

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2520-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number Din Buffer				
Pin Name	SPDIP, SOIC	QFN	Туре	Туре	Description
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	21	18	I/O I I I	TTL ST ST Analog	Digital I/O. External interrupt 0. PWM Fault input for CCP1. Analog input 12.
RB1/INT1/AN10 RB1 INT1 AN10	22	19	I/O I I	TTL ST Analog	Digital I/O. External interrupt 1. Analog input 10.
RB2/INT2/AN8 RB2 INT2 AN8	23	20	I/O I I	TTL ST Analog	Digital I/O. External interrupt 2. Analog input 8.
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	24	21	I/O I I/O	TTL Analog ST	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM2 output.
RB4/KBI0/AN11 RB4 KBI0 AN11	25	22	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog input 11.
RB5/KBI1/PGM RB5 KBI1 PGM	26	23	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	27	24	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	28	25	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power					

TABLE 1-2: PIC18F2420/2520 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Din Nome	Pi	n Numb	ber	Pin	Buffer	Description	
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description	
						PORTE is a bidirectional I/O port.	
RE0/RD/AN5	8	25	25				
RE0	-			I/O	ST	Digital I/O.	
RD				Ι	TTL	Read control for Parallel Slave Port	
						(see also \overline{WR} and \overline{CS} pins).	
AN5				I	Analog	Analog input 5.	
RE1/WR/AN6	9	26	26				
RE1				I/O	ST	Digital I/O.	
WR				Ι	TTL	Write control for Parallel Slave Port	
						(see CS and RD pins).	
ANG				I	Analog	Analog input 6.	
RE2/CS/AN7	10	27	27				
RE2				I/O	ST	Digital I/O.	
CS				I	TTL	Chip Select control for Parallel Slave Port	
					Angleg	(see related RD and WR).	
AN7				I	Analog		
RE3	—	—	—	—	—	See MCLR/VPP/RE3 pin.	
Vss	12, 31	6, 30,	6, 29	Р	—	Ground reference for logic and I/O pins.	
		31					
VDD	11, 32	7, 8,	7, 28	Р	—	Positive supply for logic and I/O pins.	
		28, 29					
NC	—	13	12, 13,	—	—	No Connect.	
			33, 34				
Legend: TTL = TTL co	ompatib	e input			(CMOS = CMOS compatible input or output	
ST = Schmi	ST = Schmitt Trigger input with CMOS levels I = Input						

Ρ

= Power

TABLE 1-3:	PIC18F4420/4520 PINOUT I/O DESCRIPTIONS ((CONTINUED)	1

O = Output

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

REGISTER 2-1: OSCTUNE: OSCILLATOR TUNING REGISTER

'1' = Bit is set

R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7					•		bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplem	nented bit, read	as '0'		

'0' = Bit is cleared

bit 7	INTSRC: In	ternal Oscilla	ator Low-Frequency Source Select bit				
	1 = 31.25 k	Hz device cl	ock derived from 8 MHz INTOSC source (divide-by-256 enabled)				
		device clocr					
bit 6	PLLEN: Frequency Multiplier PLL for INTOSC Enable bit ⁽¹⁾						
	1 = PLL en	abled for IN	FOSC (4 MHz and 8 MHz only)				
	0 = PLL dis	abled					
bit 5	Unimplemented: Read as '0'						
bit 4-0	TUN<4:0>:	Frequency 1	Funing bits				
	011111 = N	/laximum fre	quency				
	•	•					
	•	•					
	000001						
	000000 = (Center freque	ency. Oscillator module is running at the calibrated frequency.				
	111111		,				
	•	•					
	•	•					
	100000 = N	/linimum frec	luency				

Note 1: Available only in certain oscillator configurations; otherwise, this bit is unavailable and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes" for details.

2.6.5.1 Compensating with the EUSART

-n = Value at POR

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high. To adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low. To compensate, increment OSCTUNE to increase the clock frequency.

