

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2520t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	umber	Dia	Duffer		
Pin Name	SPDIP, SOIC	QFN	Ріп Туре	Туре	Description	
MCLR/Vpp/RE3 MCLR	1	26	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.	
VPP			Р		Programming voltage input.	
RE3			I	ST	Digital input.	
OSC1/CLKI/RA7 OSC1	9	6	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode: CMOS otherwise.	
CLKI			I	CMOS	External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)	
RA7			I/O	TTL	General purpose I/O pin.	
OSC2/CLKO/RA6 OSC2	10	7	ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.	
CLKO			0	—	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.	
RA6			I/O	TTL	General purpose I/O pin.	
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input						

TABLE 1-2: PIC18F2420/2520 PINOUT I/O DESCRIPTIONS

O = Output

= Power

Ρ

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Din Nome	Pi	n Numb	ber	Pin	Buffer	Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTE is a bidirectional I/O port.		
RE0/RD/AN5	8	25	25					
RE0	-			I/O	ST	Digital I/O.		
RD				Ι	TTL	Read control for Parallel Slave Port		
						(see also \overline{WR} and \overline{CS} pins).		
AN5				I	Analog	Analog input 5.		
RE1/WR/AN6	9	26	26					
RE1				I/O	ST	Digital I/O.		
WR				Ι	TTL	Write control for Parallel Slave Port		
						(see CS and RD pins).		
ANG				I	Analog	Analog input 6.		
RE2/CS/AN7	10	27	27					
RE2				I/O	ST	Digital I/O.		
CS				I	TTL	Chip Select control for Parallel Slave Port		
					Angleg	(see related RD and WR).		
AN7				I	Analog			
RE3	—	—	—	—	—	See MCLR/VPP/RE3 pin.		
Vss	12, 31	6, 30,	6, 29	Р	—	Ground reference for logic and I/O pins.		
		31						
VDD	11, 32	7, 8,	7, 28	Р	—	Positive supply for logic and I/O pins.		
		28, 29						
NC	—	13	12, 13,	—	—	No Connect.		
			33, 34					
Legend: TTL = TTL co	ompatib	e input			(CMOS = CMOS compatible input or output		
ST = Schmitt Trigger input with CMOS levels I = Input								

Ρ

= Power

TABLE 1-3:	PIC18F4420/4520 PINOUT I/O DESCRIPTIONS ((CONTINUED)	1

O = Output

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

6.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. TBLPTR<5:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

6.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer register with address of row being erased.
- 2. Set the EECON1 register for the erase operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN bit to enable writes;
 - set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Re-enable interrupts.

	MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	; load TBLPTR with the base ; address of the memory block
ERASE_ROW			
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	55h	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY ROW

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0		
EEPGD	CFGS		FREE	WRERR ⁽¹⁾	WREN	WR	RD		
bit 7			•				bit 0		
Legend:		S = Settable b	oit (cannot be	cleared in softwa	are)				
R = Readab	le bit	W = Writable	bit	U = Unimplem	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7	EEPGD: Flas 1 = Access F 0 = Access c	sh Program or E Flash program r lata EEPROM r	Data EEPROM nemory nemory	Memory Select	bit				
DILO	1 = Access (0 = Access F	Configuration re	gisters gistata EEPRO	OM memory					
bit 5	Unimplemen	ted: Read as '	כי						
bit 4	FREE: Flash	Row Erase Ena	able bit						
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared completion of erase operation) 0 = Perform write only 								
bit 3	WRERR: Fla	sh Program/Da	ta EEPROM E	rror Flag bit ⁽¹⁾					
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in norma operation, or an improper write attempt) 0 = The write operation completed 								
bit 2	WREN: Flash	n Program/Data	EEPROM Wr	ite Enable bit					
	1 = Allows w 0 = Inhibits w	rite cycles to FI vrite cycles to F	ash program/o lash program/	lata EEPROM data EEPROM					
bit 1	WR: Write Co	ontrol bit							
	1 = Initiates a (The ope can only 0 = Write cyc	a data EEPRON ration is self-tin be set (not clea cle to the EEPR	I erase/write c ned and the bi ared) in softwa OM is comple	ycle or a prograi t is cleared by ha ire.) te	m memory era ardware once	ase cycle or writ write is comple	te cycle te. The WR bit		
bit 0	RD: Read Co	ontrol bit							
	1 = Initiates a be set (n 0 = Does not	an EEPROM re ot cleared) in so t initiate an EEF	ad (Read take oftware. RD bit PROM read	s one cycle. RD cannot be set w	is cleared in I hen EEPGD =	nardware. The F = 1 or CFGS = 1	RD bit can only)		

