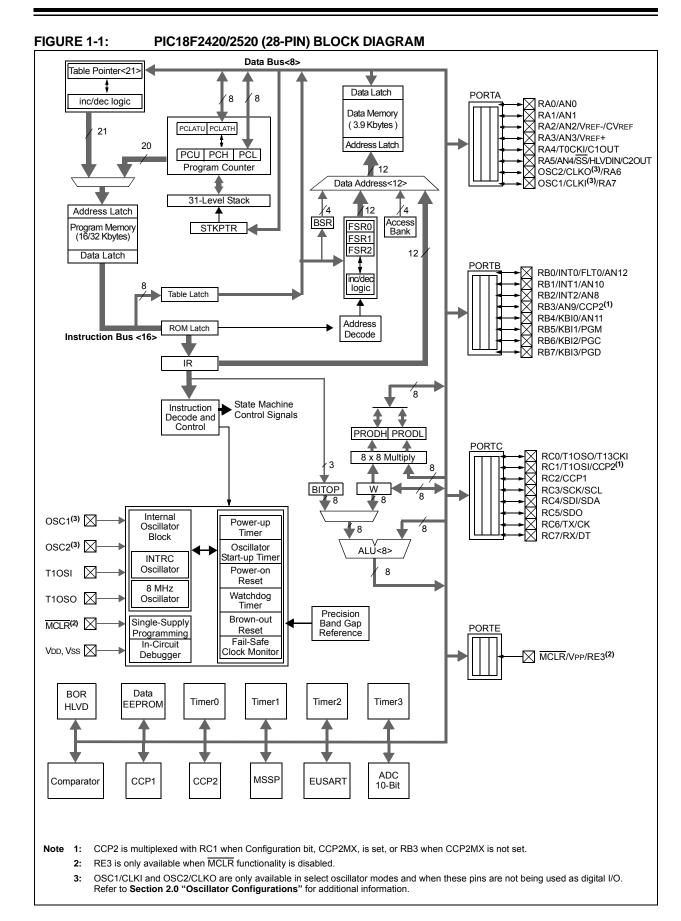


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4520-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18F2420/2520 PINOUT I/O DESCRIPTIONS

	Pin Nu	ımber	Pin	Buffer	
Pin Name	SPDIP, SOIC	QFN	Туре		Description
MCLR/VPP/RE3 MCLR	1	26	ı	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP			Р		Programming voltage input.
RE3			I	ST	Digital input.
OSC1/CLKI/RA7	9	6			Oscillator crystal or external clock input.
OSC1			ı	ST	Oscillator crystal input or external clock source input.
CLKI			ı	CMOS	function, OSC1. (See related OSC1/CLKI, OSC2/CLKO
RA7			I/O	TTL	pins.) General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO			0	_	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6			I/O	TTL	General purpose I/O pin.

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

= Output

CMOS = CMOS compatible input or output

= Input

= Power Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

TABLE 1-2: PIC18F2420/2520 PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin Nu		Pin	Buffer	LOCKIF HONG (CONTINUED)
Pin Name	SPDIP, SOIC	QFN	Туре		Description
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	21	18	I/O I I	TTL ST ST Analog	Digital I/O. External interrupt 0. PWM Fault input for CCP1. Analog input 12.
RB1/INT1/AN10 RB1 INT1 AN10	22	19	I/O I I	TTL ST Analog	Digital I/O. External interrupt 1. Analog input 10.
RB2/INT2/AN8 RB2 INT2 AN8	23	20	I/O I I	TTL ST Analog	Digital I/O. External interrupt 2. Analog input 8.
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	24	21	I/O I I/O	TTL Analog ST	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM2 output.
RB4/KBI0/AN11 RB4 KBI0 AN11	25	22	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog input 11.
RB5/KBI1/PGM RB5 KBI1 PGM	26	23	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	27	24	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	28	25	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

I = Input

O = Output

P = Power

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

NOTES:

REGISTER 9-7: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE
bit 7 bit C							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 OSCFIE: Oscillator Fail Interrupt Enable bit

