

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4420t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Din Nomo	Pin Number			Pin	Buffer	Description				
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description				
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.				
VPP				Р		Programming voltage input.				
RE3				I	ST	Digital input.				
OSC1/CLKI/RA7 OSC1	13	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source in ST buffer when configured in RC mode;				
CLKI				I	CMOS	 analog otherwise. External clock source input. Always associated wit pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.) 				
RA7				I/O	TTL	General purpose I/O pin.				
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
CLKO				0	-	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.				
RA6				I/O	TTL	General purpose I/O pin.				
Legend: TTL = TTL co ST = Schmi	ompatibl tt Trigge	e input r input	with CM	OS lev	els l	CMOS = CMOS compatible input or output = Input				
O = Output	t				F	P = Power				

TABLE 1-3: PIC18F4420/4520 PINOUT I/O DESCRIPTIONS

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

4.0 RESET

The PIC18F2420/2520/4420/4520 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.1.2.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 23.2 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.6 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.4 "Brown-out Reset (BOR)".

5.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top half of Bank 15 (F80h to FFFh). A list of these registers is given in Table 5-1 and Table 5-2. The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F2420/2520/4420/4520 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh CCPR1L		F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(1)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	(2)
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	(2)
FF9h	PCL	FD9h	FSR2L	FB9h	(2)	F99h	(2)
FF8h	TBLPTRU	FD8h	STATUS	FB8h	BAUDCON	F98h	(2)
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PWM1CON ⁽³⁾	F97h	(2)
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCP1AS ⁽³⁾	F96h	TRISE ⁽³⁾
FF5h	TABLAT	FD5h	TOCON	FB5h	CVRCON	F95h	TRISD ⁽³⁾
FF4h	PRODH	FD4h	(2)	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	(2)
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	(2)
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	(2)
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	(2)
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽³⁾
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽³⁾
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	(2)	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	(2)
FE7h	INDF1 ⁽¹⁾	FC7h	SSPSTAT	FA7h	EECON2 ⁽¹⁾	F87h	(2)
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	(2)
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSPCON2	FA5h	(2)	F85h	(2)
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	(2)	F84h	PORTE ⁽³⁾
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	(2)	F83h	PORTD ⁽³⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 28-pin devices.

FIGURE 5-9: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When 'a' = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations 060h to 07Fh (Bank 0) and F80h to FFFh (Bank 15) of data memory.

Locations below 60h are not available in this addressing mode.

Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is now: ADDWF [k], dwhere 'k' is the same as 'f'.

When 'a' = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

17.4.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

17.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's Interrupt Service Routine (ISR) before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 17-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

17.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

17.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 17-9).

- Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

17.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 17-11).

17.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 17-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 17-32).

FIGURE 17-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 17-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

18.1 Baud Rate Generator (BRG)

The BRG is a dedicated, 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free-running timer. In Asynchronous mode, bits, BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>), also control the baud rate. In Synchronous mode, BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 18-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 18-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 18-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

18.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG register pair.

18.1.2 SAMPLING

The data on the RX pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 18-1:BAUD RATE FORMULAS

C	onfiguration B	lits		Roud Rote Formula	
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula	
0	0	0	8-Bit/Asynchronous	Fosc/[64 (n + 1)]	
0	0	1	8-Bit/Asynchronous	$E_{0000}/[16 (n + 1)]$	
0	1	0	16-Bit/Asynchronous	FOSC/[10 (11 + 1)]	
0	1	1	16-Bit/Asynchronous		
1	0	x	8-Bit/Synchronous	Fosc/[4 (n + 1)]	
1	1	x	16-Bit/Synchronous		

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

FIGURE 18-2: BRG OVERFLOW SEQUENCE

FIGURE 18-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
TXREG	EUSART T	ransmit Reg	ister						51
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	51
SPBRGH	PBRGH EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART E	aud Rate G	enerator Re	gister Low	Byte				51

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Reserved in 28-pin devices; always maintain these bits clear.

22.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

PIC18F2420/2520/4420/4520 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The High/Low-Voltage Detect Control register (Register 22-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the HLVD module is shown in Figure 22-1.

