

Welcome to E-XFL.COM

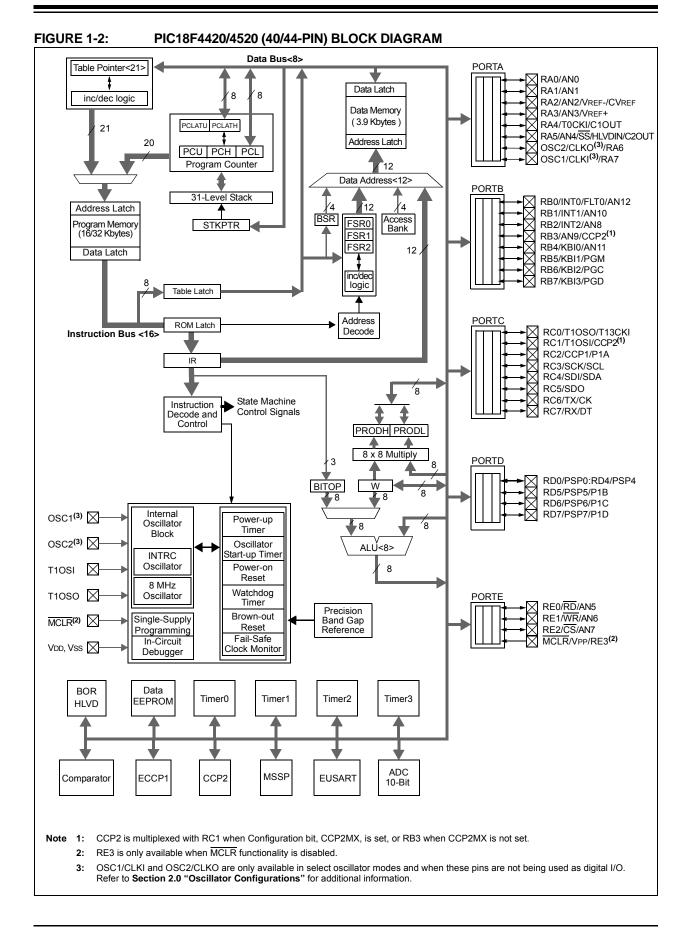
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2520t-i-ml

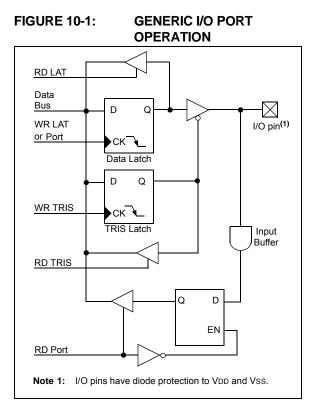
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC18F2420	PIC18F2520	PIC18F4420	PIC18F4520
Operating Frequency	DC – 40 MHz	DC – 40 MHz	DC – 40 MHz	DC – 40 MHz
Program Memory (Bytes)	16384	32768	16384	32768
Program Memory (Instructions)	8192	16384	8192	16384
Data Memory (Bytes)	768	1536	768	1536
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No	Yes	Yes
10-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack <u>Underfl</u> ow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable High/Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled	75 Instructions; 83 with Extended Instruction Set Enabled	75 Instructions; 83 with Extended Instruction Set Enabled	75 Instructions; 83 with Extended Instruction Set Enabled
Packages	28-Pin SPDIP 28-Pin SOIC 28-Pin QFN	28-Pin SPDIP 28-Pin SOIC 28-Pin QFN	40-Pin PDIP 44-Pin QFN 44-Pin TQFP	40-Pin PDIP 44-Pin QFN 44-Pin TQFP

TABLE 1-1: DEVICE FEATURES

10.0 I/O PORTS


Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Data Latch register)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 10-1.

10.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 23.1 "Configuration Bits**" for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as 'o'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as A/D Converter inputs is selected by clearing or setting the control bits in the ADCON1 register (A/D Control Register 1).

Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RA<3:0> as digital inputs, it is also necessary to turn off the comparators.