1 = Enabled

0 = Disabled

bit 6 **CMIE:** Comparator Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 5 Unimplemented: Read as '0'

bit 4 **EEIE:** Data EEPROM/Flash Write Operation Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 3 BCLIE: Bus Collision Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 2 **HLVDIE**: High/Low-Voltage Detect Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 1 TMR3IE: TMR3 Overflow Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 0 CCP2IE: CCP2 Interrupt Enable bit

1 = Enabled0 = Disabled

12.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- · Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 12-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 12-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 12-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

		 	-
	зе		

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 RD16: 16-Bit Read/Write Mode Enable bit

1 = Enables register read/write of Tlmer1 in one 16-bit operation
 0 = Enables register read/write of Timer1 in two 8-bit operations

bit 6 T1RUN: Timer1 System Clock Status bit

1 = Device clock is derived from Timer1 oscillator0 = Device clock is derived from another source

bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits

11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value

bit 3 T10SCEN: Timer1 Oscillator Enable bit

1 = Timer1 oscillator is enabled0 = Timer1 oscillator is shut off

The oscillator inverter and feedback resistor are turned off to eliminate power drain.

bit 2 T1SYNC: Timer1 External Clock Input Synchronization Select bit

When TMR1CS = 1:

1 = Do not synchronize external clock input

0 = Synchronize external clock input

When TMR1CS = 0:

This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.

bit 1 TMR1CS: Timer1 Clock Source Select bit

1 = External clock from pin RC0/T10SO/T13CKI (on the rising edge)

0 = Internal clock (Fosc/4)

bit 0 TMR1ON: Timer1 On bit

1 = Enables Timer1

0 = Stops Timer1

15.3 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCPx pin can be:

- · driven high
- · driven low
- · toggled (high-to-low or low-to-high)
- remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM<3:0>). At the same time, the interrupt flag bit, CCPxIF, is set.

15.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Note:

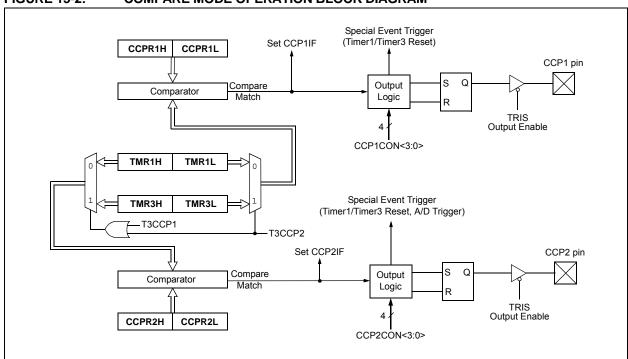
Clearing the CCP2CON register will force the RB3 or RC1 compare output latch (depending on device configuration) to the default low level. This is not the PORTB or PORTC I/O data latch.

15.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the corresponding CCPx pin is not affected. A CCP interrupt is generated when the CCPxIF interrupt flag is set while the CCPxIE bit is set.


15.3.4 SPECIAL EVENT TRIGGER

Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM<3:0> = 1011).

For either CCP module, the Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable Period register for either timer.

The Special Event Trigger for CCP2 can also start an A/D conversion. In order to do this, the A/D Converter must already be enabled.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

16.4 Enhanced PWM Mode

The Enhanced PWM mode provides additional PWM output options for a broader range of control applications. The module is a backward compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the P1M<1:0> and CCP1M<3:0> bits of the CCP1CON register.

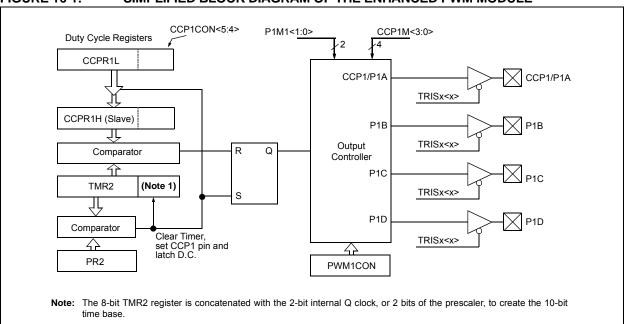
Figure 16-1 shows a simplified block diagram of PWM operation. All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Dead-Band Delay register, PWM1CON, which is loaded at either the duty cycle boundary or the period boundary (whichever comes first). Because of the buffering, the module waits until the assigned timer resets instead of starting immediately. This means that Enhanced PWM waveforms do not exactly match the standard PWM waveforms, but are instead offset by one full instruction cycle (4 Tosc).