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

10.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

CLRF	PORTB	; Initialize PORTB by ; clearing output : data latches
CLRF	LATB	<pre>; Alternate method ; to clear output ; data latches</pre>
MOVLW	0Fh	; Set RB<4:0> as
MOVWF	ADCON1	; digital I/O pins ; (required if config bit ; PBADEN is set)
MOVLW	0CFh	; Value used to ; initialize data ; direction
MOVWF	TRISB	; Set RB<3:0> as inputs ; RB<5:4> as outputs ; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit, RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Note: On a Power-on Reset, RB<4:0> are configured as analog inputs by default and read as '0'; RB<7:5> are configured as digital inputs. By programming the Configuration bit,

PBADEN, RB<4:0> will alternatively be configured as digital inputs on POR.

Four of the PORTB pins (RB<7:4>) have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB<7:4>) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from the Sleep mode, or any of the Idle modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction).
- b) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit, RBIF, to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB3 can be configured by the Configuration bit, CCP2MX, as the alternate peripheral pin for the CCP2 module (CCP2MX = 0).

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RE0/RD/AN5	RE0	0	0	DIG	LATE<0> data output; not affected by analog input.
		1	Ι	ST	PORTE<0> data input; disabled when analog input enabled.
	RD	1	Ι	TTL	PSP read enable input (PSP enabled).
	AN5	1	Ι	ANA	A/D input channel 5; default input configuration on POR.
RE1/WR/AN6	RE1	0	0	DIG	LATE<1> data output; not affected by analog input.
		1	Ι	ST	PORTE<1> data input; disabled when analog input enabled.
	WR	1	I	TTL	PSP write enable input (PSP enabled).
	AN6	1	Ι	ANA	A/D input channel 6; default input configuration on POR.
RE2/CS/AN7	RE2	0	0	DIG	LATE<2> data output; not affected by analog input.
		1	Ι	ST	PORTE<2> data input; disabled when analog input enabled.
	CS	1	I	TTL	PSP write enable input (PSP enabled).
	AN7	1	Ι	ANA	A/D input channel 7; default input configuration on POR.
MCLR/VPP/RE3 ⁽¹⁾	MCLR	_	I	ST	External Master Clear input; enabled when MCLRE Configuration bit is set.
	VPP	—	Ι	ANA	High-voltage detection; used for ICSP [™] mode entry detection. Always available regardless of pin mode.
	RE3	(2)	I	ST	PORTE<3> data input; enabled when MCLRE Configuration bit is clear.

TABLE 10-9: PORTE I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: RE3 is available on both 28-pin and 40/44-pin devices. All other PORTE pins are only implemented on 40/44-pin devices.

2: RE3 does not have a corresponding TRIS bit to control data direction.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTE	_	_	_	_	RE3 ^(1,2)	RE2	RE1	RE0	52
LATE ⁽²⁾	—	—	—	—	_	LATE Data	Latch Regis	ster	52
TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	52
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	51

TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTE.

Note 1: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0).

2: RE3 is the only PORTE bit implemented on both 28-pin and 40/44-pin devices. All other bits are implemented only when PORTE is implemented (i.e., 40/44-pin devices).

NOTES:

15.3 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCPx pin can be:

- · driven high
- · driven low
- toggled (high-to-low or low-to-high)
- remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM<3:0>). At the same time, the interrupt flag bit, CCPxIF, is set.

