

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

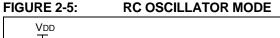
E·XFI

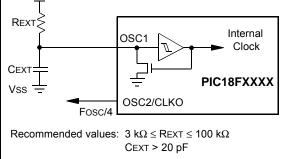
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4520-i-pt

Email: info@E-XFL.COM

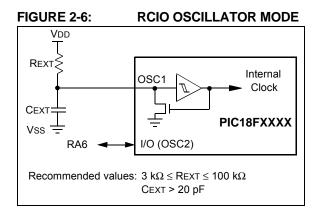
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4 RC Oscillator


For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The actual oscillator frequency is a function of several factors:


- supply voltage
- values of the external resistor (REXT) and capacitor (CEXT)
- operating temperature

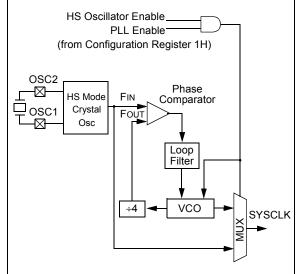
Given the same device, operating voltage and temperature and component values, there will also be unit-to-unit frequency variations. These are due to factors such as:


- normal manufacturing variation
- difference in lead frame capacitance between package types (especially for low CEXT values)
- variations within the tolerance of limits of $\ensuremath{\mathsf{REXT}}$ and $\ensuremath{\mathsf{CEXT}}$

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-5 shows how the R/C combination is connected.

The RCIO Oscillator mode (Figure 2-6) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

2.5 PLL Frequency Multiplier


A Phase Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency oscillator circuit or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals or users who require higher clock speeds from an internal oscillator.

2.5.1 HSPLL OSCILLATOR MODE

The HSPLL mode makes use of the HS Oscillator mode for frequencies up to 10 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 40 MHz. The PLLEN bit is not available in this oscillator mode.

The PLL is only available to the crystal oscillator when the FOSC<3:0> Configuration bits are programmed for HSPLL mode (= 0110).

2.5.2 PLL AND INTOSC

The PLL is also available to the internal oscillator block in selected oscillator modes. In this configuration, the PLL is enabled in software and generates a clock output of up to 32 MHz. The operation of INTOSC with the PLL is described in **Section 2.6.4** "**PLL in INTOSC Modes**".

2.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the powermanaged mode (see Section 23.2 "Watchdog Timer (WDT)", Section 23.3 "Two-Speed Start-up" and Section 23.4 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

If Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a Real-Time Clock. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PSP, INTx pins and others). Peripherals that may add significant current consumption are listed in **Section 26.2 "DC Characteristics".**

2.9 Power-up Delays

Power-up delays are controlled by two timers so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 4.5 "Device Reset Timers"**.

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 26-10). It is enabled by clearing (= 0) the PWRTEN Configuration bit.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms, following the HS mode OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval, TCSD (parameter 38, Table 26-10), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source.

OSC Mode	OSC1 Pin	OSC2 Pin		
RC, INTIO1	Floating, external resistor should pull high	At logic low (clock/4 output)		
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6		
INTIO2	Configured as PORTA, bit 7	Configured as PORTA, bit 6		
ECIO	Floating, pulled by external clock	Configured as PORTA, bit 6		
EC	Floating, pulled by external clock	At logic low (clock/4 output)		
LP, XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level		

TABLE 2-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-2 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

REGISTER 6-1:	EECON1: EEPROM CONTROL REGISTER 1
---------------	-----------------------------------

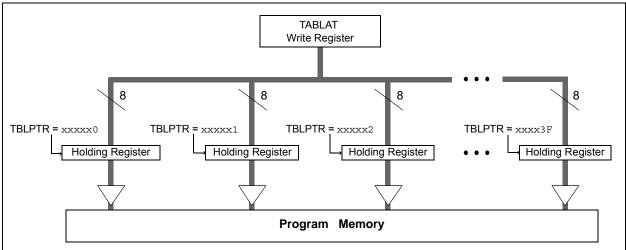
R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit (cannot be cleared in software)				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation)
	0 = Perform write only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation, or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
	0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
	0 = Does not initiate an EEPROM read
Note 1:	When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

6.5 Writing to Flash Program Memory


The minimum programming block is 16 words or 32 bytes. Word or byte programming is not supported. Table writes are used internally to load the holding registers needed to program the Flash memory. There are 32 holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 32 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 32 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write. The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 32 holding registers before executing a write operation.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the row erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 32 bytes into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - · set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

This procedure will require about 6 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 32 bytes in the holding register.

