

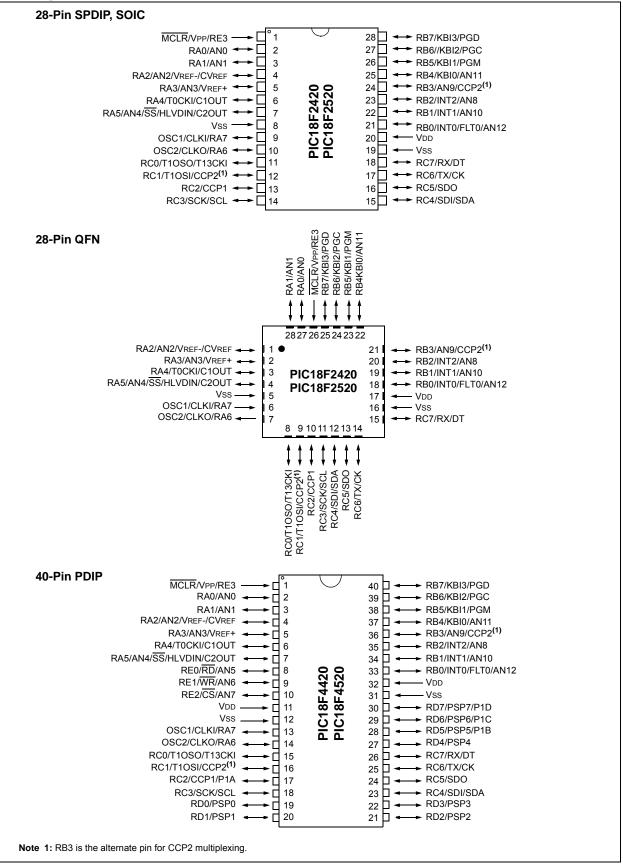
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4520t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Name	Pi	Pin Number		Pin	Buffer	Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTC is a bidirectional I/O port.		
RC0/T10SO/T13CKI	15	34	32					
RC0				I/O	ST	Digital I/O.		
T10SO				0		Timer1 oscillator output.		
T13CKI				Ι	ST	Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2	16	35	35	1/0	0T			
RC1 T1OSI				1/O 1	ST CMOS	Digital I/O. Timer1 oscillator input.		
CCP2 ⁽²⁾				ı I/O	ST	Capture 2 input/Compare 2 output/PWM2 output.		
				1/0	51			
RC2/CCP1/P1A RC2	17	36	36	I/O	ST	Digital I/O.		
CCP1				1/O	ST	Capture 1 input/Compare 1 output/PWM1 output.		
P1A				0	_	Enhanced CCP1 output.		
RC3/SCK/SCL	18	37	37					
RC3	10	57	57	I/O	ST	Digital I/O.		
SCK				I/O	ST	Synchronous serial clock input/output for		
				-	-	SPI mode.		
SCL				I/O	ST	Synchronous serial clock input/output for I ² C™ mode		
RC4/SDI/SDA	23	42	42					
RC4				I/O	ST	Digital I/O.		
SDI				Ι	ST	SPI data in.		
SDA				I/O	ST	l ² C data I/O.		
RC5/SDO	24	43	43					
RC5				I/O	ST	Digital I/O.		
SDO				0	—	SPI data out.		
RC6/TX/CK	25	44	44					
RC6				I/O	ST	Digital I/O.		
TX CK				0 I/O	ST	EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT).		
				1/0	01			
RC7/RX/DT RC7	26	1	1	I/O	ST	Digital I/O.		
RX				1	ST	EUSART asynchronous receive.		
DT				I/O	ST	EUSART synchronous data (see related TX/CK).		
Legend: TTL = TTL co	ompatibl	e input			(CMOS = CMOS compatible input or output		
ST = Schmi	tt Trigge		with CM	OS lev		= Input		
O = Outpu	t				F	P = Power		

TABLE 1-3: PIC18F4420/4520 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

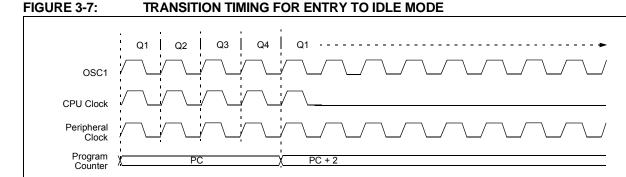
2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