15.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Clearing the CCP2CON register will force
the RB3 or RC1 compare output latch
(depending on device configuration) to the
default low level. This is not the PORTB or
PORTC I/O data latch.

15.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the corresponding CCPx pin is not affected. A CCP interrupt is generated when the CCPxIF interrupt flag is set while the CCPxIE bit is set.

15.3.4 SPECIAL EVENT TRIGGER

Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM<3:0> = 1011).

For either CCP module, the Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable Period register for either timer.

The Special Event Trigger for CCP2 can also start an A/D conversion. In order to do this, the A/D Converter must already be enabled.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

19.6 A/D Conversions

Figure 19-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 19-5 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are set to '010', and selecting a 4 TAD acquisition time before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

19.7 Discharge

The discharge phase is used to initialize the value of the capacitor array. The array is discharged before every sample. This feature helps to optimize the unitygain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 19-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 19-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

NOTES:

24.0 INSTRUCTION SET SUMMARY

PIC18F2420/2520/4420/4520 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

24.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 24-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 24-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 24-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 24-2, lists the standard instructions recognized by the Microchip Assembler (MPASMTM).

Section 24.1.1 "Standard Instruction Set" provides a description of each instruction.

TABLE 24-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d	Destination select bit d = 0; store result in WPEC
	d = 1: store result in file register f
dest	Destination: either the WREG register or the specified register file location.
f	8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).
fs	12-bit Register file address (000h to FFFh). This is the source address.
f _d	12-bit Register file address (000h to FFFh). This is the destination address.
GIE	Global Interrupt Enable bit.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the table read and table write instructions.
	Only used with table read and table write instructions:
*	No change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
* -	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
n	The relative address (2's complement number) for relative branch instructions or the direct address for
20	
PC	Program Counter.
PCL	Program Counter Lick Byte.
РСП	Program Counter High Byte.
DCLATH	Program Counter Linner Byte Latch
	Power-down bit
PRODH	Product of Multiply High Byte
PRODI	Product of Multiply Low Byte
s	East Call/Return mode select bit
~	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
TBLPTR	21-bit Table Pointer (points to a Program Memory location).
TABLAT	8-bit Table Latch.
TO	Time-out bit.
TOS	Top-of-Stack.
u	Unused or unchanged.
WDT	Watchdog Timer.
WREG	Working register (accumulator).
х	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for
_	Z bit offset value for indirect addressing of register files (source)
ZS	7-bit offset value for indirect addressing of register files (source).
4 }	Ontional argument
[text]	Indicates an indexed address
(text)	The contents of text.
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.
→	Assigned to.
< >	Register bit field.
E	In the set of.
italics	User-defined term (font is Courier New).

24.1.1 STANDARD INSTRUCTION SET

ADD	DLW	ADD Lite	ral to W				
Synta	ax:	ADDLW	k				
Oper	rands:	$0 \le k \le 255$	$0 \leq k \leq 255$				
Oper	ration:	$(W) + k \rightarrow $	$(W) + k \to W$				
Statu	is Affected:	N, OV, C, E	DC, Z				
Enco	oding:	0000	1111	kkkk	kkkk		
Desc	cription:	The conten 8-bit literal W.	its of W a 'k' and th	ire addeo e result i	to the s placed in		
Word	ds:	1	1				
Cycles:		1	1				
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k'	Proce Data	ss V a	/rite to W		
Example: ADDLW 15h							
Before Instruction							
	VV =	10h					
	After Instruction	on					
	VV =	25h					

ADDWF	ADD W to f				
Syntax:	ADDWF f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:	(W) + (f) \rightarrow dest				
Status Affected:	N, OV, C, DC, Z				
Encoding:	0010 01da ffff ffff				
Description:	Add W to register T. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1				
Cycles:	1				

QC	Q Cycle Activity:						
	Q1		Q2	Q3		Q4	
	Decode	Read register 'f'		Process Data		Write to destination	
<u>Exan</u>	<u>nple:</u>	ADDWF		REG,	0, 0		
	Before Instruc	tion					
	W = REG =		17h 0C2h				
After Instruction		on					
	W REG	=	0D9h 0C2h				