REGISTER 22-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	—	IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7							bit 0

Legend:									
R = Readable bit W = Writable		W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 7	VDIRMA	G: Voltage Direction Magnitu	ude Select bit						
	 1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>) 0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>) 								
bit 6	Unimple	Unimplemented: Read as '0'							
bit 5	IRVST: Internal Reference Voltage Stable Flag bit								
	 1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage ra 0 = Indicates that the voltage detect logic will not generate the interrupt flag at the specified volt range and the HLVD interrupt should not be enabled 								
bit 4	HLVDEN 1 = HLV 0 = HLV	: High/Low-Voltage Detect P D enabled D disabled	ower Enable bit						
bit 3-0	HLVDL<	3:0>: Voltage Detection Limit	t bits ⁽¹⁾						
	<pre>1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Maximum setting</pre>								
	•								
	0000 = N	linimum setting							

REGISTER 23-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

					•					
U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
_	_	_	BORV1 ⁽¹⁾	BORV0 ⁽¹⁾	BOREN1 ⁽²⁾	BOREN0 ⁽²⁾	PWRTEN ⁽²⁾			
bit 7				·			bit 0			
Legend:										
R = Reada	ble bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value	when device is un	programmed		u = Unchange	d from program	nmed state				
bit 7-5	Unimplemented: Read as '0'									
bit 4-3	BORV<1:0>:	BORV<1:0>: Brown-out Reset Voltage bits ⁽¹⁾								
	11 = Minimum setting									
	•									
	•									
	• • • • • • • • • • • • • • • • • • • •	m aatting								
		n setting		(2)						
bit 2-1	BOREN<1:0>	: Brown-out Re	eset Enable bit	S ⁽²⁾						
	11 = Brown-c	out Reset enab	led in hardware	e only (SBORE	N is disabled)					
	10 = Brown-c	out Reset enab	led in hardware	e only and disa	bled in Sleep m		is disabled)			
	01 = Brown-c	out Reset disab	led and control	ned by software	(SBOREN IS 6	enabled)				
hit O			- noblo bit(2)							
DIEU	PWRIEN: PO	wer-up timer t								
	1 = PWRI dis 0 = PWRI on	abled								
		aneu								
Note 1:	See Section 26.1	"DC Characte	eristics: Supp	ly Voltage" for	specifications.					

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

RET	FIE	Return from Interrupt		RET	LW	Return Li	Return Literal to W				
Synta	ax:	RETFIE {s	;}		Synt	ax:	RETLW k				
Oper	ands:	s ∈ [0,1]			Oper	rands:	$0 \le k \le 255$				
Oper	ation:	$(TOS) \rightarrow P(1)$ 1 \rightarrow GIE/GI if s = 1,	C, IEH or PEIE/G	BIEL;	Oper	ration:	$k \rightarrow W$, (TOS) $\rightarrow P$ PCLATU, P	k → W, (TOS) → PC, PCLATU, PCLATU, PCLATH are unchanged			
(W (S (B		$(WS) \rightarrow W,$ (STATUSS)	→ STATUS		Statu	is Affected:	None				
		$(BSRS) \rightarrow I$	BSR,		Enco	oding:	0000	1100 kk	kk kkkk		
		PCLATU, P	CLATH are ur	nchanged	Desc	cription:	W is loaded	with the 8-bi	t literal 'k'. The		
Statu	Status Affected: GIE/GIEH, PEIE/GIEL.			program counter is loaded from			d from the top				
Encoding: 0000 0000 0001 000s				high addres	high address latch (PCLATH) remains						
Description: Return from interrupt. Stack is popped				unchanged							
and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low-priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W,		Word	ds:	1							
		Cycl	es:	2							
		QC	ycle Activity:								
			Q1	Q2	Q3	Q4					
			Decode	Read	Process	POP PC					
	STATUS and BSR. If 's' = 0, no update				literal K	Data	from stack, Write to W				
More				(uelault).		No	No	No	No		
Cuel	15.	1 2				operation	operation	operation	operation		
	zo. Volo Activity:	2			_						
QU		02	03	04	Exar	<u>nple</u> :					
	Decode	No operation	No operation	POP PC from stack Set GIEH or GIEL		CALL TABLE	; W contai ; offset v ; W now ha ; table va	ins table value as alue			
	No	No	No	No	TABI	: LE					
Evon	operation	operation	operation	operation		ADDWF PCL RETLW k0	; W = offs ; Begin ta	set able			
Exal	<u>npie</u> . After listersuit	RETFIE 1	L			KEILW KI	i				
After Interrupt PC W BSR			= TOS = WS = BSRS			: RETLW kn	; End of t	able			
	GIE/GIEF	H, PEIE/GIEL	= STATU	199		Before Instruction					
						W	= 07h				
						W	= value of	⁻ kn			

