

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8673312psg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CMOS Z8[®] OTP Microcontrollers Product Specification Zilog ₃

On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator, LC, RC, or External Clock Drive

Functional Block Diagram

•

(E43/743/E44 Only) Output Input XTAL AS DS R/W RESET V_{CC} GND Machine Port 3 Timing & Inst. ĴĹ Control RESET Counter/ WDT, POR ALU TimerS (2) OTP FLAGS Interrupt Control Register Pointer Two Analog Program Comparators Counter **Register File** Ę Port 1 Port 2 Port 0 I/O Address or I/O Address/Data or I/O (Bit Programmable) (Nibble Programmable) (Byte Programmable) ((E43/743/E44 Only)

Figure 1 displays the functional block diagram.

Figure 1. Functional Block Diagram

Zilog[®],

Pin No	Symbol	Function	Direction
1-2	GND	Ground	
3-4	P12-P13	Port 1, Pins 2,3	Input/Output
5	P03	Port 0, Pin 3	Input/Output
6-10	P20-P24	Port 2, Pins 0,1,2,3,4	Input/Output
11	DS	Data Strobe	Output
12	NC	No Connection	
13	R/W	Read/Write	Output
14-16	P25-P27	Port 2, Pins 5,6,7	Input/Output
17-19	P04-P06	Port 0, Pins 4,5,6	Input/Output
20-21	P14-P15	Port 1, Pins 4,5	Input/Output
22	P07	Port 0, Pin 7	Input/Output
23-24	V _{CC}	Power Supply	
25-26	P16-P17	Port 1, Pins 6,7	Input/Output

Table 3. 44-Pin PLCC Pin Identification	CC Pin Identification	PLCC	44-Pin	Table 3.
---	-----------------------	------	--------	----------

Figure 7. 44-Pin PLCC Pin Configuration EPROM Programming Mode

Table 6. 44-Pin PLCC Pin Configuration E	EPROM Programming Mode
--	------------------------

Pin No	Symbol	Function	Direction
1-2	GND	Ground	
3-5	NC	No Connection	
6-10	D0-D4	Data 0,1,2,3,4	Input/Output
11-13	NC	No Connection	
14-16	D5-D7	Data 5,6,7	Input/Output
17-22	NC	No Connection	
23-24	V _{CC}	Power Supply	
25-27	NC	No Connection	
28	CE	Chip Select	Input
29	OE	Output Enable	Input
30	EPM	EPROM Prog. Mode	Input
31	V _{PP}	Prog. Voltage	Input

Zilog ₁₄

Table 6. 44-Pin PLCC Pin Configuration EPROM Programming Mode (Continued)

Pin No	Symbol	Function	Direction
32-39	NC	No Connection	
40	CLR	Clear	Input
41	CLK	Clock	Input
42-43	NC	No Connection	
44	/PGM	Prog. Mode	Input

zilog ₁₅

Figure 8. 44-Pin LQFP Pin Configuration EPROM Programming Mode

Pin No	Symbol	Function	Direction
1-5	NC	No Connection	
6-7	V _{CC}	Power Supply	
8-10	NC	No Connection	
11	CE	Chip Select	Input
12	OE	Output Enable	Input
13	EPM	EPROM Prog. Mode	Input
14	V _{PP}	Prog. Voltage	Input
15-22	NC	No Connection	
23	CLR	Clear	Input
24	CLK	Clock	Input
25-26	NC	No Connection	
27	/PGM	Prog. Mode	Input
28-29	GND	Ground	
30-32	NC	No Connection	

Table 7. 44-Pin LQFP Pin Identification EPROM Programming Mode

zilog ₂₀

Electrical Characteristics

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Min	Max	Units	Notes
-40	+105	С	
-65	+150	С	
-0.6	+7	V	1
-0.3	+7	V	
-0.6	V _{DD} +1	V	2
	1.21	W	
	220	mA	
	180	mA	
-600	+600	μA	3
-600	+600	μA	4
	25	mA	
	25	mA	
	3	mA	
	Min -40 -65 -0.6 -0.3 -0.6 -600 -600	MinMax -40 $+105$ -65 $+150$ -0.6 $+7$ -0.3 $+7$ -0.6 V_{DD} +1 1.21 220 180 -600 -600 $+600$ -600 $+600$ 25 25 3	Min Max Units -40 +105 C -65 +150 C -0.6 +7 V -0.3 +7 V -0.6 V _{DD} +1 V -0.6 V _{DD} mA -600 +600 μA -600 25 mA 3 mA