9.4 IPR Registers


The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1 and IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 9-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

	TMR1IP
bit 7	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit ⁽¹⁾
	1 = High priority 0 = Low priority
bit 6	ADIP: A/D Converter Interrupt Priority bit
	1 = High priority0 = Low priority
bit 5	RCIP: EUSART Receive Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 4	TXIP: EUSART Transmit Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 3	SSPIP: Master Synchronous Serial Port Interrupt Priority bit
bit 3	1 = High priority
bit 3	, , ,
bit 3 bit 2	1 = High priority
	 1 = High priority 0 = Low priority
	 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit
	 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority
bit 2	 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority
bit 2	 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit
bit 2	 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority
bit 2 bit 1	 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority
bit 2 bit 1	 1 = High priority 0 = Low priority CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit

10.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 10-5). The pins have Schmitt Trigger input buffers. RC1 is normally configured by Configuration bit, CCP2MX, as the default peripheral pin of the CCP2 module (default/erased state, CCP2MX = 1).

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for additional information. Note: On a Power-on Reset, these pins are configured as digital inputs.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 10-3:	INITIALIZING PORTC
LARMII LL IV-J.	

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	52
LATD	TD PORTD Data Latch Register (Read and Write to Data Latch)							52	
TRISD	RISD PORTD Data Direction Register						52		
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	52
CCP1CON	P1M1 ⁽¹⁾	P1M0 ⁽¹⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	51

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTD.

Note 1: These registers and/or bits are unimplemented on 28-oin devices.

NOTES:

15.3 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCPx pin can be:

- · driven high
- · driven low
- toggled (high-to-low or low-to-high)
- remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM<3:0>). At the same time, the interrupt flag bit, CCPxIF, is set.

15.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

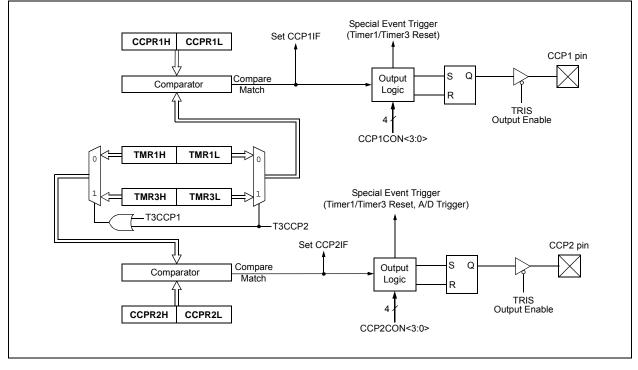
Note:	Clearing the CCP2CON register will force
	the RB3 or RC1 compare output latch
	(depending on device configuration) to the
	default low level. This is not the PORTB or
	PORTC I/O data latch.

15.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.3.3 SOFTWARE INTERRUPT MODE