Note:	On a Power-on Reset, RA5 and RA<3:0>
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 10-1: INITIALIZING PORTA

CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
CLRF	LATA	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	07h	;	Configure A/D
MOVWF	ADCON1	;	for digital inputs
MOVWF	07h	;	Configure comparators
MOVWF	CMCON	;	for digital input
MOVLW	0CFh	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA<5:4> as outputs
			-

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	48
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
TRISB	PORTB Da	PORTB Data Direction Register							
TRISC	PORTC Da	ata Direction	Register						52
TMR1L	Timer1 Re	gister Low B	yte						50
TMR1H	Timer1 Reg	gister High E	Byte						50
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	50
TMR3H	Timer3 Re	gister High E	Byte						51
TMR3L	Timer3 Re	gister Low B	yte						51
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	51
CCPR1L	Capture/Co	ompare/PWI	M Register	1 Low Byte					51
CCPR1H	Capture/Compare/PWM Register 1 High Byte							51	
CCP1CON	P1M1 ⁽¹⁾	P1M0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	51
CCPR2L	Capture/Co	Capture/Compare/PWM Register 2 Low Byte							51
CCPR2H	Capture/Co	ompare/PWI	M Register 2	2 High Byte					51
CCP2CON		_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	51

TARI E 15-3-	REGISTERS ASSOCIATED WITH CAPTURE	COMPARE TIMER1 AND TIMER3
IADLL IJ-J.	REGISTERS ASSOCIATED WITH CAPTORE	, COMPARE, HIMLERI AND HIMLERS

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.

Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	1 = A BRG ro	to-Baud Acqui blover has occ rollover has oc	urred during A		Detect mode (must be cleared	d in software)
bit 6	1 = Receive o	ive Operation l peration is Idle	;				
		peration is act					
bit 5	Asynchronous 1 = Receive d 0 = Receive d	lata (RX) is inv lata (RX) is no	erted (active-lo	,			
		mode: is inverted (ad is not inverted					
bit 4	Asynchronous 1 = Idle state 0 = Idle state Synchronous 1 = Idle state	for transmit (T for transmit (T	X) is a low leve X) is a high lev is a high level	el			
bit 3		it Baud Rate R		e bit			
	1 = 16-bit Bau	ud Rate Gener	ator – SPBRG	H and SPBRG	le mode), SPB	RGH value igno	red
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-u	up Enable bit					
	hardware		ising edge		upt generated	on falling edge	; bit cleared i
	Synchronous						
	Unused in this						
bit 0	Asynchronous 1 = Enable b cleared ir	aud rate meas n hardware upo e measuremen <u>mode:</u>	urement on th on completion.		er. Requires re	eception of a Sy	vnc field (55h

18.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

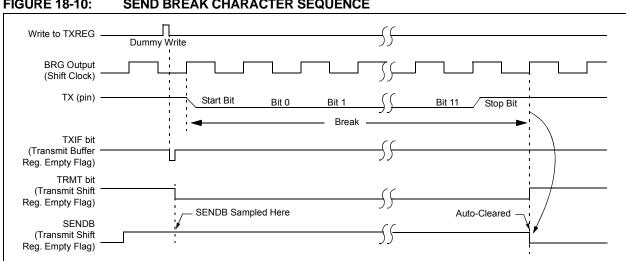
The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 18-10 for the timing of the Break character sequence.

18.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

- Configure the EUSART for the desired mode. 1.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- Write '55h' to TXREG to load the Sync character 4. into the transmit FIFO buffer.
- After the Break has been sent, the SENDB bit is 5. reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.


18.2.6 **RECEIVING A BREAK CHARACTER**

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in Section 18.2.4 "Auto-Wake-up on Sync Break Character". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXIF interrupt is observed.