Notes

1. This applies to all pins except XTAL pins and where otherwise noted.

2. There is no input protection diode from pin to V_{DD}.

3. This excludes XTAL pins.

4. Device pin is not at an output Low state.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

21

Total power dissipation should not exceed 1.21 W for the package. Power dissipation is calculated as follows:

 $\begin{array}{ll} \mbox{Total Power Dissipation} = & V_{DD} \; x \; [I_{DD} - (\mbox{sum of } I_{OH}), \\ & + \; \mbox{sum of } [(V_{DD} - V_{OH}) \; x \; I_{OH}] \\ & + \; \mbox{sum of } (V_{OL} \; x \; I_{OL}) \end{array}$

Standard Test Conditions

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Test Load).

Figure 13. Test Load Diagram

Capacitance

 $T_A = 25$ °C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	12 pF
Output capacitance	0	12 pF
I/O capacitance	0	12 pF

zilog 25

Symbo I	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C	Units	Conditions	Notes
V _{OH1}	Output High	4.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	2
	Voltage	5.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	2
V _{OL}	Output Low	4.5V		0.4	0.2	V	I _{OL} = 1.0 mA	
	Voltage Low EMI Mode	5.5V		0.4	0.2	V	I _{OL} = 1.0 mA	
V _{OL1}	Output Low	4.5V		0.4	0.1	V	I _{OL} = +4.0 mA	2
	Voltage	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	2
V _{OL2}	Output Low	4.5V		1.2	0.5	V	I _{OL} = +12 mA	2
	Voltage	5.5V		1.2	0.5	V	I _{OL} = +12 mA	2
V _{RH}	Reset Input	4.5V	.8 V _{CC}	V _{CC}	1.7	V		3
	High Voltage	5.5V	.8 V _{CC}	V _{CC}	2.1	V		3
V _{OLR}	Reset Output Low	4.5V		0.6	0.3	V	I _{OL} = 1.0 mA	3
	Voltage			0.6	0.2	V	I _{OL} = 1.0 mA	3
V _{OFFSET}	Comparator	4.5V		25	10	mV		
	Input Offset Voltage	5.5V		25	10	mV		
V _{ICR}	Input Common	4.5V	0	V _{CC} -1.5V	,	V		4
	Mode Voltage Range	5.5V	0	V _{CC} -1.5V	,	V		4
I	Input	4.5V	-1	2	<1	μA	V_{IN} = 0V, V_{CC}	
	Leakage	5.5V	-1	2	<1	μA	V_{IN} = 0V, V_{CC}	
I _{OL}	Output	4.5V	-1	2	<1	μA	V_{IN} = 0V, V_{CC}	
	Leakage	5.5V	-1	2	<1	μA	V_{IN} = 0V, V_{CC}	
I _{IR}	Reset Input	4.5V	-18	-180	-112	μA		3
	Current	5.5V	-18	-180	-112	μA		3
I _{CC}	Supply	4.5V		20	15	mA	@ 12 MHz	5,6
	Current	5.5V		20	15	mA	@ 12 MHz	5,6
I _{CC1}	Standby Current	4.5V		6	2	mA	V _{IN} = 0V, V _{CC} @ 12 MHz	5,6
	HALT Mode	5.5V		6	4	mA	V _{IN} = 0V, V _{CC} @ 12 MHz	5,6

Table 12. DC Electrical Characteristics T_A = -40 °C to +105 °C (Continued)

Zilog¹₂₆

Symbo I	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C	Units	Conditions	Notes
I _{CC2}	Standby Current	4.5V		10	2	μA	$V_{IN} = 0V, V_{CC}$	7,8,9
	STOP Mode	5.5V		10	3	μA	$V_{IN} = 0V, V_{CC}$	7,8,9
		4.5V		40	10	μA	$V_{IN} = 0V, V_{CC}$	7,8
		5.5V		40	10	μA	$V_{IN} = 0V, V_{CC}$	7,8
I _{ALL}	Auto Latch Low	4.5V	1.4	20	4.7	μA	$0V < V_{IN} < V_{CC}$	10
	Current	5.5V	1.4	20	4.7	μA	$0V < V_{IN} < V_{CC}$	10
I _{ALH}	Auto Latch High	4.5V	-1.0	-10	-3.8	μA	$0V < V_{IN} < V_{CC}$	10
	Current	5.5V	-1.0	-10	-3.8	μA	$0V < V_{IN} < V_{CC}$	10
T _{POR}	Power-On Reset	4.5V	1.0	14	4	ms		
		5.5V	1.0	14	4	ms		
VIV	Auto Reset Voltage	9	2.0	3.3	2.8	V		11

Table 12. DC Electrical Characteristics T_A= -40 °C to +105 °C (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. STD Mode (not Low EMI Mode).

