 0; = Address ≠ 0; = Address	(ZERO				

INFS	SNZ	Increment	Increment f, Skip if Not 0				
Synta	ax:	INFSNZ f	{,d {,a}}				
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]				
Oper	ation:	(f) + 1 \rightarrow de skip if result					
Statu	s Affected:	None					
Enco	ding:	0100	0100 10da ffff ffff				
Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operated in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Word	ls:	1					
Cycle	es:		cycles if skip a a 2-word instr				
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	Write to			
		register 'f'	Data	destination			
lf sk	ıp: Q1	Q2	Q3	Q4			
	No	No	No	No			
الا مار	operation	operation	operation	operation			
IT SK	ip and followed Q1	u by 2-word ins Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
Example:		ZERO NZERO	INFSNZ REG	, 1, 0			
	Before Instruc PC	= Address	(HERE)				
	After Instructic REG If REG PC If REG PC	= REG + 7 ≠ 0; = Address = 0; = Address	(NZERO)				

MOVFF	Move f to	o f		
Syntax:	MOVFF f	s,f _d		
Operands:	$\begin{array}{l} 0 \leq f_s \leq 40 \\ 0 \leq f_d \leq 40 \end{array}$			
Operation:	$(f_{s}) \to f_{d}$			
Status Affected:	None			
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d
Description:	The conter moved to o Location o in the 4096 FFFh) and can also b FFFh. Either sour (a useful s MOVFF is transferring peripheral buffer or a The MOVFI PCL, TOS destination	destination f source ff obyte dat location e anywhe rce or des pecial situ particular g a data n register (s n I/O port r instructi U, TOSH	n register f_s can be a space ((of destination cauation). ly useful for hemory loc such as the one of the structure of the structure of the structure of the such as the one cannot	(f _d). anywhere 200h to cion (f _d) 20h to an be W cor cation to a e transmit use the
Words:	2			
Cycles:	2 (3)			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4

MOVLB	Move Literal to Low Nibble in BSR					
Syntax:	MOVLW	ĸ				
Operands:	$0 \le k \le 255$	5				
Operation:	$k \to BSR$					
Status Affected:	None					
Encoding:	0000	0001	kkkk	kkkk		
Description:	The 8-bit li Bank Select of BSR<7: regardless	ct Registe 4> always	er (BSR) s remain	The value s '0',		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		
Decode	Read literal 'k'	Proce Dat		Write literal 'k' to BSR		
Example:	MOVLB	5				
Before Instruc BSR Reg After Instructio	jister = 02	2h				

BSR Register = 05h

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:	MOVFF	REG1,	REG2
Before Instruction	on		
REG1	=	33h	

=	11h
=	33h
=	33h
	=

MOVSS	Move Indexed to Indexed					
Syntax:	MOVSS	MOVSS [z _s], [z _d]				
Operands:	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq z_d \leq 127 \end{array}$					
Operation:	((FSR2) +	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$				
Status Affected:	None	None				
Encoding: 1st word (source) 2nd word (dest.)	1110 1111	1011 xxxx	lzzz xzzz	zzzz _s zzzz _d		
Description						
Words:	2					
Cycles:	2					
Q Cycle Activity:						
Q1	Q2	Q	3	Q4		

_	Q1	Q2	Q3	Q4
	Decode	Determine	Determine	Read
		source addr	source addr	source reg
	Decode	Determine dest addr	Determine dest addr	Write to dest reg

Example:	MOVSS	[05h],	[06h]
Before Instruction	on		
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	33h	

	HL Store Literal at FSR2, Decrement FSR2									
Syntax:	PUSHL k	PUSHL k								
Operands:	$0 \le k \le 255$									
Operation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2									
Status Affected:	None									
Encoding:	1111	1010	kkkk	kkkk						
is decremented by 1 after the operation. This instruction allows users to push valu onto a software stack.										
	1									
Words:	1									
Words: Cycles:	1 1									
	1									
Cycles:	1		Q3	Q4						
Q Cycle Activity	1 y: Q2	.' Pro	Q3 ocess lata	Q4 Write to destination						