2.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.6.5.3 Compensating with the CCP Module in Capture Mode

x = Bit is unknown

A CCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register.

^{© 2008} Microchip Technology Inc.

5.1.2.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

5.1.3 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 5-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 5-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1,	FAST	;STATUS, WREG, BSR
		; SAVED IN FASI REGISIER
		; STACK
•		
•		
•		
SUB1 •		
•		
DETIDN	FACT	DECTOR VALUES SAVED
KEIOKN,	PASI	, RESTORE VALUES SAVED
		;IN FAST REGISTER STACK

5.1.4 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

5.1.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 5-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 5-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET,	W
	CALL	TABLE	
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	

5.1.4.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 6.1 "Table Reads and Table Writes".

FIGURE 5-9: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When 'a' = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations 060h to 07Fh (Bank 0) and F80h to FFFh (Bank 15) of data memory.

Locations below 60h are not available in this addressing mode.

Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is now: ADDWF [k], dwhere 'k' is the same as 'f'.

When 'a' = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

12.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 12-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 12-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 12-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR10N (T1CON<0>).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

Legend:						
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, rea	iented bit, read as '0'		
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 7	RD16: 16-Bit	Read/Write Mode Enable bi	t			
 1 = Enables register read/write of TImer1 in one 16-bit operation 0 = Enables register read/write of Timer1 in two 8-bit operations 						
bit 6	T1RUN: Time	r1 System Clock Status bit				
	1 = Device cl	ock is derived from Timer1	oscillator			
	0 = Device cl	ock is derived from another	source			
bit 5-4	T1CKPS<1:0	: Timer1 Input Clock Presc	ale Select bits			
	11 = 1:8 Pres	cale value				
	10 = 1:4 Pres	cale value				
	01 = 1.2 Fies	cale value				
bit 3	TIOSCEN: Ti	mer1 Oscillator Enable bit				
	1 = Timer1 os	cillator is enabled				
	0 = Timer1 os	cillator is shut off				
	The oscillator	inverter and feedback resis	tor are turned off to eliminate p	ower drain.		
bit 2	bit 2 T1SYNC: Timer1 External Clock Input Synchronization Select bit					
	When TMR1C	<u> S = 1:</u>				
	1 = Do not syl	nchronize external clock inp ize external clock input	ut			
	When TMR10	S = 0.				
	This bit is igno	pred. Timer1 uses the intern	al clock when TMR1CS = 0.			
bit 1	TMR1CS: Tim	ner1 Clock Source Select bi				
	1 = External (clock from pin RC0/T1OSO	T13CKI (on the rising edge)			
	0 = Internal c	lock (Fosc/4)				
bit 0	TMR1ON: Tin	ner1 On bit				
	1 = Enables	Timer1				
	0 = Stops Tim	ner1				

15.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

15.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 15-1:CCP MODE – TIMER
RESOURCE

CCP/ECCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the T3CON register (Register 14-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Figure 15-1 and Figure 15-2. In Timer1 in Asynchronous Counter mode, the capture operation will not work.

15.1.2 CCP2 PIN ASSIGNMENT

The pin assignment for CCP2 (Capture input, Compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines which pin CCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RB3.

Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation, regardless of where it is located.

TABLE 15-2: INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Each module can use TMR1 or TMR3 as the time base. The time base can be different for each CCP.
Capture	Compare	CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Automatic A/D conversions on trigger event can also be done. Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Capture	CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Operation of CCP2 could be affected if it is using the same timer as a time base.
Compare	Compare	Either module can be configured for the Special Event Trigger to reset the time base. Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if both modules are using the same time base.
Capture	PWM ⁽¹⁾	None
Compare	PWM ⁽¹⁾	None
PWM ⁽¹⁾	Capture	None
PWM ⁽¹⁾	Compare	None
PWM ⁽¹⁾	PWM ⁽¹⁾	Both PWMs will have the same frequency and update rate (TMR2 interrupt).

Note 1: Includes standard and Enhanced PWM operation.