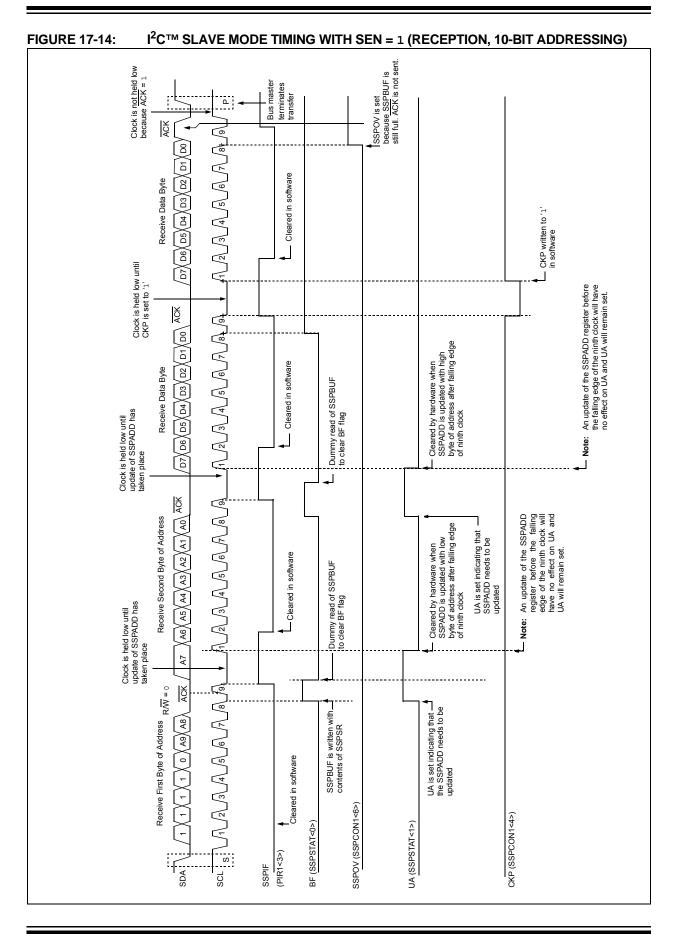
When the Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the corresponding CCPx pin is not affected. A CCP interrupt is generated when the CCPxIF interrupt flag is set while the CCPxIE bit is set.


15.3.4 SPECIAL EVENT TRIGGER

Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM<3:0> = 1011).

For either CCP module, the Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable Period register for either timer.

The Special Event Trigger for CCP2 can also start an A/D conversion. In order to do this, the A/D Converter must already be enabled.


FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
oit 7	·			·			bit
<u> </u>							
Legend:			.,				
R = Reada		W = Writable k	Dit		nented bit, read		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 7	WCOL: Write	Collision Detec	t bit				
	1 = The SSP software	-	s written while	e it is still transm	nitting the previ	ious word (mus	t be cleared ir
	0 = No collisi	on					
bit 6	SSPOV: Rece	eive Overflow Ir	dicator bit ⁽¹⁾				
	SPI Slave mo						
	-			BUF register is s			
				flow can only oc a, to avoid settir			
	0 = No overfl	•	anonnung uat		ng overnow (m		in soltware).
bit 5	SSPEN: Mas	ter Synchronou	s Serial Port I	Enable bit ⁽²⁾			
	1 = Enables s	erial port and c	onfigures SC	K, SDO, SDI an ese pins as I/O p		port pins	
bit 4	CKP: Clock F	olarity Select b	it				
	1 = Idle state	for clock is a hi for clock is a lo	gh level				
bit 3-0				Port Mode Selec	ct bits ⁽³⁾		
	0101 = SPI S 0100 = SPI S	lave mode, clo	ck = SCK pin; ck = SCK pin;	SS pin control SS pin control	disabled; SS c	an be used as I	/O pin
		laster mode, clo					
		laster mode, clo		6			
	0000 = SPI N	laster mode, clo	ock = Fosc/4				
Note 1:	In Master mode, t writing to the SSF		is not set sind	ce each new rec	eption (and tra	insmission) is ir	nitiated by
2:	When enabled, th	•	be properly co	onfigured as inp	ut or output.		