Note:	All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
	symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

ADD	OWF	ADD W to (Indexed	ADD W to Indexed (Indexed Literal Offset mode)							
Synta	ax:	ADDWF	[k] {,d}							
Operands:		$\begin{array}{l} 0 \leq k \leq 95 \\ d \in \ [0,1] \end{array}$	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in \left[0,1\right] \end{array}$							
Oper	ation:	(W) + ((FS	(W) + ((FSR2) + k) \rightarrow dest							
Statu	is Affected:	N, OV, C, I	DC, Z							
Enco	oding:	0010	01d0	kkkk	kkkk					
Desc	cription:	The content contents o FSR2, offs If 'd' is '0', is '1', the r register 'f'	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).							
Word	ds:	1	1							
Cycle	es:	1								
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read 'k'	Proce Dat	ess V a de	Vrite to stination					
Exan	nple:	ADDWF	[OFST]	, 0						
	Before Instruct	ion								
W OFST FSR2 Contents		= = =	17h 2Ch 0A00h 20h	1						
	After Instructio	n =	37h							
	Contents of 0A2Ch	=	20h							

BSF		Bit Set I (Indexed	Bit Set Indexed (Indexed Literal Offset mode)					
Synt	ax:	BSF [k],	b					
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$						
Oper	ration:	$1 \rightarrow$ ((FSI	R2)	+ k) <b< td=""><td>></td><td></td><td></td></b<>	>			
Statu	is Affected:	None						
Enco	oding:	1000	k	obb0	kkł	ck	kkkk	
Description:		Bit 'b' of th offset by t	Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.					
Words:		1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3			Q4	
	Decode	Read register 'f'		Proce Data	ess a	V de:	Vrite to stination	
<u>Exar</u>	nple:	BSF	[F	LAG_O	FST]	, 7		
	Before Instruc	tion						
	FLAG_O FSR2 Contents	FST =	=	0Ah 0A00h	1			
	of 0A0Ah	ı =	=	55h				
	After Instruction Contents of 0A0Ah	on ı =	=	D5h				

SETF	Set Indexed (Indexed Literal Offset mode)					
Syntax:	SETF [k]					
Operands:	$0 \leq k \leq 95$					
Operation:	FFh ightarrow (FS)	SR2) + k)				
Status Affected:	None					
Encoding:	0110	1000	kkk	k	kkkk	
Description:	The content FSR2, offse	The contents of the register indicated by FSR2, offset by 'k', are set to FFh.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3			Q4	
Decode	Read 'k'	Proce Data	ess a	r	Write egister	
Example: Before Instructi OFST FSR2 Contents of 0A2Ch	SETF [ion = 2C = 0A = 00	OFST] h OOh h				
Alter Instruction	1					

Contents		
of 0A2Ch	=	FFh

26.2

DC Characteristics: Power-Down and Supply Current PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

PIC18LF2420/2520/4420/4520 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC18F2420/2520/4420/4520 (Industrial, Extended)		Standa Operat	ing tem	perating (Conditions (unle $-40^{\circ}C \le TA$ $-40^{\circ}C \le TA$	ess otherwise states $a \le +85^{\circ}$ C for indus $a \le +125^{\circ}$ C for external for ext	ted) strial ended	
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD) ⁽²⁾							
	PIC18LF2X2X/4X20	13	25	μΑ	-40°C			
		13	22	μA	+25°C	VDD = 2.0V		
		14	25	μA	+85°C			
	PIC18LF2X2X/4X20	42	61	μA	-40°C		Fosc = 31 kHz (RC_RUN mode, INTRC source)	
		34	46	μA	+25°C	VDD = 3.0V		
		28	45	μA	+85°C			
	All devices	103	160	μA	-40°C			
		82	130	μA	+25°C			
		67	120	μA	+85°C	VDD = 3.0V		
	Extended devices only	71	230	μA	+125°C			
	PIC18LF2X2X/4X20	320	440	μA	-40°C			
		330	440	μA	+25°C	VDD = 2.0V		
		330	440	μA	+85°C			
	PIC18LF2X2X/4X20	630	800	μΑ	-40°C			
		590	720	μA	+25°C	VDD = 3.0V	FOSC = 1 MHZ	
		570	700	μA	+85°C		(NO_NON mode, INTOSC source)	
	All devices	1.2	1.6	mA	-40°C			
		1.0	1.5	mA	+25°C			
		1.0	1.5	mA	+85°C	סטי = 5.0v		
	Extended devices only	1.0	1.5	mA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