3. Z86E43/743/E44 only.

4. For analog comparator inputs when analog comparators are enabled.

5. All outputs unloaded, I/O pins floating, inputs at rail.

- 6. CL1=CL2=22 pF.
- Same as note 5 except inputs at V_{CC}.
 Clock must be forced Low, when XTAL1 is clock driven and XTAL2.
- 9. WDT is not running.
- 10. Auto Latch (mask option) selected.
- 11. Device does function down to the Auto Reset voltage.

Zilog²⁸

Table 13. DC Electrical Characteristics $T_A = 0$ °C to +70 °C, 12 MHz (Continued)

No.	Symbol	Parameter	V _{CC} ¹	Min	Max	Units	Notes
4	TwAS	AS Low Width	3.5V	55		ns	2
			5.5V	55		ns	2
5	TdAS(DS)	Address Float to DS Fall	3.5V	0		ns	
			5.5V	0		ns	
6	TwDSR	DS (Read) Low Width	3.5V	200		ns	2,3
			5.5V	200		ns	2,3
7	TwDSW	DS (Write) Low Width	3.5V	110		ns	2,3
			5.5V	110		ns	2,3
8	TdDSR(DR)	DS Fail to Read Data Req'd Valid	3.5V		150	ns	2,3
			5.5V		150	ns	2,3
9 ThDR(DS)	Read Data to DS Rise Hold Time	3.5V	0		ns	2	
			5.5V	0		ns	2
10	TdDS(A) DS Rise Delay	DS Rise to Address Active	3.5V	45		ns	2
		Delay	5.5V	55		ns	2
11	TdDS(AS)	DS Rise to AS Fall Delay	3.5V	30		ns	2
			5.5V	45		ns	2
12	TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	3.5V	45		ns	2
			5.5V	45		ns	2
13	TdDS(R/W)	DS Rise to R/W Not Valid	3.5V	45		ns	2
			5.5V	45		ns	2
14	TdDW(DSW)	Write Data Valid to DS Fall (Write)	3.5V	55		ns	2
		Delay	5.5V	55		ns	2
15	TdDS(DW)	DS Rise to Write Data Not Valid	3.5V	45		ns	2
		Delay	5.5V	55		ns	2
16	TdA(DR)	Address Valid to Read Data Req'd	3.5V		310	ns	2,3
		Valid	5.5V		310	ns	2,3
17	TdAS(DS)	AS Rise to DS Fall Delay	3.5V	65		ns	2
			5.5V	65		ns	2

Zilog[®] ₃₀

No.	Symbol	Parameter	V _{CC} ¹	Min	Мах	Units	Notes
10	TdDS(A)	DS Rise to Address Active	4.5V	45		ns	2
		Delay	5.5V	55		ns	2
11	TdDS(AS)	DS Rise to AS Fall Delay	4.5V	45		ns	2
			5.5V	45		ns	2
12	TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	4.5V	45		ns	2
			5.5V	45		ns	2
13	TdDS(R/W)	$\overline{\text{DS}}$ Rise to R/ $\overline{\text{W}}$ Not Valid	4.5V	45		ns	2
			5.5V	45		ns	2
14	TdDW(DSW)	Write Data Valid to DS Fall (Write) Delay	4.5V	55		ns	2
			5.5V	55		ns	2
15	TdDS(DW)	DS Rise to Write Data Not Valid Delay	4.5V	55		ns	2
			5.5V	55		ns	2
16	TdA(DR)	Address Valid to Read Data Req'd Valid	4.5V		310	ns	2,3
			5.5V		310	ns	2,3
17	TdAS(DS)	$\overline{\text{AS}}$ Rise to $\overline{\text{DS}}$ Fall Delay	4.5V	65		ns	2
			5.5V	65		ns	2
18	TdDM(AS)	DM Valid to AS Rise Delay	4.5V	35		ns	2
			5.5V	35		ns	2
19	ThDS(AS)	DS Valid to Address Valid Hold Time	4.5V	35		ns	2
			5.5V	35		ns	2

Table 14. DC Electrical Characteristics $T_A = -40$ °C to +105 °C, 12 MHz (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing numbers given are for minimum TpC.