3.4.1 PRI_IDLE MODE

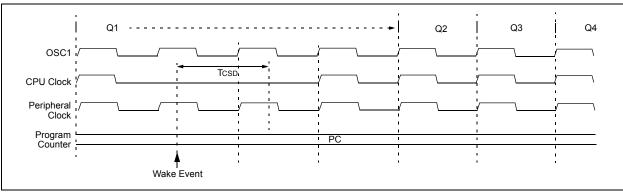
This mode is unique among the three low-power Idle modes in that it does not disable the primary device clock. For timing-sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 3-7).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-8).


3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by


setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD, following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 3-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

FIGURE 3-8: TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE

4.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used in software to determine the nature of the Reset. Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

TABLE 4-3:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION
	FOR RCON REGISTER

Condition	Program		RCC	ON Reg	ister		STKPTR Register	
Condition	Counter	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	0	0	0	0
RESET Instruction	0000h	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	u	0	u	u
MCLR Reset during Power-Managed Run Modes	0000h	u	1	u	u	u	u	u
MCLR Reset during Power-Managed Idle Modes and Sleep Mode	0000h	u	1	0	u	u	u	u
WDT Time-out during Full Power or Power-Managed Run Mode	0000h	u	0	u	u	u	u	u
MCLR Reset during Full-Power Execution	0000h	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	1
WDT Time-out during Power-Managed Idle or Sleep Modes	PC + 2	u	0	0	u	u	u	u
Interrupt Exit from Power-Managed Modes	PC + 2 ⁽¹⁾	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

5.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top half of Bank 15 (F80h to FFFh). A list of these registers is given in Table 5-1 and Table 5-2. The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

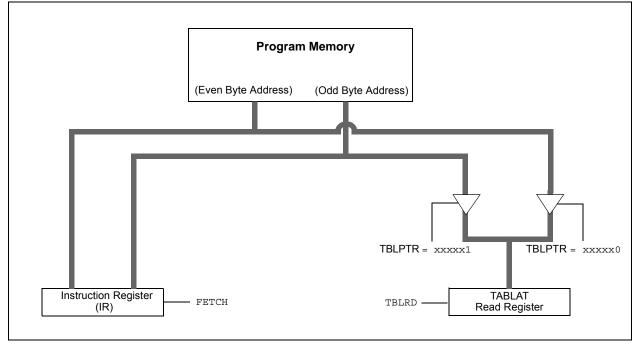
TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F2420/2520/4420/4520 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(1)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	(2)
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	(2)
FF9h	PCL	FD9h	FSR2L	FB9h	(2)	F99h	(2)
FF8h	TBLPTRU	FD8h	STATUS	FB8h	BAUDCON	F98h	(2)
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PWM1CON ⁽³⁾	F97h	(2)
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCP1AS ⁽³⁾	F96h	TRISE ⁽³⁾
FF5h	TABLAT	FD5h	TOCON	FB5h	CVRCON	F95h	TRISD ⁽³⁾
FF4h	PRODH	FD4h	(2)	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	(2)
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	(2)
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	(2)
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	(2)
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽³⁾
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽³⁾
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	(2)	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	(2)
FE7h	INDF1 ⁽¹⁾	FC7h	SSPSTAT	FA7h	EECON2 ⁽¹⁾	F87h	(2)
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	(2)
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSPCON2	FA5h	(2)	F85h	(2)
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	(2)	F84h	PORTE ⁽³⁾
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	(2)	F83h	PORTD ⁽³⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 28-pin devices.


6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

MOVLW MOVWF MOVLW MOVLW MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW		Load TBLPTR with the base address of the word
110 V W1			
TBLRD*+	-	;	read into TABLAT and increment
MOVF	TABLAT, W	;	get data
MOVWF	WORD EVEN		
TBLRD*+		;	read into TABLAT and increment
MOVFW	TABLAT, W	;	get data
MOVF	WORD_ODD		
	MOVWF MOVLW MOVWF MOVLW MOVWF MOVF MOVVF TBLRD*4 MOVFW	MOVWF TBLPTRU MOVLW CODE_ADDR_HIGH MOVWF TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL TBLRD*+ MOVF TABLAT, W MOVWF WORD_EVEN TBLRD*+ MOVFW TABLAT, W	MOVWF TBLPTRU ; MOVUW CODE_ADDR_HIGH MOVWF TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL TBLRD*+ ; MOVF TABLAT, W ; MOVWF WORD_EVEN TBLRD*+ ; MOVFW TABLAT, W ;

7.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to **Section 23.0 "Special Features of the CPU"** for additional information.