26.3 DC Characteristics: PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial)

			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial			
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	VIL	Input Low Voltage				
		I/O Ports:				
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 4.5V
D030A			—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D031		with Schmitt Trigger Buffer	Vss	0.2 VDD	V	
D031A		RC3 and RC4	Vss	0.3 VDD	V	I ² C™ enabled
D031B			Vss	0.8	V	SMBus enabled
D032		MCLR	Vss	0.2 VDD	V	
D033		OSC1	Vss	0.3 VDD	V	HS, HSPLL modes
D033A		OSC1	Vss	0.2 VDD	V	RC, EC modes ⁽¹⁾
D033B		OSC1	Vss	0.3	V	XT, LP modes
D034		I 13CKI	Vss	0.3	V	
	VIH	Input High Voltage				
D040		I/O Ports:				
D040			0.25 VDD + 0.8V	VDD		
D040A			2.0	VDD		$4.5V \leq VDD \leq 5.5V$
D041				VDD		1 ² O an abla d
D041A				VDD		
D041B			2.1	VDD	V	SMBus enabled
D042		MCLR	0.8 VDD	VDD	V	
D043		OSC1	0.7 VDD	VDD	V	HS, HSPLL modes
D043A				VDD		EC mode
D043B		OSC1	1.6	VDD VDD	V	XT. LP modes
D044		T13CKI	1.6	VDD	V	,
	lı∟	Input Leakage Current ^(2,3)				
D060		I/O Ports	—	±200	nA	Vdd < 5.5V,
				±50	nA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \mbox{ at high-impedance} \\ VDD < 3V, \\ VSS \leq VPIN \leq VDD, \\ Pin \mbox{ at high-impedance} \end{array}$
D061		MCLR	—	±1	μA	$Vss \leq V PIN \leq V DD$
D063		OSC1	—	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
	IPU	Weak Pull-up Current				
D070	IPURB	PORTB Weak Pull-up Current	50	400	μA	VDD = 5V, VPIN = VSS

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 27-4: TYPICAL TIOSC DELTA CURRENT vs. VDD ACROSS TEMP. (DEVICE IN SLEEP,

MAXIMUM T1OSC DELTA CURRENT vs. VDD ACROSS TEMP. (DEVICE IN SLEEP, **FIGURE 27-5: TIOSC IN LOW-POWER MODE)**

© 2008 Microchip Technology Inc.

© 2008 Microchip Technology Inc.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent							
RE:	Reader Response								
From	Name								
	Company								
	Address								
	City / State / ZIP / Country								
	Telephone: ()	FAX: ()							
Appli	Application (optional):								
Woul	d you like a reply? <u>Y</u>								
Devic	e: PIC18F2420/2520/4420/4520	Literature Number: DS39631E							
Ques	tions:								
1. V	Vhat are the best features of this doc	ument?							
_									
2. H	low does this document meet your ha	ardware and software development needs?							
_									
3. D	o you find the organization of this do	ocument easy to follow? If not, why?							
_									
4. V	Vhat additions to the document do yo	ou think would enhance the structure and subject?							
_									
	that delations from the desument as								
5. V	vhat deletions from the document co	uid be made without allecting the overall usefulness?							
—									
6. Is	there any incorrect or misleading in	formation (what and where)?							
_									
_									
7. H	low would you improve this documer	nt?							