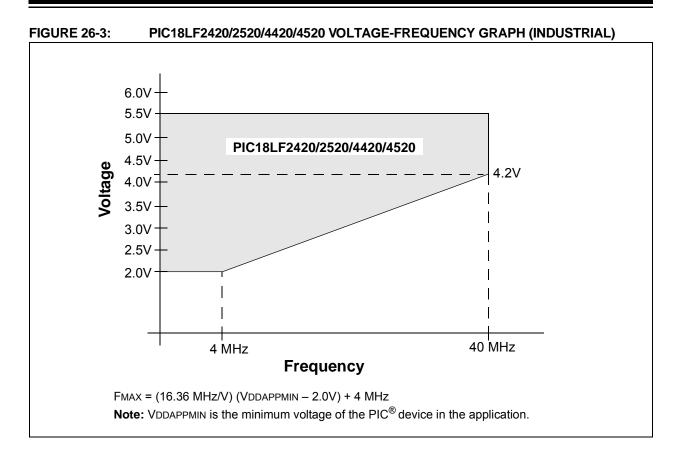
FIGURE 18-10: SEND BREAK CHARACTER SEQUENCE

REGISTER 23-4: CON	NFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)
--------------------	--

R/P-1	U-0	U-0	U-0	U-0	R/P-0	R/P-1	R/P-1
MCLRE	—	—	_	_	LPT1OSC	PBADEN	CCP2MX
bit 7	•						bit 0
Legend:							
R = Readable b	bit	P = Programm	nable bit	U = Unimpler	mented bit, read	as '0'	
-n = Value whe	n device is unp	programmed		u = Unchang	ed from progran	nmed state	
bit 7	MCLRE: MCL	R Pin Enable	bit				
	$1 = \overline{MCLR}$ pin	enabled; RE3	input pin disa	bled			
	0 = RE3 input	pin enabled; N	ICLR disable	d			
bit 6-3	Unimplement	ted: Read as '	o'				
bit 2	LPT1OSC: Low-Power Timer1 Oscillator Enable bit						
		onfigured for lov					
	0 = Timer1 co	onfigured for hig	gher power op	eration			
bit 1	PBADEN: PORTB A/D Enable bit (Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.)						
	•				•	•	
		•	•	• •	annels on Rese	t	
h # 0		1:0> pins are co	Singuleu as u		eset		
bit 0	CCP2MX: CC			504			
		ut/output is mu					
	$0 = CCP2 \ln p$	ut/output is mu	inplexed with	RDJ			

REGISTER 23-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	R/P-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG	XINST	—	_	_	LVP	_	STVREN
bit 7							bit 0


Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed		u = Unchanged from programmed state

DEBUG: Background Debugger Enable bit
 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug
XINST: Extended Instruction Set Enable bit
 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode)
Unimplemented: Read as '0'
LVP: Single-Supply ICSP™ Enable bit
1 = Single-Supply ICSP enabled0 = Single-Supply ICSP disabled
Unimplemented: Read as '0'
STVREN: Stack Full/Underflow Reset Enable bit
1 = Stack full/underflow will cause Reset
0 = Stack full/underflow will not cause Reset

DAW	Decimal Adjust W Register			DECF	Decrement	Decrement f		
Syntax:	DAW			Syntax:	DECF f{,d	{,a}}		
Operands:	None			Operands:	$0 \leq f \leq 255$			
Operation:	If [W<3:0> > 9] or [DC = 1] then, (W<3:0>) + 6 \rightarrow W<3:0>;			d ∈ [0,1] a ∈ [0,1]				
else, (W<3:0>) \rightarrow W<3:0>;		Operation:	Operation: $(f) - 1 \rightarrow dest$					
		Status Affected:	C, DC, N, O	C, DC, N, OV, Z				
	If [W<7:4> + DC > 9] or [C = 1] then,		Encoding:	0000	0000 01da ffff ffff			
	· · ·	$-6 + DC \rightarrow W$	<7:4>;	Description:	Decrement r	egister 'f'. If '	d' is '0', the	
	else, (\//<7:4>) +	$DC \rightarrow W < 7:43$	>			ed in W. If 'd'	,	
Status Affected:	(W (7.42)) C		-		(default).	ed back in re	gister t	
Encoding:	0000	0000 000	0 0111		If 'a' is '0', the Access Bank is selected.			
Description:						If 'a' is '1', the BSR is used to select the GPR bank (default).		
Boconpuoli	DAW adjusts the 8-bit value in W, resulting from the earlier addition of two variables (each in packed BCD format)				•	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See		
	and produces a correct packed BCD result.							
Words:	1				Section 24.2.3 "Byte-Oriented and			
Cycles:	1					d Instruction et Mode" for	s in Indexed	
Q Cycle Activity:				Words:	1		detailo.	
Q1	Q2	Q3	Q4	Cycles:	1			
Decode	Read	Process	Write	Q Cycle Activity:	I			
	register W	Data	W	Q Cycle Activity.	Q2	Q3	Q4	
Example 1:	5344			Decode	Read	Process	Write to	
Defens lasta	DAW				register 'f'	Data	destination	
Before Instru W	= A5h							
С	= 0			Example:	DECF CI	NT, 1, 0		
DC After Instruct	= 0			Before Instru	ction = 01h			
W	= 05h			CNT Z	= 0111			
C	= 1			After Instruct				
DC Example 2:	= 0			CNT Z	= 00h = 1			
Before Instru	ction							
W	= CEh							
C DC	= 0 = 0							
After Instruct	0							
W	= 34h							
C DC	= 1 = 0							
00	- 0							