W = 1Ah

тѕті	FSZ	Test f, Ski	Test f, Skip if 0					
Synta	ax:	TSTFSZ f {,	a}					
Opera	ands:	$0 \leq f \leq 255$	$0 \le f \le 255$					
		a ∈ [0,1]	a ∈ [0,1]					
Opera	ation:	skip if f = 0	skip if f = 0					
Statu	s Affected:	None						
Enco	ding:	0110	011a fff	f fff				
Word	ription: Is: 25:	If T = 0, the during the c is discardec making this If 'a' is '0', th If 'a' is '0', th GPR bank (If 'a' is '0' an set is enable in Indexed I mode when Section 24. Bit-Oriente Literal Offs 1 1(2) Note: 3 cy	during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction. If 'a' is 'o', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. 1 1(2) Note: 3 cycles if skip and followed					
		by a	2-word instru	ction.				
QC		02	03	04				
[Decode	Read	Process	No				
	200000	register 'f'	Data	operation				
lf ski	ip:							
	Q1	Q2	Q3	Q4				
	No	No	No	No				
lfeki	operation	operation	operation	operation				
11 51(1		Q2	Q3	Q4				
[No	No	No	No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
Exam	<u>nple</u> :	HERE 7 NZERO : ZERO :	CSTFSZ CNT	, 1				
I	Before Instruc	tion						
	PC After Instructic If CNT	= Adv n = 001	dress (HERE))				
	PC If CNT	= Ad ≠ 00I	dress (ZERO) n,)				

XOF	RLW	Exclusiv	Exclusive OR Literal with W						
Synta	ax:	XORLW	k						
Oper	ands:	$0 \le k \le 25$	5						
Oper	ration:	(W) .XOR	$k \to W$						
Statu	is Affected:	Affected: N, Z							
Enco	oding:	0000	1010	kkk	k	kkkk			
Desc	cription:	The conte the 8-bit li in W.	The contents of W are XORed with the 8-bit literal 'k'. The result is placed in W.						
Word	ds:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3			Q4			
	Decode	Read literal 'k'	Proce Data	ess a	W	rite to W			
Example:		XORLW	0AFh						
	Before Instruc	tion							
	W	= B5h							
	After Instruction	on							

© 2008 Microchip Technology Inc.

FIGURE 26-1: PIC18F2420/2520/4420/4520 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

DC CH	ARACTE	ERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
		Data EEPROM Memory							
D120	ED	Byte Endurance	100K	1M		E/W	-40°C to +85°C		
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write Cycle Time	—	4		ms			
D123	TRETD	Characteristic Retention	40	_	—	Year	Provided no other specifications are violated		
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M	10M	—	E/W	-40°C to +85°C		
D125	Iddp	Supply Current during Programming	-	10	—	mA			
		Program Flash Memory							
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C		
D131	Vpr	VDD for Read	VMIN	_	5.5	V	Vмın = Minimum operating voltage		
D132	VIE	VDD for Block Erase	3.0	—	5.5	V	Using ICSP™ port, +25°C		
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	_	5.5	V	Using ICSP™ port, +25°C		
D132B	VPEW	VDD for Self-Timed Write	VMIN	_	5.5	V	Vмın = Minimum operating voltage		
D133	TIE	ICSP Block Erase Cycle Time	_	4		ms	$VDD \ge 4.5V$		
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	_	—	ms	VDD ≥ 4.5V, +25°C		
D133A	Tiw	Self-Timed Write Cycle Time		2		ms			
D134	TRETD	Characteristic Retention	40	100	_	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	—	10	—	mA			

TABLE 26-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Refer to **Section 7.8 "Using the Data EEPROM**" for a more detailed discussion on data EEPROM endurance.

FIGURE 26-14: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 26-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characterist	Min	Max	Units	Conditions	
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK Edge		20	—	ns	
73A	Tb2b	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2		1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		40	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	PIC18FXXXX	—	50	ns	
			PIC18LFXXXX	—	100	ns	VDD = 2.0V
81	TdoV2scH, TdoV2scL	SDO Data Output Setup to SCK Edge		Тсү	—	ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

FIGURE 27-8: TYPICAL BOR DELTA CURRENT vs. VDD ACROSS TEMP.

APPENDIX A: REVISION HISTORY

Revision A (June 2004)

Original data sheet for PIC18F2420/2520/4420/4520 devices.

Revision B (January 2007)

This revision includes updates to the packaging diagrams.

Revision C (June 2007)

This revision includes updates to Section 6.0 "Flash Program Memory", Section 23.0 "Special Features of the CPU", Section 26.0 "Electrical Characteristics" and minor corrections applicable to Timer1, EUSART and the packaging diagrams. Also added the 125°C specifications.

Revision D (July 2007)

This revision updated the extended temperature information in Section 26.0 "Electrical Characteristics".

Revision E (October 2008)

This revision updated Section 26.0 "Electrical Characteristics", Section 27.0 "DC and AC Characteristics Graphs and Tables" and Section 28.0 "Packaging Information".

TABLE B-1: DEVICE DIFFERENCES

Features	PIC18F2420	PIC18F2520	PIC18F4420	PIC18F4520
Program Memory (Bytes)	16384	32768	16384	32768
Program Memory (Instructions)	8192	16384	8192	16384
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Parallel Communications (PSP)	No	No	Yes	Yes
10-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Packages	28-Pin SPDIP 28-Pin SOIC 28-Pin QFN	28-Pin SPDIP 28-Pin SOIC 28-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.