3: Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

17.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 17.4.7 "Baud Rate"** for more detail.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

18.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

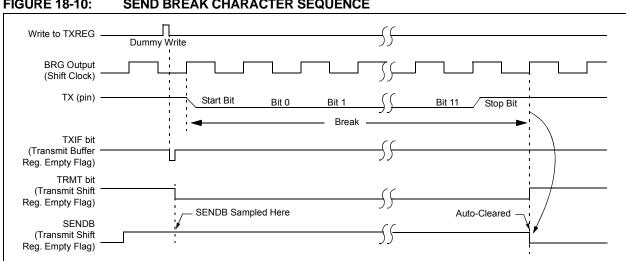
The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 18-10 for the timing of the Break character sequence.

18.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

- Configure the EUSART for the desired mode. 1.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- Write '55h' to TXREG to load the Sync character 4. into the transmit FIFO buffer.
- After the Break has been sent, the SENDB bit is 5. reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.


18.2.6 **RECEIVING A BREAK CHARACTER**

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in Section 18.2.4 "Auto-Wake-up on Sync Break Character". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXIF interrupt is observed.

FIGURE 18-10: SEND BREAK CHARACTER SEQUENCE

U-0	U-0		R/W-	0	R/V	V-0	R	/W-0	F	2/W-q (1)	R/W-	q ⁽¹⁾	R/	W-q ⁽¹⁾
_	_		VCFG	61	VCF	G0	PC	FG3	F	PCFG2	2	PCF	G1	P	CFG0
bit 7														•	bi
Legend:															
R = Reada	able bit	N	/ = Writ	table b	it		U = L	Jnimple	emente	ed bit. i	ead a	s '0'			
-n = Value			' = Bit i		-			-	leared	,		= Bit i	s unki	nown	
h # 7 0	Unimalan														
bit 7-6						ation k									
bit 5	VCFG1: V 1 = VREF-	-		ence C	oniigui	ation	лt (VRE	: SOU	ice)						
	1 = VREF- 0 = VSS	(ANZ)													
bit 4	VCFG0: V	/oltage	Refere	ence C	onfigur	ation b	dit (Vre	F+ SOI	urce)						
	1 = VREF+	-		-	0		`		,						
	0 = VDD														
bit 3-0	PCFG<3:0	0>: A/[) Port (Configu	uration	Contro	ol bits:								
	PCFG3:	12	11	10	6	ŝ	7(2)	5(2)	5(2)	4	~	2	-	6	
	PCFG0	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	ANO	
	0000 (1)	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0010	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0011	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	
	0100	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0101	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0110	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0111 (1)	D	D	D	D	D	A	A	A	A	A	A	A	A	
	1000	D	D	D	D	D	D	Α	Α	Α	Α	А	А	Α	
	1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	
	1010	D	D	D	D	D	D	D	D	Α	Α	А	А	А	
	1011	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	
	1100	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	
	1101	D	D	D	D	D	D	D	D	D	D	D	Α	Α	
	1110	D	D	D	D	D	D	D	D	D	D	D	D	Α	
	1111	D	D	D	D	D	D	D	D	D	D	D	D	D	

REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1

Note 1: The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<2:0> = 000; when PBADEN = 0, PCFG<2:0> = 111.

D = Digital I/O

2: AN5 through AN7 are available only on 40/44-pin devices.

A = Analog input

BNC	Branch if Not Carry		BNN	l	Branch if Not Negative				
Syntax:	BNC n			Synta	ax:	BNN n			
Operands:	-128 ≤ n ≤ ′	127		Oper	ands:	-128 ≤ n ≤	127		
Operation:	if Carry bit i (PC) + 2 + 2			Oper	ation:	if Negative (PC) + 2 +			
Status Affected:	None			Statu	s Affected:	None			
Encoding:	1110	0011 nn:	nn nnnn	Enco	ding:	1110	0111 nn:	nn nnnn	
Description:	will branch. The 2's cor added to th incremente instruction,	nplement num e PC. Since th d to fetch the the new addre n. This instruc	ber '2n' is e PC will have next ess will be	Description:		If the Negative bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will hav incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.			
Words:	1			Word	s:	1			
Cycles:	1(2)			Cycle	es:	1(2)			
Q Cycle Activity	/:			Q C If Ju	ycle Activity: mp:				
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC	
No operation	No n operation	No operation	No operation		No operation	No operation	No operation	No operation	
If No Jump:				lf No	o Jump:				
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation	
Example:	HERE	BNC Jump		Exan	<u>nple:</u>	HERE	BNN Jump		
Before Inst	ruction				Before Instruc	ction			
PC		dress (HERE)		PC		dress (HERE)	
After Instru If Car					After Instructi If Negati				
		dress (Jump)		PC		dress (Jump)	
If Car		- <u>-</u>			If Negati		· <u>-</u>		