7.7 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

7.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 7-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124.

	EXAMPLE 7-3:	DATA EEPROM REFRESH ROUTINE
--	--------------	-----------------------------

	CLRF	EEADR	;	Start at address 0
	BCF	EECON1, CFGS	;	Set for memory
	BCF	EECON1, EEPGD	;	Set for Data EEPROM
	BCF	INTCON, GIE	;	Disable interrupts
	BSF	EECON1, WREN	;	Enable writes
Loop			;	Loop to refresh array
	BSF	EECON1, RD	;	Read current address
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
	MOVLW	0AAh	;	
	MOVWF	EECON2	;	Write OAAh
	BSF	EECON1, WR	;	Set WR bit to begin write
	BTFSC	EECON1, WR	;	Wait for write to complete
	BRA	\$-2		
	INCFSZ	EEADR, F	;	Increment address
	BRA	LOOP	;	Not zero, do it again
	BCF	EECON1, WREN	;	Disable writes
	BSF	INTCON, GIE	;	Enable interrupts
				-

R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP			
oit 7							bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
pit 7	OSCFIP: Os	cillator Fail Inte	rrupt Prioritv bi	t						
	1 = High pric 0 = Low prio	ority		-						
oit 6	•	arator Interrupt	Priority bit							
	1 = High pricond0 = Low prio	•								
oit 5	Unimplemen	ted: Read as '	0'							
oit 4	EEIP: Data E	EPROM/Flash	Write Operatio	on Interrupt Prio	rity bit					
	1 = High pric 0 = Low prio	•								
oit 3	BCLIP: Bus Collision Interrupt Priority bit									
	1 = High pricts 0 = Low pricts 1									
oit 2	HLVDIP: Hig	h/Low-Voltage	Detect Interrup	t Priority bit						
	1 = High pric0 = Low prio									
oit 1	TMR3IP: TM	R3 Overflow In	terrupt Priority	bit						
	1 = High pric 0 = Low prio	•								
oit 0	CCP2IP: CC	P2 Interrupt Pri	ority bit							
	1 = High pric	nrity								

REGISTER 9-9: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

15.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

15.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 15-1:CCP MODE – TIMER
RESOURCE

CCP/ECCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the T3CON register (Register 14-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Figure 15-1 and Figure 15-2. In Timer1 in Asynchronous Counter mode, the capture operation will not work.

15.1.2 CCP2 PIN ASSIGNMENT

The pin assignment for CCP2 (Capture input, Compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines which pin CCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RB3.

Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation, regardless of where it is located.

TABLE 15-2: INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Each module can use TMR1 or TMR3 as the time base. The time base can be different for each CCP.
Capture	Compare	CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Automatic A/D conversions on trigger event can also be done. Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Capture	CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Operation of CCP2 could be affected if it is using the same timer as a time base.
Compare	Compare	Either module can be configured for the Special Event Trigger to reset the time base. Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if both modules are using the same time base.
Capture	PWM ⁽¹⁾	None
Compare	PWM ⁽¹⁾	None
PWM ⁽¹⁾	Capture	None
PWM ⁽¹⁾	Compare	None
PWM ⁽¹⁾	PWM ⁽¹⁾	Both PWMs will have the same frequency and update rate (TMR2 interrupt).