17.4.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

17.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's Interrupt Service Routine (ISR) before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 17-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

17.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

17.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 17-9).

- Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

17.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 17-11).

17.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note: If, at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

17.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 17-19: FIRST START BIT TIMING

18.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 18-10 for the timing of the Break character sequence.

18.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

- Configure the EUSART for the desired mode. 1.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- Write '55h' to TXREG to load the Sync character 4. into the transmit FIFO buffer.
- After the Break has been sent, the SENDB bit is 5. reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

18.2.6 **RECEIVING A BREAK CHARACTER**

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in Section 18.2.4 "Auto-Wake-up on Sync Break Character". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXIF interrupt is observed.

FIGURE 18-10: SEND BREAK CHARACTER SEQUENCE

20.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 20-1. Bits CM<2:0> of the CMCON register are used to select these modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in **Section 26.0 "Electrical Characteristics"**.

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

21.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 21-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

21.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

21.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

21.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 21-2 shows an example buffering technique.

REGISTER 23-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0
bit 7							bit 0

Lanandi				
Legend:				
R = Readable	bit C = Clearable bit	U = Unimplemented bit, read as '0'		
-n = Value when device is unprogrammed u = Unchanged from programmed state				
bit 7-4	Unimplemented: Read as '0'			
bit 3	WRT3: Write Protection bit ⁽¹⁾			
	1 = Block 3 (006000-007FFFh) not write-p 0 = Block 3 (006000-007FFFh) write-prote	protected ected		
bit 2	WRT2: Write Protection bit ⁽¹⁾			
	1 = Block 2 (004000-005FFFh) not write-p 0 = Block 2 (004000-005FFFh) write-prote	protected		
bit 1	WRT1: Write Protection bit			
	1 = Block 1 (002000-003FFFh) not write-p 0 = Block 1 (002000-003FFFh) write-prote	protected ected		
bit 0	WRT0: Write Protection bit			
	1 = Block 0 (000800-001FFFh) not write-p	protected		
	0 = Block 0 (000800-001FFFh) write-prote	ected		

Note 1: Unimplemented in PIC18F2420/4420 devices; maintain this bit set.

REGISTER 23-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

R/C-1	R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0
WRTD	WRTB	WRTC ⁽¹⁾	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	u = Unchanged from programmed state

bit 7	WRTD: Data EEPROM Write Protection bit
	 1 = Data EEPROM not write-protected 0 = Data EEPROM write-protected
bit 6	WRTB: Boot Block Write Protection bit
	1 = Boot block (000000-0007FFh) not write-protected
	0 = Boot block (000000-0007FFh) write-protected
bit 5	WRTC: Configuration Register Write Protection bit ⁽¹⁾
	 1 = Configuration registers (300000-3000FFh) not write-protected 0 = Configuration registers (300000-3000FFh) write-protected
bit 4-0	Unimplemented: Read as '0'

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.