As before, the user must manually configure the appropriate TRIS bits for output.

16.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation.

EQUATION 16-1:


PWM Period =
$$[(PR2) + 1] \cdot 4 \cdot TOSC \cdot$$

(TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- · TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 13.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

FIGURE 16-1: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

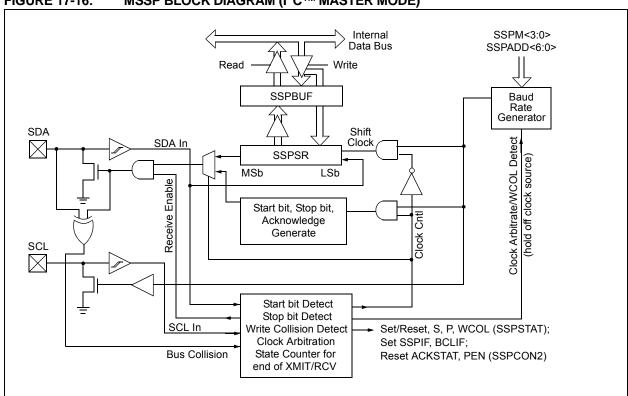
Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all $\rm I^2C$ bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.


The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt, if enabled):

· Start condition

Note:

- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmit
- · Repeated Start

FIGURE 17-16: MSSP BLOCK DIAGRAM (I²C™ MASTER MODE)

EXAMPLE 18-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = Fosc/(64 ([SPBRGH:SPBRG] + 1))

Solving for SPBRGH:SPBRG:

X = ((Fosc/Desired Baud Rate)/64) - 1

= ((16000000/9600)/64) - 1

= [25.042] = 25

Calculated Baud Rate = 16000000/(64(25+1))

= 9615

Error = (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate

= (9615 - 9600)/9600 = 0.16%

TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	51
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	51
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	51
SPBRGH	EUSART B	EUSART Baud Rate Generator Register High Byte							51
SPBRG	EUSART B	aud Rate G	Senerator R	egister Low	Byte				51

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 $k\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 20-4: COMPARATOR ANALOG INPUT MODEL

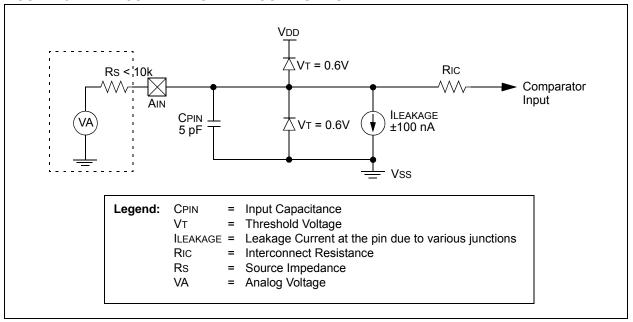


TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	51
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	51
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	52
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	PORTA Da	PORTA Data Latch Register (Read and Write to Data Latch)					
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ata Direction	Register				52

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA<7:6> and their direction and latch bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits are read as '0'.

REGISTER 23-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
_	_	_	_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0
bit 7 bit 0							

Legend:

R = Readable bit C = Clearable bit U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed u = Unchanged from programmed state

bit 7-4 **Unimplemented:** Read as '0' bit 3 **WRT3:** Write Protection bit⁽¹⁾

1 = Block 3 (006000-007FFFh) not write-protected 0 = Block 3 (006000-007FFFh) write-protected

bit 2 WRT2: Write Protection bit⁽¹⁾

1 = Block 2 (004000-005FFFh) not write-protected 0 = Block 2 (004000-005FFFh) write-protected

bit 1 WRT1: Write Protection bit

1 = Block 1 (002000-003FFFh) not write-protected 0 = Block 1 (002000-003FFFh) write-protected

bit 0 WRT0: Write Protection bit

1 = Block 0 (000800-001FFFh) not write-protected 0 = Block 0 (000800-001FFFh) write-protected

Note 1: Unimplemented in PIC18F2420/4420 devices; maintain this bit set.