Note 1: Includes standard and Enhanced PWM operation.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽²⁾	ACKEN ⁽¹⁾	RCEN ⁽¹⁾	PEN ⁽¹⁾	RSEN ⁽¹⁾	SEN ⁽¹⁾
oit 7	·						bit
Legend:							
R = Readab		W = Writable		-	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7	GCEN: Gene	ral Call Enable	bit (Slave mod	le only)			
		nterrupt when a call address dis	•	address (0000h) is received in	the SSPSR	
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Maste	r Transmit mod	e only)		
		edge was not re edge was receiv		ave			
bit 5		0		ceive mode on	y) ⁽²⁾		
	1 = Not Ackn 0 = Acknowle	•					
oit 4		0	ience Enable b	oit (Master Rec	eive mode onlv	₎ (1)	
	1 = Initiates / cleared b	Acknowledge so by hardware.	equence on SD		-	ACKDT data bit.	Automatical
bit 3		edge sequence ive Enable bit (volv)(1)			
		Receive mode f	-	, ing je z			
bit 2		ondition Enable	bit (Master mo	ode only)(1)			
511 2	-	Stop condition o		CL pins. Automa	atically cleared	by hardware.	
bit 1	•		lition Enable bi	it (Master mode	e only) ⁽¹⁾		
	1 = Initiates		condition on S			ally cleared by h	ardware.
bit 0	SEN: Start Co	ondition Enable	Stretch Enabl	e bit ⁽¹⁾			
	In Master mo 1 = Initiates S 0 = Start cond	Start condition o	n SDA and SC	CL pins. Automa	atically cleared	by hardware.	
				ve transmit and	l slave receive	(stretch enable	d)
	or bits ACKEN, et (no spooling)						
			-			nce at the end c	-

2: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

18.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of the two serial I/O modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a halfduplex, synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN bus) systems.

The EUSART can be configured in the following modes:

- Asynchronous (full duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of the Enhanced USART are multiplexed with PORTC. In order to configure RC6/TX/CK and RC7/RX/DT as an EUSART:

- bit SPEN (RCSTA<7>) must be set (= 1)
- bit TRISC<7> must be set (= 1)
- bit TRISC<6> must be set (= 1)

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as
	needed.

The operation of the Enhanced USART module is controlled through three registers:

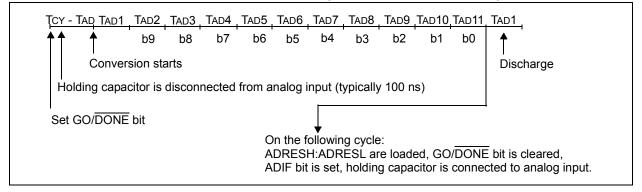
- · Transmit Status and Control (TXSTA)
- · Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These are detailed on the following pages in Register 18-1, Register 18-2 and Register 18-3, respectively.

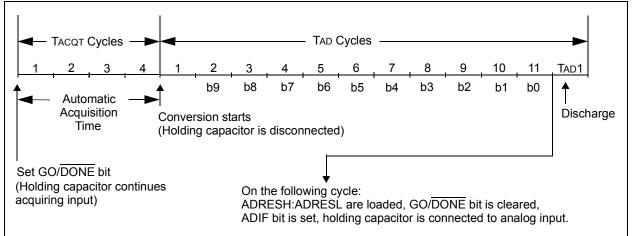
19.6 A/D Conversions

Figure 19-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 19-5 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are set to '010', and selecting a 4 TAD acquisition time before the conversion starts.


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

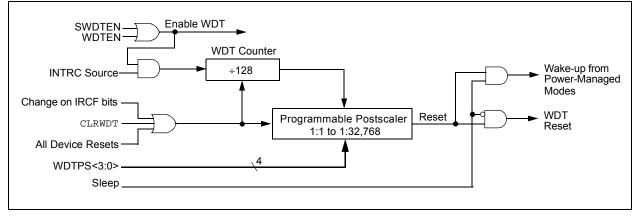

19.7 Discharge

The discharge phase is used to initialize the value of the capacitor array. The array is discharged before every sample. This feature helps to optimize the unitygain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 19-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 19-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

23.2 Watchdog Timer (WDT)


For PIC18F2420/2520/4420/4520 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

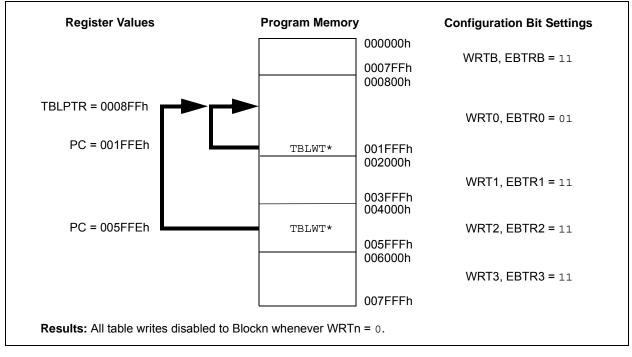
The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