ΒZ		Branch if	Zero		CAL	.L	Subrouti	ne Call	
Synta	ax:	BZ n			Synt	ax:	CALL k {,	s}	
Oper	ands:	-128 ≤ n ≤ 1	127		Oper	ands:	$0 \le k \le 104$	8575	
Oper	ation:	if Zero bit is	;'1',				s ∈ [0,1]		
		(PC) + 2 + 2	$2n \rightarrow PC$		Oper	ration:	$(PC) + 4 \rightarrow$	TOS,	
Statu	s Affected:	None					$K \rightarrow FC < 2C$ if s = 1,	<i></i> ,	
Enco	ding:	1110	0000 nni	nn nnnn			$(W) \rightarrow WS$		
Desc	ription:	If the Zero I	oit is '1', then t	he program			(SIAIUS) $(BSR) \rightarrow B$	→ STATUSS, SRS	
		The 2's con	nplement num	ber, '2n', is	Statu	is Affected	None		
		added to th	e PC. Since th	e PC will	Enco	odina [.]			
		have incren	nented to fetch	the next	1st v	/ord (k<7:0>)	1110	110s k ₇	kk kkkk ₀
		PC + 2 + 2r	n. This instruct	ion is then a	2nd	word(k<19:8>)	1111	k ₁₉ kkk kk	kk kkkk ₈
		two-cycle ir	struction.		Desc	cription:	Subroutine	call of entire	2-Mbyte
Word	ls:	1					(PC + 4) is	pushed onto	the return
Cycle	es:	1(2)					stack. If 's'	= 1, the W, S	TATUS and
QC	ycle Activity:						BSR register	ers are also pi shadow regisi	ished into their
II JU	01	02	03	04			STATUSS	and BSRS. If	s' = 0, no
	Decode	Read literal	Process	Write to PC			update occ	urs (default).	Then, the
		'n'	Data				CALL is a	two-cycle inst	ruction.
	No	No	No	No	Word	ds:	2		
If No	Jump.	operation	operation	operation	Cycl	es:	2		
	Q1	Q2	Q3	Q4	QC	ycle Activity:			
	Decode	Read literal	Process	No		Q1	Q2	Q3	Q4
		'n'	Data	operation		Decode	Read literal	PUSH PC to	Read literal
E ver			5				'k'<7:0>,	stack	'k'<19:8>, Write to PC
Exan	<u>lipie.</u> Doforo Instruc	HERE	BZ Jump			No	No	No	No
	PC	= ad	dress (HERE)		operation	operation	operation	operation
	After Instruction	on							
	If Zero PC	= 1; = ad	dress (Jump))	Exar	<u>nple:</u>	HERE	CALL THE	SRE, 1
	If Zero	= 0; = ad	drees (UFDF	+ 2)		Before Instruc	tion		
	10	- au		τ Δ)		After Instructio	- address	(HEKE)	
						PC	= address	S (THERE)	
						WS	= address = W	5 (HERE + 4	£)

	respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:1>. CALL is a two-cycle instruction.						
ls:	2						
es:	2						
ycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read literal 'k'<7:0>,	PUSH PC to stack	Read literal 'k'<19:8>, Write to PC				
No operation	No operation	No operation	No operation				
n <u>ple:</u> Before Instruc	HERE	CALL THE	RE, 1				
PC	= address	(HERE)					

address (THERE) address (HERE + 4) W BSR

STATUS

= STATUSS =

BSRS

POF	0	Рор Тор	Pop Top of Return Stack					
Synta	ax:	POP	POP					
Oper	ands:	None						
Oper	ation:	$(TOS) \rightarrow b$	it bucket					
Statu	is Affected:	None						
Enco	oding:	0000	0000	000	0	0110		
Description:		The TOS v stack and i then becor was pushe This instru the user to stack to inc	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.					
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	5	Q4			
	Decode	No operation	POP 1 valu	TOS Ie	op	No peration		
<u>Exan</u>	nple:	POP GOTO	NEW					
Before Instructio TOS Stack (1 le		tion evel down)	= C = C)031A2)14332	2h ?h			
	After Instructic TOS PC	n	= C = N)14332 JFW	2h			

PUS	H	Push Top	Push Top of Return Stack					
Synta	ax:	PUSH	PUSH					
Oper	ands:	None						
Oper	ation:	$(PC + 2) \rightarrow$	TOS					
Statu	s Affected:	None						
Enco	oding:	0000	0000	000	0	0101		
Desc	ription:	The PC + 2 the return s value is pus This instruc software sta then pushin	is push tack. Th shed do tion allo ack by r g it onto	ned ont ne prev wn on ows imp nodifyin o the re	o the ious the s olem ng T eturn	e top of TOS stack. enting a OS and stack.		
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	PUSH PC + 2 onto return stack	N opera	o ation	op	No peration		
<u>Exan</u>	nple:	PUSH						
	Before Instruc TOS PC	tion	= =	345Ah 0124h				
After Instruction PC TOS Stack (1 level down)			= = =	0126h 0126h 345Ah				