REGISTER 23-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

R/C-1	R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0
WRTD	WRTB	WRTC ⁽¹⁾	_	_	_	_	_
bit 7	•	•	•	•			bit 0

Legend:

R = Readable bit C = Clearable bit U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed u = Unchanged from programmed state

bit 7 WRTD: Data EEPROM Write Protection bit

1 = Data EEPROM not write-protected 0 = Data EEPROM write-protected

bit 6 WRTB: Boot Block Write Protection bit

1 = Boot block (000000-0007FFh) not write-protected 0 = Boot block (000000-0007FFh) write-protected

bit 5 WRTC: Configuration Register Write Protection bit⁽¹⁾

1 = Configuration registers (300000-3000FFh) not write-protected 0 = Configuration registers (300000-3000FFh) write-protected

bit 4-0 **Unimplemented:** Read as '0'

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

		1 10 101 70 70 70 110 110 110 0		•	,	,			
Mnem	onic,	Description	0	16	-Bit Ins	truction	Word	Status	Nata
Operands		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL (OPERAT	TIONS							
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit)2nd word	2	1110	1110	OOff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	MORY ←	PROGRAM MEMORY OPERATION	NS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

- 2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.
- 3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.
- 4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

ANDWF	AND W with f						
Syntax:	ANDWF f {,d {,a}}						
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(W) .AND. (f) \rightarrow dest						
Status Affected:	N, Z						
Encoding:	0001 01da ffff ffff						
Description:	The contents of W are ANDed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Words:	1						

Q1	Q2	Q3	Q4	
Decode	Read	Process	Write to	
	register 'f'	Data	destination	

Example: ANDWF REG, 0, 0

1

Before Instruction

Cycles:

Q Cycle Activity:

W 17h REG C2h

After Instruction W

02h REG C2h BC **Branch if Carry**

Syntax: BC n

 $-128 \le n \le 127$ Operands:

Operation: if Carry bit is '1', $(PC) + 2 + 2n \rightarrow PC$

Status Affected: None

Encoding: 1110 0010 nnnn nnnn Description: If the Carry bit is '1', then the program

will branch.

The 2's complement number '2n' is added to the PC. Since the PC will have

incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a

two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:

If Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	Write to PC
	'n'	Data	
No	No	No	No
operation	operation	operation	operation

If No Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	No
	ʻn'	Data	operation

Example: HERE BC5

Before Instruction

PC address (HERE)

After Instruction

If Carry PC

address (HERE + 12)

If Carry PC =

address (HERE + 2)

BTG	Bit Toggle f				
Syntax:	BTG f, b {	,a}			
Operands:	$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$				
Operation:	$(\overline{f < b >}) \rightarrow f$				
Status Affected:	None				
Encoding:	0111	bbba	ffff	ffff	
	Bit 'b' in data memory location 'f' is inverted. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					

	register	register 'f' Da		ata		
Example:	BTG	PC	ORTC,	4,	0	

Q2

Read

Q3

Process

Q4 Write

register 'f'

Before Instruction:

Q1

Decode

PORTC = 0111 0101 **[75h]**

After Instruction:

PORTC = 0110 0101 [65h]

BOV **Branch if Overflow**

Syntax: BOV n Operands: $-128 \le n \le 127$ Operation: if Overflow bit is '1', (PC) + 2 + $2n \rightarrow PC$

Status Affected: None

Encoding: 1110 0100 nnnn nnnn Description: If the Overflow bit is '1', then the

program will branch.

The 2's complement number, '2n', is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a

two-cycle instruction.