Syntax:CLRF f {.a}Operands: $0 \le f \le 255$ $a \in [0,1]$ Operation:Operation: $000h \rightarrow f$, $1 \rightarrow Z$ $1 \rightarrow Z$ Status Affected:ZEncoding: 0110 0110 $101a$ f 'a' is 'o', the Access Bank is selected.If 'a' is 'o', and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). SeeSection 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles:1Q Cycle Activity:Q 1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q1Q2Q2Q3Q4	, ,
$a \in [0,1]$ Operation: $000h \rightarrow f$, $1 \rightarrow Z$ Operation: $000h \rightarrow WDT$, $000h \rightarrow WDT postscalerStatus Affected:ZI \rightarrow \overline{TO},1 \rightarrow \overline{PD}I \rightarrow \overline{TO},1 \rightarrow \overline{PD}Status Affected:TO, \overline{PD}Description:Clears the contents of the specifiedregister.Status Affected:TO, \overline{PD}Encoding:0000 0000 000If 'a' is 'o', the Access Bank is selected.If 'a' is 'o', the Access Bank is selected.If 'a' is 'o' and the extended instructionset is enabled, this instruction operatesin Indexed Literal Offset Addressingmode whenever f \leq 95 (5Fh). SeeSection 24.2.3 "Byte-Oriented andBit-Oriented Instructions in IndexedLiteral Offset Mode" for details.Words:1Words:1Q1Q2Q3Q Cycle Activity:Q1Q2Q3DecodeNoProcessDataVords:1Example:CLRWDTQ Cycle Activity:Effere InstructionExample:$,
Operation: $000h \rightarrow f,$ $1 \rightarrow Z$ $000h \rightarrow WDT$ postscalerStatus Affected:Z $1 \rightarrow \overline{D},$ $1 \rightarrow \overline{PD}$ Encoding: 0110 $101a$ ffffDescription:Clears the contents of the specified register.Status Affected: $\overline{TO}, \overline{PD}$ If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Words:1Q1Q2Q3Q Cycle Activity:Q1Q2Q3DecodeNoProcessoperationDataData	3
$1 \rightarrow Z$ $1 \rightarrow \overline{TO}$ Status Affected:Z $1 \rightarrow \overline{TO}$ Encoding: 0110 $101a$ ffffDescription:Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Status Affected: $\overline{TO}, \overline{PD}$ Words:1CLRWDT instruction result Words:Words:1Q Cycle Activity:Q1Q2Q3Q Cycle Activity:Q1Q2Q3DecodeNoProcessoperationDataData	,
Status Affected:Z $1 \rightarrow \overline{PD}$ Encoding:0110101affffffffDescription:Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Uoto1Words:1Q2Q3Q Cycles:1Q2Q3DecodeNoProcess OperationQ Cycle Activity:Example:CLRWDTQ Cycle Activity:Example:CLRWDT	
Status Affected:ZEncoding: 0110 $101a$ ffffffffDescription:Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Status Affected:TO, PDWords:1Cycles:1Cycles:1Q Cycle Activity:Q1Q2Q3DecodeNoProcess operationQ Cycle Activity:Example:CLRWDTQ Cycle Activity:Example:CLRWDT	
Encoding.0110101aIIIIIIIIDescription:Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Encoding:00000000000Words:1Cycles:1Q cycle Activity:Q1Q2Q3DecodeNoProcess operationQ cycle Activity:Example:CLRWDTQ cycle Activity:Example:CLRWDT	