SLEEP	Enter Sle	eep mode		SUBFWB	Subtract	f from W w	ith Borrow
Syntax:	SLEEP			Syntax:	SUBFWB	f {,d {,a}}	
Operands:	None			Operands:	$0 \le f \le 255$	5	
Operation:	$00h \rightarrow WE$	DT,			d ∈ [0,1]		
	$0 \rightarrow WDT$	postscaler,		Onerstien	a ∈ [0, 1]	$\left(\overline{\mathbf{O}}\right)$, deat	
	$1 \rightarrow \underline{10}, \\ 0 \rightarrow PD$			Operation:	(VV) - (T) -	$(C) \rightarrow dest$	
Status Affected:	TO. PD			Status Affected:	N, OV, C,		
Encodina:	0000	0000 000	0 0011	Encoding:	0101	01da II	
Description: The Power-Down status bit (PD) is cleared. The Time-out status bit (TO) is set. Watchdog Timer and its post- scaler are cleared. The processor is put into Sleep mode with the oscillator stopped.		Description:	(borrow) fr method). I in W. If 'd' register 'f' If 'a' is 'o', selected. I	Subtract register 'f' and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used			
Words:	1				If 'a' is '0' a	and the extend	led instruction
Cycles:	1				set is enal	oled, this instr	uction
Q Cycle Activity:					operates i	n Indexed Lite	eral Offset
Q1	Q2	Q3	Q4		$f \le 95 (5F)$	n). See Sectio	ever n 24.2.3
Decode	No	Process	Go to Sleep		"Byte-Ori	ented and Bit	-Oriented
	operation	Dala	Oleep		Instructio Mode" for	ns in Indexed	Literal Offset
Example:	SLEEP			Words:	1	detailo.	
Before Instruct	tion			Cycles:	1		
\overline{TO} =	?			Q Cycle Activity:			
PD =	<i>?</i>			Q1	Q2	Q3	Q4
$\frac{113}{TO} =$	1†			Decode	Read	Process	Write to
PD =	0				register t	Data	destination
† If WDT causes v	vake-up, this t	bit is cleared.		Example 1: Before Instruction REG W C After Instruction REG W C Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C C After Instruction REG	$\begin{array}{rcl} \text{subrind}\\ &=& 3\\ &=& 2\\ &=& 1\\ \text{on}\\ &=& FF\\ &=& 2\\ &=& 0\\ &=& 0\\ &=& 0\\ \text{subrwb}\\ \text{stion}\\ &=& 2\\ &=& 3\\ &=& 1\\ &=& 0\\ &=& 0\\ &=& 0\\ \text{subrwb}\\ \text{subrwb}\\ \text{stion}\\ &=& 1\\ &=& 2\\ &=& 0\\ \text{on}\\ &=& 2\\ &=& 0\\ &=& 0\\ &=& 2\\ &=& 1\end{array}$	sult is negativ REG, 0, 0	e) ?

MAXIMUM WDT CURRENT vs. VDD ACROSS TEMPERATURE FIGURE 27-10: (WDT DELTA CURRENT IN SLEEP MODE)

FIGURE 27-9: TYPICAL WDT CURRENT vs. VDD ACROSS TEMPERATURE

FIGURE 27-17: TYPICAL AND MAXIMUM SEC_RUN CURRENT vs. Vdd ACROSS TEMPERATURE (T10SC IN LOW-POWER MODE)

FIGURE 27-18: TYPICAL AND MAXIMUM SEC_IDLE CURRENT vs. VDD ACROSS TEMPERATURE (T10SC IN LOW-POWER MODE)

© 2008 Microchip Technology Inc.

W

Watchdog Timer (WDT)	249 258
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	189, 190, 191, 194
WCOL Status Flag	189, 190, 191, 194
WWW Address	
WWW, On-Line Support	6

Х

XORLW	. 307
XORWF	. 308