After Instruction		
FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

PIC18LF2420/2520/4420/4520 (Industrial) PIC18F2420/2520/4420/4520 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for extended							
	Supply Current (IDD) ⁽²⁾								
	PIC18LF2X2X/4X20	250	350	μΑ	-40°C				
		260	350	μΑ	+25°C	VDD = 2.0V			
		250	350	μΑ	+85°C				
	PIC18LF2X2X/4X20	550	650	μΑ	-40°C				
		480	640	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz		
		460	600	μΑ	+85°C		(PRI_RUN , EC oscillator)		
	All devices	1.2	1.5	mA	-40°C				
		1.1	1.4	mA	+25°C	VDD = 5.0V			
		1.0	1.3	mA	+85°C	VDD - 5.0V			
	Extended devices only	1.0	3.0	mA	+125°C				
	PIC18LF2X2X/4X20	0.72	1.0	mA	-40°C				
		0.74	1.0	mA	+25°C	VDD = 2.0V			
		0.74	1.0	mA	+85°C				
	PIC18LF2X2X/4X20	1.3	1.8	mA	-40°C				
		1.3	1.8	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI_RUN ,		
		1.3	1.8	mA	+85°C		EC oscillator)		
	All devices	2.7	4.0	mA	-40°C				
		2.6	4.0	mA	+25°C	VDD = 5.0V			
		2.5	4.0	mA	+85°C	י0.0 – 5.00			
	Extended devices only	2.6	5.0	mA	+125°C				
	Extended devices only	8.4	13	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz		
		11	16	mA	+125°C	VDD = 5.0V	(PRI_RUN , EC oscillator)		
	All devices	15	20	mA	-40°C				
		15	20	mA	+25°C	VDD = 4.2V			
		15	20	mA	+85°C		Fosc = 40 MHz		
	All devices	20	25	mA	-40°C		(PRI_RUN , EC oscillator)		
		20	25	mA	+25°C	VDD = 5.0V			
		20	25	mA	+85°C]			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

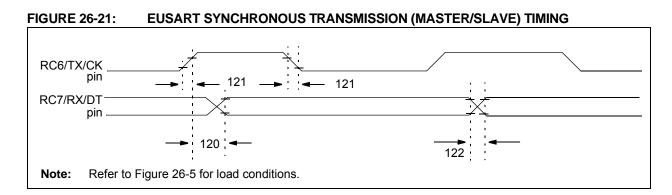
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

26.3 DC Characteristics: PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min Max		Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O Ports	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D083		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage ⁽³⁾					
D090		I/O Ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C	
D092		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C	
		Capacitive Loading Specs on Output Pins					
D100	COSC2	OSC2 pin	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (in RC mode)	_	50	pF	To meet the AC Timing Specifications	
D102	Св	SCL, SDA	—	400	pF	I ² C [™] Specification	

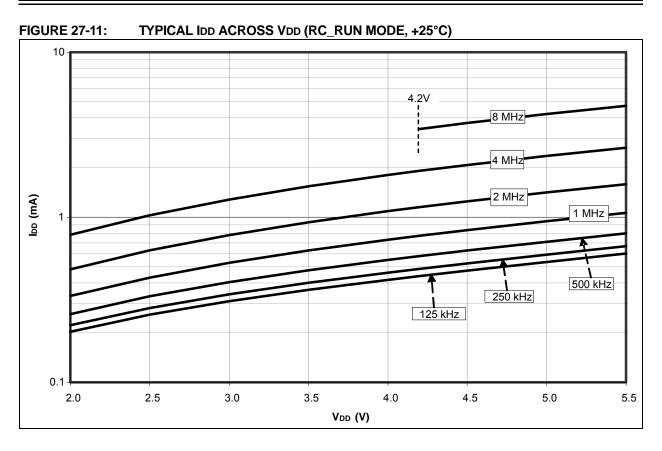
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No. Sym Characteristic		Characteristic	Min Typ†		Max	Units	Conditions		
		Data EEPROM Memory							
D120	ED	Byte Endurance	100K	1M		E/W	-40°C to +85°C		
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write Cycle Time		4		ms			
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M	10M	—	E/W	-40°C to +85°C		
D125	IDDP	Supply Current during Programming	-	10	—	mA			
		Program Flash Memory							
D130	Eр	Cell Endurance	10K	100K		E/W	-40°C to +85°C		
D131	Vpr	VDD for Read	VMIN	—	5.5	V	Vміn = Minimum operating voltage		
D132	VIE	VDD for Block Erase	3.0	—	5.5	V	Using ICSP™ port, +25°C		
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	_	5.5	V	Using ICSP™ port, +25°C		
D132B	Vpew	VDD for Self-Timed Write	VMIN	_	5.5	V	VMIN = Minimum operating voltage		
D133	TIE	ICSP Block Erase Cycle Time		4	_	ms	$VDD \ge 4.5V$		
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	_	_	ms	VDD ≥ 4.5V, +25°C		
D133A	Tiw	Self-Timed Write Cycle Time		2	_	ms			
D134	TRETD	Characteristic Retention	40	100	_	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	-	10	_	mA			