Description: Clears the contents of the specified register. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the Access Bank is selected. Description: If 'a' is 'o', the BSR is used to select the Scaler of the WDT. Statu GPR bank (default). PD, are set. If 'a' is 'o' and the extended instruction operates No in Indexed Literal Offset Addressing Q1 mode whenever f ≤ 95 (5Fh). See Q1 Section 24.2.3 "Byte-Oriented and Decode Bit-Oriented Instructions in Indexed Decode Literal Offset Mode" for details. Decode Words: 1 Cycles: 1 Q Cycle Activity: Example: CLRWDT CLRWDT	0.0
If 'a' is 'o', the Access Bank is selected. Watchdog Timer. It also scaler of the WDT. Statu PD, are set. If 'a' is '1', the BSR is used to select the GPR bank (default). Words: 1 If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Words: 1 Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Words: 1 Decode No Process operation Data Words: 1 Example: CLRWDT Q Cycle Activity: Etample: CLRWDT	
If 'a' is '1', the BSR is used to select the GPR bank (default). scaler of the WDT. Statu PD, are set. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Words: 1 Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Words: 1 Decode No Process Q Cycle Activity: 1 Decode Data Q Cycle Activity: CLRWDT Example: CLRWDT Q Cycle Activity: Before Instruction Example: CLRWDT	
If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Words: 1 Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q Cycle Activity: Q1 Q2 Q3 Words: 1 Decode No Process Q Cycles: 1 Decode No Process Q Cycle Activity: CLRWDT Example: CLRWDT Q Cycle Activity: Before Instruction Example: CLRWDT	
set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q Cycle Activity: Q1 Q2 Q3 Words: 1 Decode No Process Data Vords: 1 Example: CLRWDT Q Cycle Activity: Estop Instruction Before Instruction	
in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Cycles: 1 Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q Cycle Activity: Words: 1 Cycles: 1 Cycles: 1 Cycles: 1 Cycles: 1 Cycles: 1 Cycles: 1 Cycle Activity: CLRWDT Before Instruction	
Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Words: 1 Decode No Process operation Data Cycles: 1 Example: CLRWDT Q Cycle Activity: Estimate Before Instruction	
Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Words: 1 Decode No Process Data Cycles: 1 Example: CLRWDT Q Cycle Activity: Before Instruction Before Instruction	
Literal Offset Mode" for details. Decode No Process Words: 1 Decode No Data Cycles: 1 Example: CLRWDT Q Cycle Activity: Before Instruction	Q4
Words: 1 Cycles: 1 Q Cycle Activity: Example: CLRWDT Before Instruction	No
Q Cycle Activity: Before Instruction	operation
Q Cycle Activity: Before Instruction	
Decode Read Process Write After Instruction	
register 'f' Data register 'f' WDT Counter = 00h WDT Postscaler = 0	
$\overline{\text{TO}}$ = 1	
Example: CLRF FLAG_REG, 1 PD = 1	
Before Instruction FLAG REG = 5Ah	
After Instruction	
$FLAG_REG = 00h$	