RRNCF	Rotate Right f (No Carry)							
Syntax:	RRNCF	RRNCF f {,d {,a}}						
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:		$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow dest < 7 >$						
Status Affected:	N, Z	N, Z						
Encoding:	0100	00da ff	ff ffff					
Description:	The contents of register one bit to the right. If 'd' is placed in W. If 'd' is placed back in register If 'a' is '0', the Access selected, overriding th is '1', then the bank w per the BSR value (de If 'a' is '0' and the exter set is enabled, this ins in Indexed Literal Offs mode whenever f ≤ 95 Section 24.2.3 "Byte- Bit-Oriented Instruct Literal Offset Mode"		d' is '0', the result s '1', the result is s 'f' (default). Bank will be the BSR value. If 'a' will be selected as the selected as the selecte					
			r details.					
Words:	Literal Of	fset Mode" fo	r details.					
Words:	Literal Of	fset Mode" fo	r details.					
Cycles:	Literal Of	fset Mode" fo	r details.					
	Literal Of	fset Mode" fo	r details.					
Cycles: Q Cycle Activity:	Literal Of	fset Mode" fo ► registe	r details. er f					
Cycles: Q Cycle Activity: Q1	Literal Of 1 1 Q2 Read	fset Mode" fo → registe Q3 Process	Q4 Write to					
Cycles: Q Cycle Activity: Q1 Decode	Literal Of 1 1 Q2 Read register 'f' RRNCF tion = 1101	Gamma Gamma Q3 Process Data REG, 1, 0 0111 0	Q4 Write to					
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	Literal Of 1 1 2 Read register 'f' RRNCF tion = 1101 n = 1110	Q3 Process Data REG, 1, 0 0111 1011	Q4 Write to					
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG Example 2:	Literal Of 1 1 2 Read register 'f' RRNCF tion = 1101 n = 1110 RRNCF	Gamma Gamma Q3 Process Data REG, 1, 0 0111 0	Q4 Write to					
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	Literal Of 1 1 2 Read register 'f' RRNCF tion = 1101 n = 1110 RRNCF	Q3 Process Data REG, 1, 0 0111 1011	Q4 Write to					
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG Example 2: Before Instruct	Literal Of 1 1 2 Read register 'f' RRNCF tion = 1101 RRNCF tion = 1110 RRNCF tion = 1110	Q3 Process Data REG, 1, 0 0111 1011 REG, 0, 0 0	Q4 Write to					
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruction REG After Instruction REG Example 2: Before Instruct W REG	Literal Of 1 1 2 Read register 'f' RRNCF tion = 1101 RRNCF tion = 1110 RRNCF tion = 1110	Q3 Process Data 0111 1011 REG, 0, 0 0111 0111	Q4 Write to					

SETF	Set f							
Syntax:	SETF f{,a	SETF f {,a}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in \ [0,1] \end{array}$							
Operation:	$FFh\tof$	$FFh\tof$						
Status Affected:	None							
Encoding:	0110	100a ff	ff ffff					
	If 'a' is '1', ti GPR bank of If 'a' is '0' a set is enabl in Indexed I mode when Section 24 Bit-Oriente	the Access Ba ne BSR is use (default). nd the extended, this instru- Literal Offset , ever $f \le 95$ (5 .2.3 "Byte-O	Fh). See riented and ns in Indexed					
Words:	1							
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write register 'f'					
Example:	SETF	REG, 1						
Before Instruct REG After Instructio REG	= 5A							