Words: 1 Cycles: 1(2)

Q Cycle Activity:

If Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	Write to PC
	ʻn'	Data	
No	No	No	No
operation	operation	operation	operation

If No Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	No
	ʻn'	Data	operation

Example: HERE BOV Jump

Before Instruction

PC address (HERE)

After Instruction

If Overflow PC

1; address (Jump)

If Overflow PC address (HERE + 2)

COMF	Complem	Complement f					
Syntax:	COMF f	{,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	$(\overline{f}) \to dest$						
Status Affected:	N, Z						
Encoding:	0001	11da ff	ff ffff				
Description:	complemer stored in W stored back If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enabl in Indexed mode when Section 24 Bit-Oriente	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				

Example:	CC	OMF	REG,	Ο,	0
Before Instruc	ction =	13h			
After Instruction					
REG	=	13h			
W	=	ECh			

CPF	SEQ	Compare	f with W, Sk	ip if f = W						
Synta	ax:	CPFSEQ	f {,a}							
Oper	ands:	$0 \le f \le 255$ $a \in [0,1]$								
Oper	ation:		(f) – (W), skip if (f) = (W) (unsigned comparison)							
Statu	s Affected:	None								
Enco	ding:	0110	001a fff	f ffff						
Desc	ription:	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed								
		Literal Offs	set Mode" for	details.						
Word	ls:	1								
Cycle	es:		ycles if skip an a 2-word instru							
QC	ycle Activity:	·								
	Q1	Q2	Q3	Q4						
	Decode	Read	Process	No						
16 -1.	·	register 'f'	Data	operation						
lf sk	ιρ. Q1	Q2	Q3	04						
	No	No	No No	Q4 No						
	operation	operation	operation	operation						
If sk	ip and followed	d by 2-word in	struction:							
	Q1	Q2	Q3	Q4						
	No	No	No	No						
	operation No	operation No	operation No	operation No						
	operation	operation	operation	operation						
Exan	nple: Before Instruc	HERE NEQUAL EQUAL	CPFSEQ REG							
	PC Addre	ess = HE	RE	PC Address = HERE						

W REG After Instruction If REG

> If REG PC

W;

Address (EQUAL)

Address (NEQUAL)

DECFSZ	Decreme	nt f, Skip if (D	DCF	SNZ	Decreme	nt f, Skip if N	Not 0
Syntax:	DECFSZ f {,d {,a}}		Synta	ax:	DCFSNZ	DCFSNZ f {,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	$(f) - 1 \rightarrow de$ skip if result			Oper	ation:	(f) $-1 \rightarrow de$ skip if resul		
Status Affected:	None			Statu	s Affected:	None		
Encoding: Description:	decrements placed in W placed bac If the result which is alr and a NOP it a two-cyc If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enab in Indexed mode wher Section 24 Bit-Oriente	tle instruction. he Access Ba he BSR is use (default). and the extend	f' are the result is ne result is (default). tt instruction, is discarded stead, making nk is selected. d to select the ed instruction ction operates Addressing Fh). See riented and as in Indexed	Description: The contents of register 'f' are decremented. If 'd' is '0', the resplaced in W. If 'd' is '1', the resuplaced back in register 'f' (defauted bis already fett discarded and a NoP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is set if 'a' is '1', the BSR is used to set GPR bank (default). If 'a' is '0' and the extended instruction of in Indexed Literal Offset Address mode whenever f ≤ 95 (5Fh). Section 24.2.3 "Byte-Oriented Bit-Oriented Instructions in Indexed Literal Instructions in Indexed Bit-Oriented Instructions in Indexed Literal Instruction In		r' are the result is the result is (default). next dy fetched, is executed executed tycle the is selected. d to select the ed instruction ction operates Addressing Fh). See iented and s in Indexed		
Words:	1						set Mode" for	details.
Cycles: Q Cycle Activity:	by a	ycles if skip ar a 2-word instru		Word Cycle			cycles if skip a a 2-word instr	
Q1	Q2	Q3	Q4	QC	ycle Activity:			
Decode	Read register 'f'	Process Data	Write to destination		Q1 Decode	Q2 Read	Q3 Process	Q4 Write to
If skip:		•	1			register 'f'	Data	destination
Q1	Q2	Q3	Q4	lf sk	•			
No	No	No	No		Q1	Q2	Q3	Q4
operation	operation	operation	operation		No operation	No operation	No operation	No operation
If skip and follow Q1	Q2	Q3	Q4	lf sk		d by 2-word in		орогалогі
No	No No	No	No No		Q1	Q2	Q3	Q4
operation	operation	operation	operation		No	No	No	No
No	No	No	No		operation	operation	operation	operation
operation	operation	operation	operation		No operation	No operation	No operation	No operation
Example:	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	<u>Exan</u>	•	HERE I		1P, 1, 0
Before Instru PC After Instruc CNT If CNT	= Address tion = CNT - = 0;				Before Instruction TEMP After Instruction	etion = = on = =	: ? TEMP – 1,	
If CNT	≠ 0;	S (CONTINUE S (HERE + 2			If TEMP PC If TEMP PC	= = ≠ =	0; Address (2 0; Address (1	