MUL	_LW	Multiply I	Multiply Literal with W							
Synt	ax:	MULLW	k				Syntax:			
Oper	rands:	$0 \le k \le 255$	$0 \le k \le 255$							
Oper	ration:	(W) x k \rightarrow	PRODH:PRO	DDL						
Statu	is Affected:	None					Operati			
Enco	oding:	0000	1101 k	kkk	kkkk		Status /			
Desc	pription:	out betwee 8-bit literal placed in th pair. PROD W is uncha None of the Note that n	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A zero result							
Word	ds:	1								
Cycle	es:	1								
QC	ycle Activity:									
	Q1	Q2	Q3		Q4	_				
	Decode	Read literal 'k'	Process Data	re P	Write egisters RODH: PRODL					
<u>Exar</u>	<u>nple:</u> Before Instruc	MULLW	0C4h							
	W	= E2	2h				Words:			
	PRODH PRODL	= ? = ?					Cycles:			
	After Instruction	on					Q Cyc			
	W PRODH PRODL	= E2 = AE = 08	Dh							

MULWF	Multiply	W with f							
Syntax:	MULWF	f {,a}							
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]							
Operation:	(W) x (f) –	> PRODH:	PRODL						
Status Affected:	None								
Encoding:	0000	001a	ffff	ffff					
Description:	out betwee register file result is st register pa high byte. unchange None of th Note that r possible in result is po If 'a' is '0', selected. I to select th If 'a' is '0' a set is enal operates i Addressin $f \leq 95$ (5FH "Byte-Ori	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	_	Q4					
Decode	Read register 'f'	Proces: Data	re P	Write egisters RODH: PRODL					
_ .									
Example:	MULWF	REG, 1							
Before Instruc									
W REG PRODH PRODL	= C4 = B5 = ? = ?								
PRODL After Instruction	= ?								

After Instruction		
W	=	C4h
REG	=	B5h
PRODH	=	8Ah
PRODL	=	94h

RCA		Relative (Call					RES	SET	
Synta	ax:	RCALL n					l I	Synt	ax:	
Oper	ands:	-1024 ≤ n ≤	1023					Oper	rands:	
Oper	ation:	$(PC) + 2 \rightarrow$ (PC) + 2 + 2	-	;				Oper	ration:	
Statu	is Affected:	None						Statu	s Affected:	
Enco	oding:	1101	1nnn	nnr	ın	nnnn		Enco	oding:	
Desc	cription:	Subroutine from the cu	rrent loca	ation.	First	, return		Desc	cription:	
		address (Postack. Ther						Word	ds:	
		number '2n	,					Cycles: Q Cycle Activ		
		have increr								
		instruction, PC + 2 + 2							Q1	
		two-cycle ir				Ju			Decode	
Word	ls:	1								
Cycle	es:	2						Exar	nole [.]	
QC	ycle Activity:							<u></u>	After Instructior	
	Q1	Q2	Q3	5		Q4			Registers	
	Decode	Read literal 'n'	Proce Dat		Wr	ite to PC			Flags*	
		PUSH PC to stack								
	No	No	No	•		No				

operation operation

Example: HERE RCALL Jump

operation

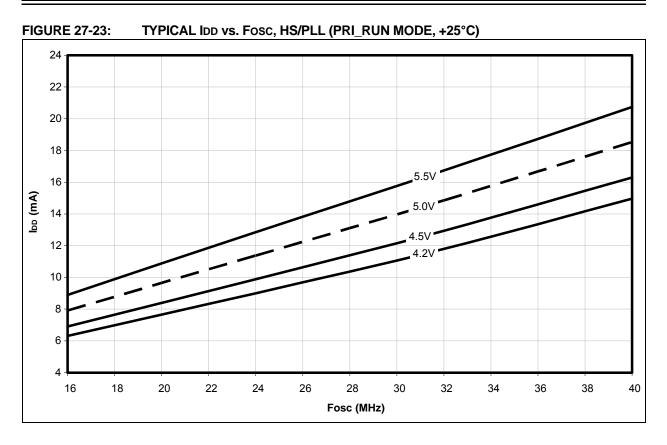
Before Instruction

operation

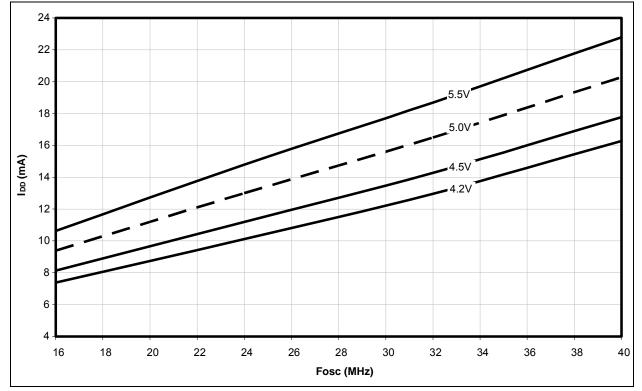
PC = Address (HERE) After Instruction PC = TOS = Address (Jump) Address (HERE + 2) affected by a MCLR Reset. All 0000 0000 1111 1111 This instruction provides a way to execute a MCLR Reset in software. 1 1 Q2 Q3 Q4 Start No No Reset operation operation

Reset

RESET


Reset all registers and flags that are

None


n

Registers =	Reset Value
Flags* =	Reset Value

RESET

© 2008 Microchip Technology Inc.