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

PIC18LF2420/2520/4420/4520 (Industrial) PIC18F2420/2520/4420/4520 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for extended							
									Param Device
	Supply Current (IDD) ⁽²⁾								
	PIC18LF2X2X/4X20	250	350	μA	-40°C				
		260	350	μΑ	+25°C	VDD = 2.0V			
		250	350	μΑ	+85°C]			
	PIC18LF2X2X/4X20	550	650	μΑ	-40°C				
		480	640	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz		
		460	600	μΑ	+85°C		(PRI_RUN , EC oscillator)		
	All devices	1.2	1.5	mA	-40°C				
		1.1	1.4	mA	+25°C	VDD = 5.0V			
		1.0	1.3	mA	+85°C	י0.0 – 5.00			
	Extended devices only	1.0	3.0	mA	+125°C				
	PIC18LF2X2X/4X20	0.72	1.0	mA	-40°C				
		0.74	1.0	mA	+25°C	VDD = 2.0V			
		0.74	1.0	mA	+85°C				
	PIC18LF2X2X/4X20	1.3	1.8	mA	-40°C				
		1.3	1.8	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI_RUN ,		
		1.3	1.8	mA	+85°C		EC oscillator)		
	All devices	2.7	4.0	mA	-40°C				
		2.6	4.0	mA	+25°C	VDD = 5.0V			
		2.5	4.0	mA	+85°C	י0.0 – 5.00			
	Extended devices only	2.6	5.0	mA	+125°C				
	Extended devices only	8.4	13	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz		
		11	16	mA	+125°C	VDD = 5.0V	(PRI_RUN , EC oscillator)		
	All devices	15	20	mA	-40°C				
		15	20	mA	+25°C	VDD = 4.2V			
		15	20	mA	+85°C		Fosc = 40 MHz		
	All devices	20	25	mA	-40°C		(PRI_RUN , EC oscillator)		
		20	25	mA	+25°C	VDD = 5.0V			
		20	25	mA	+85°C				

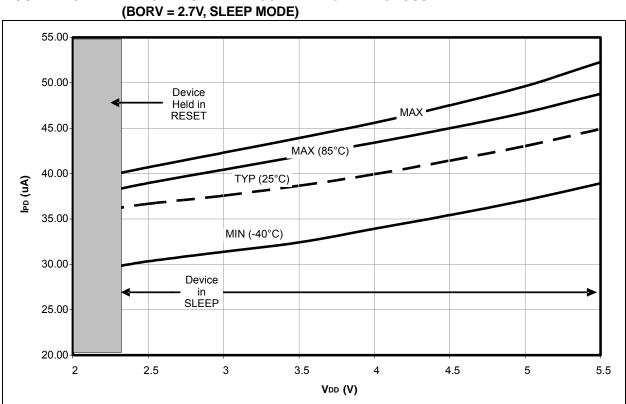
Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

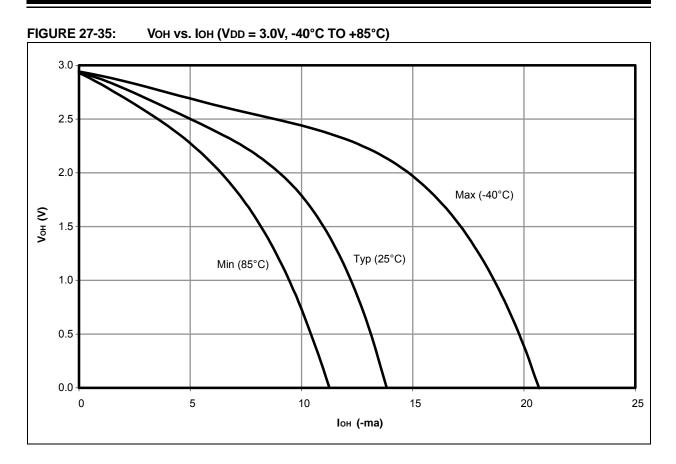
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