23.2.1 CONTROL REGISTER

Register 23-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

FIGURE 23-1: WDT BLOCK DIAGRAM


23.5.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to, or written from, any location using the table read and table write instructions. The Device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit set to '0', a table read instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 23-6 through 23-8 illustrate table write and table read protection.

Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP or an external programmer.

FIGURE 23-6: TABLE WRITE (WRTn) DISALLOWED

24.1.1 STANDARD INSTRUCTION SET

ADDLW		ADD Lite	al to W	1				
Syntax:		ADDLW	k					
Operands:		$0 \le k \le 255$						
Operation:		(W) + k \rightarrow V	Ν					
Status Affect	ted:	N, OV, C, D	0C, Z					
Encoding:		0000	1111	kkkk	kkkk			
Description:		The conten 8-bit literal W.			d to the is placed in			
Words:		1	1					
Cycles:		1						
Q Cycle Ac	tivity:							
Q	1	Q2	Q3	3	Q4			
Deco	ode	Read literal 'k'	Proce Data		Write to W			
<u>Example:</u> Before W After In W	= structio	tion 10h	.5h					

ADDWF	ADD W t	o f		
Syntax:	ADDWF	f {,d {,a}	•}	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	i		
Operation:	(W) + (f) –	→ dest		
Status Affected:	N, OV, C,	DC, Z		
Encoding:	0010	01da	ffff	ffff
Description:	Add W to result is st result is st (default). If 'a' is 'o', If 'a' is '1', GPR bank If 'a' is '0' a set is enat in Indexed mode whe Section 2: Bit-Orient Literal Off	the Access the BSR (default). (default). and the expled, this is Literal O never f ≤ 4.2.3 "By ed Instru	. If 'd' is '1 s in registe ss Bank is is used to xtended in instruction ffset Addre 95 (5Fh). S te-Oriente ictions in	r ff selected. select the struction operates essing See ed and Indexed
Words:	1			
Cycles:	1			

QC	ycle Activity:					
	Q1		Q2	Q3		Q4
	Decode	Read register 'f'		Process Data		Write to destination
<u>Exan</u>	Example:		DDWF	REG,	0, 0	
	Before Instruc					
	W REG After Instructio	= = on	17h 0C2h			
	W REG	= =	0D9h 0C2h			

Note:	All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
	symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

IORLW	Inclusive	OR Lite	eral with	W			
Syntax:	IORLW k						
Operands:	$0 \le k \le 255$	5					
Operation:	(W) .OR. k	ightarrow W					
Status Affected:	N, Z						
Encoding:	0000	1001	kkkk	kkkk			
Description:		The contents of W are ORed with the 8-bit literal 'k'. The result is placed in W.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	1	Q4			
Decode	Read literal 'k'	Proce Dat		/rite to W			
Example:	IORLW	35h					
Before Instruc	tion						
W After Instructio	= 9Ah on						

IORWF Inclusive OR W with f							
Syntax:	IORWF 1	f {,d {,a}}					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	d ∈ [0,1]					
Operation:	(W) .OR. (f	$) \rightarrow dest$					
Status Affected:	N, Z						
Encoding:	0001	00da	ffff	ffff			
	 '0', the result is the result is (default). If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enab in Indexed mode wher Section 24 	If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	5	Q4			
Decode	Read register 'f'	Proce Dat		Write to estination			
Example: Before Instruc RESULT	tion	ESULT,	0, 1				

Before Instruction	
RESULT =	13h
W =	91h
After Instruction	
RESULT =	13h
\// =	93h

W

= BFh

26.2

DC Characteristics: Power-Down and Supply Current PIC18F2420/2520/4420/4520 (Industrial) PIC18LF2420/2520/4420/4520 (Industrial) (Continued)