INDEX

Α	
A/D	223
Acquisition Requirements	228
ADCON0 Register	223
ADCON1 Register	223
ADCON2 Register	223
ADRESH Register	226
ADRESL Register	
Analog Port Pins, Configuring	
Associated Registers	
Configuring the Module	
Conversion Clock (TAD)	229
Conversion Status (GO/DONE Bit)	
Conversions	
Converter Characteristics	
Converter Interrupt, Configuring	
Discharge Operation in Power-Managed Modes	
Selecting and Configuring Acquisition Time	
Special Event Trigger (CCP)	
Special Event Trigger (ECCP)	
Use of the CCP2 Trigger	
Absolute Maximum Ratings	
AC (Timing) Characteristics	
Load Conditions for Device	
Timing Specifications	341
Parameter Symbology	
Temperature and Voltage Specifications	
Timing Conditions	341
AC Characteristics	
Internal RC Accuracy	343
Access Bank	
Mapping with Indexed Literal Offset Mode	
ACKSTAT	
ACKSTAT Status Flag	
ADCON0 Register	
GO/DONE Bit	
ADCON1 Register	
ADCON2 Register ADDFSR	
ADDLW	
ADDULNK	
ADDWF	
ADDWFC	
ADRESH Register	
ADRESL Register	226
Analog-to-Digital Converter. See A/D.	
ANDLW	274
ANDWF	
Assembler	
MPASM Assembler	318
Auto-Wake-up on Sync Break Character	214
В	
-	F 0
Bank Select Register (BSR)	
Baud Rate Generator	
BC	
BCF	
	191

BF Status Flag......191

Block Diagrams
A/D226
Analog Input Model 227
Baud Rate Generator 187
Capture Mode Operation 141
Comparator Analog Input Model 237
Comparator I/O Operating Modes234
Comparator Output 236
Comparator Voltage Reference
Comparator Voltage Reference Output
Buffer Example241
Compare Mode Operation 142
Device Clock
Enhanced PWM 149
EUSART Receive
EUSART Transmit 211
External Power-on Reset Circuit
(Slow VDD Power-up)43
Fail-Safe Clock Monitor (FSCM)
Generic I/O Port 105
High/Low-Voltage Detect with External Input
Interrupt Logic
MSSP (I ² C Master Mode) 185
MSSP (I ² C Mode)
MSSP (SPI Mode) 161
On-Chip Reset Circuit41
PIC18F2420/252010
PIC18F4420/452011
PLL (HS Mode) 25
PORTD and PORTE (Parallel Slave Port) 120
PWM Operation (Simplified) 144
Reads from Flash Program Memory77
Single Comparator
Table Read Operation73
Table Write Operation74
Table Writes to Flash Program Memory
Timer0 in 16-Bit Mode 124
Timer0 in 8-Bit Mode 124
Timer1128
Timer1 (16-Bit Read/Write Mode) 128
Timer2134
Timer3136
Timer3 (16-Bit Read/Write Mode)136
Watchdog Timer 258
BN
BNC
BNN
BNOV
BNZ
BOR. See Brown-out Reset.
BOV
BRA
Break Character (12-Bit) Transmit and Receive
BRG. See Baud Rate Generator.
Brown-out Reset (BOR)
Detecting 44
Disabling in Sleep Mode 44
Software Enabled 44
BSF279
BTFSC
BTFSS
BTG
BZ