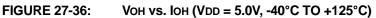
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;


- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

Param. No.	Symbol	ol Characteristic		Min	Max	Units	Conditions	
100 THIGH Clock High Time 100 kl		100 kHz mode	2(Tosc)(BRG + 1)	_	ms			
	4		400 kHz mode	2(Tosc)(BRG + 1)		ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms		
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms		
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	300	ns		
103	TF	SDA and SCL	100 kHz mode	_	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	100	ns		
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	Only relevant for	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		ms	Repeated Start	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		– ms condition	condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
106	THD:DAT	Data Input	100 kHz mode	0	_	ns		
		Hold Time	400 kHz mode	0	0.9	ms		
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)	
		Setup Time	400 kHz mode	100	_	ns		
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
109	ΤΑΑ	Output Valid	100 kHz mode		3500	ns		
		from Clock	400 kHz mode		1000	ns		
			1 MHz mode ⁽¹⁾		_	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be free	
			400 kHz mode	1.3		ms	before a new transmission can start	
D102	Св	Bus Capacitive Lo	bading	_	400	pF		


TABLE 26-21: MASTER SSP I²C[™] BUS DATA REQUIREMENTS


Note 1: Maximum pin capacitance = 10 pF for all I²C pins.

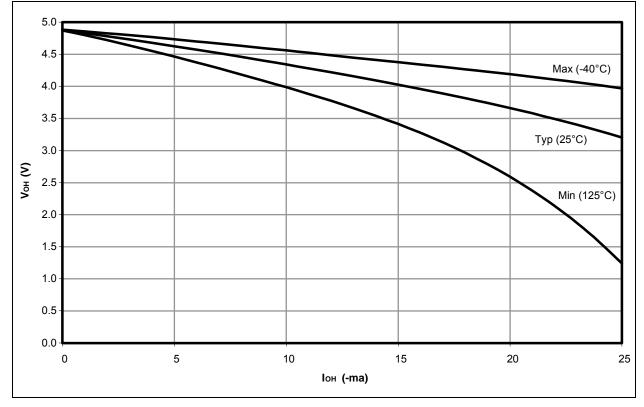
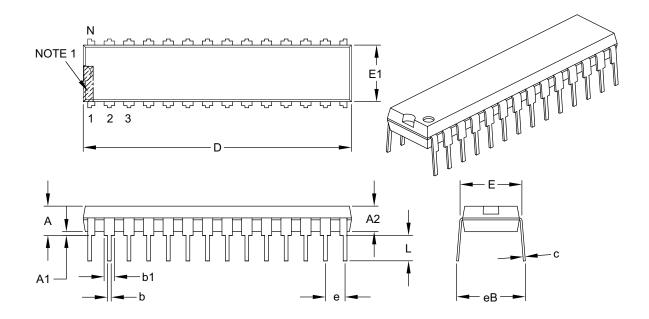

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

FIGURE 27-8: TYPICAL BOR DELTA CURRENT vs. VDD ACROSS TEMP.



28.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES				
Dimensior	MIN	NOM	MAX		
Number of Pins N		28			
Pitch e		.100 BSC			
Top to Seating Plane	Α	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	с	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