PIC18LF2420/2520/4420/4520 (Industrial) PIC18F2420/2520/4420/4520 (Industrial, Extended)			-	rating (•	ess otherwise states $4 \le +85^{\circ}$ C for indust	
		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Device	Тур	Max	Units		Conditio	ns
	Supply Current (IDD) ⁽²⁾						
	PIC18LF2X2X/4X20	165	250	μΑ	-40°C		
		175	250	μA	+25°C	VDD = 2.0V	Fosc = 1 MHz (RC_IDLE mode, INTOSC source)
		190	270	μΑ	+85°C]	
	PIC18LF2X2X/4X20	250	360	μΑ	-40°C		
		270	360	μA	+25°C	VDD = 3.0V	
		290	380	μA	+85°C		
	All devices	500	700	μA	-40°C		
		520	700	μA	+25°C	VDD = 5.0V	
		550	700	μΑ	+85°C	VDD - 5.0V	
	Extended devices only	0.6	1	mA	+125°C		
	PIC18LF2X2X/4X20	340	500	μΑ	-40°C		
		350	500	μA	+25°C	VDD = 2.0V	
		360	500	μA	+85°C]	
	PIC18LF2X2X/4X20	520	800	μA	-40°C		
		540	800	μA	+25°C	VDD = 3.0V VDD = 5.0V	Fosc = 4 MHz (RC_IDLE mode,
		580	850	μΑ	+85°C		INTOSC source)
	All devices	1.0	1.6	mA	-40°C		
		1.1	1.4	mA	+25°C		
		1.1	1.4	mA	+85°C		
	Extended devices only	1.1	2.0	mA	+125°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS; MCLR = VDD; WDT enabled/disabled as specified.
- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

NOTES:

High/Low-Voltage Detect	
Applications	
Associated Registers	
Characteristics	
Current Consumption	245
Effects of a Reset	
Operation	
During Sleep	
Setup	
Start-up Time	245
Typical Application	
HLVD. See High/Low-Voltage Detect.	

I

I/O Ports	105
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	
Baud Rate Generator	187
Bus Collision	
During a Repeated Start Condition	
During a Stop Condition	
Clock Arbitration	
Clock Stretching	
10-Bit Slave Receive Mode (SEN = 1)	
10-Bit Slave Transmit Mode	
7-Bit Slave Receive Mode (SEN = 1)	
7-Bit Slave Transmit Mode	
Clock Synchronization and the	101
CKP bit (SEN = 1)	
Effects of a Reset	
General Call Address Support	
I ² C Clock Rate w/BRG	
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition Timing	
Transmission	
Multi-Master Communication, Bus	
Collision and Arbitration	
Multi-Master Mode	
Operation	
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Addressing	
Reception	
Transmission	
Sleep Operation Stop Condition Timing	
ID Locations	
INCF	
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	
Indexed Literal Offset Addressing	. 249, 200
and Standard PIC18 Instructions	314
Indexed Literal Offset Mode	
Indirect Addressing	
INFSNZ	
Initialization Conditions for all Registers	
Instruction Cycle	
Clocking Scheme	
Instruction Flow/Pipelining	
Instruction Set	

ADDLW	273
ADDWF	
ADDWF (Indexed Literal Offset Mode)	
ADDWFC	
ANDLW	
ANDWF BC	
BC	
BN	
BNC	
BNN	
BNOV	278
BNZ	
BOV	281
BRA	279
BSF	
BSF (Indexed Literal Offset Mode)	315
BTFSC	
BTFSS	
BTG	
BZ	
CALL	
CLRF	
CLRWDT	
COMF	
CPFSEQ CPFSGT	
CPFSGT	
DAW	
DCFSNZ	
DECF	
DECFSZ	
Extended Instruction Set	
General Format	
GOTO	
INCF	288
INCFSZ	
INFSNZ	
IORLW	
IORWF	
LFSR	
MOVF	
MOVFF	
MOVLB	
MOVLW	
MULLW	
MULWF	
NEGF	
NOP	
Opcode Field Descriptions	
POP	
PUSH	
RCALL	297
RESET	297
RETFIE	298
RETLW	
RETURN	
RLCF	299
RLNCF	
RRCF	300
RRNCF	300 301
RRNCF	300 301 301
RRNCF	300 301 301 315

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/02/08