26.2 DC Characteristics: Power-Down and Supply Current

PIC18F2420/2520/4420/4520 (Industrial)

PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

PIC18LF2 (Indust	420/2520/4420/4520 trial)		-	rating (perature	•	ess otherwise state $A \le +85^{\circ}C$ for indu		
	20/2520/4420/4520 trial, Extended)			erating Conditions (unless otherwise stated) nperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended				
Param No.	Device	Тур	Max	Units		Conditio	ns	
	Supply Current (IDD) ⁽²⁾							
	PIC18LF2X2X/4X20	8.0	1.1	mA	-40°C			
		8.0	1.1	mA	+25°C	VDD = 2.0V		
		8.0	1.1	mA	+85°C			
	PIC18LF2X2X/4X20	1.3	1.7	mA	-40°C		Face (MI)	
		1.3	1.7	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (RC_RUN mode,	
		1.3	1.7	mA	+85°C		INTOSC source)	
	All devices	2.5	3.5	mA	-40°C			
		2.5	3.5	mA	+25°C	VDD = 5.0V		
		2.5	3.5	mA	+85°C	VDD - 3.0V		
	Extended devices only	2.5	3.5	mA	+125°C			
	PIC18LF2X2X/4X20	2.9	5	μΑ	-40°C	<u></u>		
		3.1	5	μΑ	+25°C	VDD = 2.0V		
		3.6	9.5	μΑ	+85°C			
	PIC18LF2X2X/4X20	4.5	8	μΑ	-40°C		Fosc = 31 kHz	
		4.8	8	μΑ	+25°C	VDD = 3.0V	(RC_IDLE mode,	
		5.8	15	μΑ	+85°C		INTRC source)	
	All devices	9.2	16	μΑ	-40°C			
		9.8	16	μΑ	+25°C	V _{DD} = 5.0V		
		11.0	35	μΑ	+85°C	V DD = 0.0V		
	Extended devices only	21	160	μΑ	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or Vss;

- MCLR = VDD; WDT enabled/disabled as specified.

 3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0.
- When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.

 4: BOR and HLVD enable internal hand gap reference. With both modules enabled, current consumption will be less
- **4:** BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

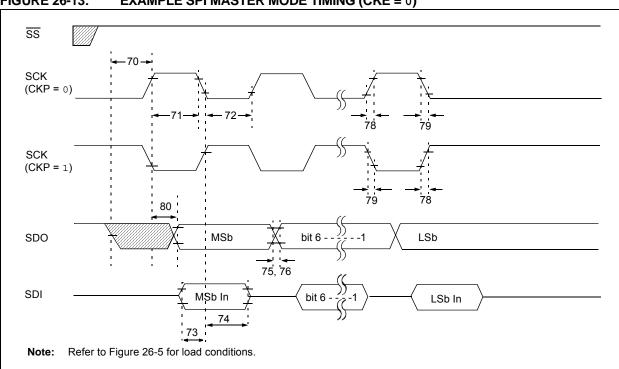


FIGURE 26-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 26-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristi	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	SS ↓ to SCK ↓ or SCK ↑ Input	Tcy	_	ns		
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input	20	_	ns		
73A	Tb2b	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2		1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		40	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXXXX	_	25	ns	
			PIC18 LF XXXX	_	45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time		_	25	ns	
78	TscR	SCK Output Rise Time (Master mode)	PIC18FXXXX	_	25	ns	
			PIC18 LF XXXX	_	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mode)		_	25	ns	
80	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	PIC18FXXXX	_	50	ns	
			PIC18 LF XXXX	_	100	ns	VDD = 2.0V