CLKO and I/O Clock Synchronization Clock/Instruction Cycle	181
EUSART Synchronous Receive	
(Master/Slave)	359
EUSART Synchronous Transmission	
(Master/Slave)	358
Example SPI Master Mode (CKE = 0)	349
Example SPI Master Mode (CKE = 1)	
Example SPI Slave Mode (CKE = 0)	
Example SPI Slave Mode (CKE = 1)	
External Clock (All Modes Except PLL)	
Fail-Safe Clock Monitor (FSCM)	
First Start Bit Timing	189
Full-Bridge PWM Output	153
Half-Bridge PWM Output	
High/Low-Voltage Detect Characteristics	339
High-Voltage Detect Operation (VDIRMAG = 1)	
I ² Č Bus Data	354
I ² C Bus Start/Stop Bits	354
I ² C Master Mode (7 or 10-Bit Transmission)	
I ² C Master Mode (7-Bit Reception)	
I ² C Slave Mode (10-Bit Reception, SEN = 0)	
I^2C Slave Mode (10-Bit Reception, SEN = 1)	
I ² C Slave Mode (10-Bit Transmission)	
I^2C Slave Mode (7-Bit Reception, SEN = 0)	
I^2C Slave Mode (7-Bit Reception, SEN = 1)	
I ² C Slave Mode (7-Bit Transmission)	
I ² C Slave Mode General Call Address	
Sequence (7 or 10-Bit Addressing Mode)	184
I ² C Stop Condition Receive or Transmit Mode	
Low-Voltage Detect Operation (VDIRMAG = 0)	
Master SSP I ² C Bus Data	356
Master SSP I ² C Bus Start/Stop Bits	356
Parallel Slave Port (PIC18F4420/4520)	
Parallel Slave Port (PSP) Read	
Parallel Slave Port (PSP) Write	
PWM Auto-Shutdown (PRSEN = 0,	121
Auto-Restart Disabled)	150
PWM Auto-Shutdown (PRSEN = 1,	150
Auto-Restart Enabled)	150
PWM Direction Change	
PWM Direction Change at Near	155
100% Duty Cycle	155
PWM Output	
•	
Repeated Start Condition Reset, Watchdog Timer, Oscillator Start-up	190
Timer, Power-up Timer	
	245
Send Break Character Sequence	216
Send Break Character Sequence Slave Synchronization	216
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD,	216 167
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)	216 167 47
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode)	216 167 47 166
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0)	216 167 47 166 168
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1)	216 167 47 166 168 168
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN)	216 167 47 166 168 168 219
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission	216 167 166 168 168 219 217
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN)	216 167 166 168 168 219 217
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled	216 47 166 168 168 219 217 218
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)	216 47 166 168 168 219 217 218
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up	216 167 47 166 168 219 217 218 218
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)	216 167 47 166 168 219 217 218 218
Send Break Character Sequence Slave Synchronization Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) SPI Mode (Master Mode) SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1) Synchronous Reception (Master Mode, SREN) Synchronous Transmission Synchronous Transmission (Through TXEN) Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up	216 167 167 166 168 219 217 218 47 47

Time-out Sequence on Power-up
(MCLR Tied to VDD, VDD Rise < TPWRT)
Timer0 and Timer1 External Clock
Transition for Entry to Idle Mode
Transition for Entry to SEC_RUN Mode
Transition for Entry to Sleep Mode
Transition for Two-Speed Start-up
(INTOSC to HSPLL)
Transition for Wake from Idle to
Run Mode
Transition for Wake from Sleep (HSPLL)
Transition from RC_RUN Mode to
PRI_RUN Mode
Transition from SEC_RUN Mode to
PRI_RUN Mode (HSPLL)
Transition to RC_RUN Mode
Timing Diagrams and Specifications
A/D Conversion Requirements
Capture/Compare/PWM (CCP)
Requirements
CLKO and I/O Requirements
EUSART Synchronous Receive
Requirements
EUSART Synchronous Transmission
Requirements
Example SPI Mode Requirements
(Master Mode, CKE = 0)
Example SPI Mode Requirements
(Master Mode, CKE = 1)
Example SPI Mode Requirements
(Slave Mode, CKE = 0)
Example SPI Mode Requirements
(Slave Mode, CKE = 1)
External Clock Requirements
I ² C Bus Data Requirements (Slave Mode)
Master SSP I ² C Bus Data
Requirements
Master SSP I ² C Bus Start/Stop Bits
Requirements
Parallel Slave Port Requirements
(PIC18F4420/4520)
PLL Clock
Reset, Watchdog Timer, Oscillator Start-up
Timer, Power-up Timer and Brown-out
Reset Requirements
Timer0 and Timer1 External Clock
Requirements
Top-of-Stack Access
TRISE Register
PSPMODE Bit114
TSTFSZ
Two-Speed Start-up
Two-Word Instructions
Example Cases
TXSTA Register
BRGH Bit
עטר דער דער דער דער דער דער דער דער דער דע
V
Voltage Reference Specifications