TABLE 26-1: MEMORY PROGRAMMING REQUIREMENTS


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Refer to **Section 7.8 "Using the Data EEPROM**" for a more detailed discussion on data EEPROM endurance.

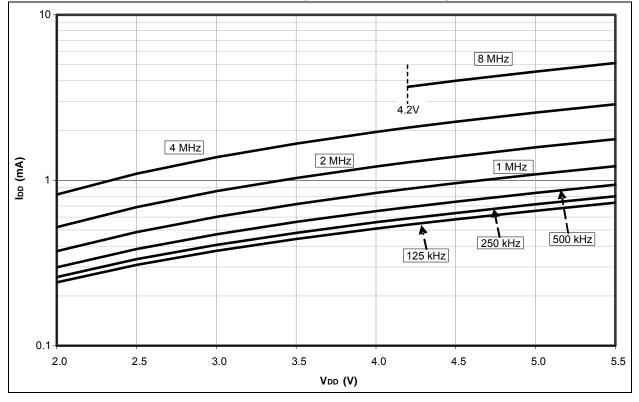
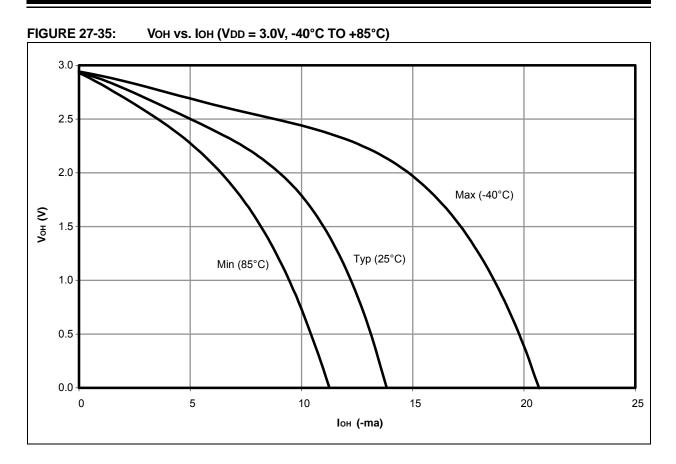
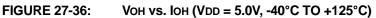
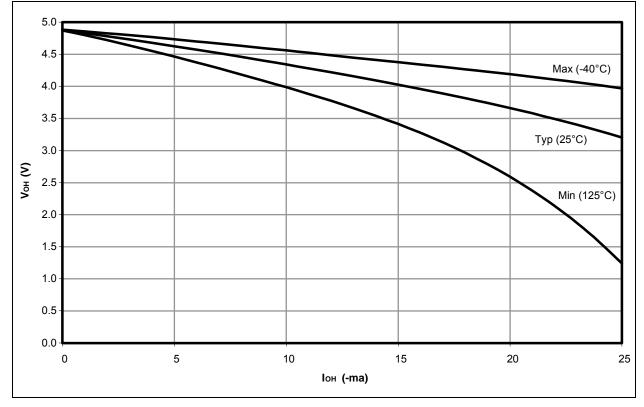


TABLE 26-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS


Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock High to Data Out Valid	PIC18 F XXXX		40	ns	
			PIC18 LF XXXX	_	100	ns	VDD = 2.0V
121	Tckrf	Clock Out Rise Time and Fall Time	PIC18FXXXX	_	20	ns	
		(Master mode)	PIC18LFXXXX	_	50	ns	VDD = 2.0V
122	Tdtrf	Data Out Rise Time and Fall Time	PIC18FXXXX	_	20	ns	
			PIC18 LF XXXX	_	50	ns	VDD = 2.0V





© 2008 Microchip Technology Inc.