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

C		External Signal	235
C Compilers		Internal Signal	
MPLAB C18	318	Response Time	
MPLAB C30		Comparator Specifications	
CALL		Comparator Voltage Reference	
CALLW		Accuracy and Error	240
Capture (CCP Module)		Associated Registers	
Associated Registers		Configuring	239
CCP Pin Configuration		Connection Considerations	240
CCPRxH:CCPRxL Registers		Effects of a Reset	240
Prescaler		Operation During Sleep	240
Software Interrupt		Compare (CCP Module)	
		Associated Registers	
Timer1/Timer3 Mode Selection		CCPRx Register	
Capture (ECCP Module)		Pin Configuration	
Capture/Compare/PWM (CCP)	139	Software Interrupt	
Capture Mode. See Capture.		Special Event Trigger	
CCP Mode and Timer Resources		Timer1/Timer3 Mode Selection	
CCPRxH Register		Compare (ECCP Module)	
CCPRxL Register	140	Special Event Trigger	
Compare Mode. See Compare.		Computed GOTO	
Interaction of Two CCP Modules		Configuration Bits	
Module Configuration		Configuration Register Protection	
Clock Sources		Context Saving During Interrupts	
Selecting the 31 kHz Source		CPFSEQ	
Selection Using OSCCON Register	29		
CLRF	283	CPFSGT	
CLRWDT	283	CPFSLT	
Code Examples		Crystal Oscillator/Ceramic Resonator	
16 x 16 Signed Multiply Routine	90	Customer Change Notification Service	
16 x 16 Unsigned Multiply Routine	90	Customer Notification Service	
8 x 8 Signed Multiply Routine	89	Customer Support	407
8 x 8 Unsigned Multiply Routine		D	
Changing Between Capture Prescalers			0.0
Computed GOTO Using an Offset Value		Data Addressing Modes	68
Data EEPROM Read		Comparing Addressing Modes with the	
Data EEPROM Refresh Routine		Extended Instruction Set Enabled	
Data EEPROM Write		Direct	
Erasing a Flash Program Memory Row		Indexed Literal Offset	
Fast Register Stack		Instructions Affected	
How to Clear RAM (Bank 1) Using		Indirect	
Indirect Addressing	68	Inherent and Literal	68
Implementing a Real-Time Clock Using		Data EEPROM	
a Timer1 Interrupt Service	131	Code Protection	
Initializing PORTA		Data EEPROM Memory	
Initializing PORTB		Associated Registers	
Initializing PORTC		EEADR Register	83
Initializing PORTD		EECON1 and EECON2 Registers	83
Initializing PORTE		Operation During Code-Protect	86
<u> </u>		Protection Against Spurious Write	86
Loading the SSPBUF (SSPSR) Register		Reading	85
Reading a Flash Program Memory Word	11	Using	86
Saving STATUS, WREG and BSR	400	Write Verify	85
Registers in RAM		Writing	
Writing to Flash Program Memory		Data Memory	
Code Protection		Access Bank	
COMF		and the Extended Instruction Set	
Comparator		Bank Select Register (BSR)	
Analog Input Connection Considerations		General Purpose Registers	
Associated Registers		Map for PIC18F2420/4420	
Configuration		Map for PIC18F2520/4520	
Effects of a Reset	236	Special Function Registers	
Interrupts		DAW	
Operation	235	DC and AC Characteristics	200
Operation During Sleep		Graphs and Tables	261
Outputs	235	Oraphis and Tables	30 1
Deference	225		