3. When using extended memory timing, add 2 TpC.

Standard Test Load

All timing references use 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

For Standard Mode (not Low-EMI Mode for outputs) with SMR, D1 = 0, D0 = 0.

Handshake Timing Diagrams

Figure 17. Output Handshake Timing

Table 17. Additional Timinç	Table (Divide by Two	o Mode)
-----------------------------	----------------------	---------

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units Conditions	Notes
1	ТрС	Input Clock Period	3.5V	62.5	DC	250	DC	ns	2,6,4
			5.5V	62.5	DC	250	DC	ns	2,6,4
2	TrC,TfC	Clock Input Rise & Fall Times	3.5V		15		25	ns	2,6,4
			5.5V		15		25	ns	2,6,4
3	TwC	Input Clock Width	3.5V	31		31		ns	2,6,4
			5.5V	31		31		ns	2,6,4

zilog[®] ₃

Table 18. Additional Timing Table (Divide by Two Mode) T_A = -40 °C to +105 °C (Continued)

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units	Conditions	Notes
12	Twdt	Watchdog Timer	3.5V	7		10		ms	D0 =0	8,9
		Delay Time Before	5.5V	3.5		5		ms	D1 = 0	5,11
		nmeout	3.5V	14		20		ms	D0 =1	5,11
			5.5V	7		10		ms	D1 = 0	5,11
			3.5V	28		40		ms	D1 = 0	5,11
			5.5V	14		20		ms	D1 = 1	5,11
			3.5V	112		160		ms	D0 = 1	5,11
			5.5V	56		80		ms	D1 = 1	5,11

Notes

The V_{CC} voltage specification of 5.5 V guarantees 5.0 V ± 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

- 2. Timing Reference uses 0.7 VC0 for a logic 1 and 0.2 VGC for a logic 0.
- 3. SMR D1 = 0.
- 4. SMR-D5 = 1, POR STOP Mode Delay is on
- 5. Interrupt request via Port 3 (P31-P33)
- 6. Interrupt request via Port 3 (P30).
- 7. Maximum frequency for internal system clock is 2 MHz when using Low EMI OSC PCON Bit D7 = 0
- 8. Reg. WDTMR.
- 9. Using internal RC.

Pin Functions

EPROM Programming Mode

D7-D0 Data Bus. The data can be read from or written to external memory through the data bus.

 V_{CC} Power Supply. This pin must supply 5 V during the EPROM read mode and 6 V during other modes.

CE Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.

OE Output Enable (active Low). This pin drives the direction of the Data Bus. When this pin is Low, the Data Bus is output, when High, the Data Bus is input.

EPM EPROM Program Mode. This pin controls the different EPROM Program Mode by applying different voltages.

 V_{PP} Program Voltage. This pin supplies the program voltage.

PGM Program Mode (active Low). When this pin is Low, the data is programmed to the EPROM through the Data Bus.

zilog 4

Figure 18. Port 0 Configuration

Port 1 (P17-P10). Port 1 is an 8-bit, bidirectional, CMOS-compatible port with multiplexed Address (A7-A0) and Data (D7-D0) ports. These eight I/O lines can be programmed as inputs or outputs or can be configured under software control as an Address/ Data port for interfacing external memory. The input buffers are Schmitt-triggered and the output buffers can be globally programmed as either push-pull or open-drain. Low EMI output buffers can be globally programmed by the software. Port 1 can be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and DAV1 (Ready and Data Available). To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines (see Figure 19).

zilog

Pin	I/O	CTC1	Analog	Interrupt	P0 HS	P1 HS	P2 HS	Ext
P30	IN			IRQ3				
P31	IN	T _{IN}	AN1	IRQ2		D/R		
P32	IN		AN2	IRQ0	D/R			
P33	IN		REF	IRQ1		D/R		
P34	OUT		AN1-Out			R/D		DM
P35	OUT				R/D			
P36	OUT	T _{OUT}				R/D		
P37	OUT		An2-Out					

Table 19. Port 3 Pin Assignments

Comparator Inputs. Port 3, P31, and P32, each have a comparator front end. The comparator reference voltage P33 is common to both comparators. In analog mode, P31 and P32 are the positive input of the comparators and P33 is the reference voltage of the comparators.

Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33-P31) that are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. Auto Latches are available on Port 0, Port 1, Port 2, and P30. There are no Auto Latches on P31, P32, and P33.

Low EMI Emission. The Z86E43/743/E44 can be programmed to operate in a low EMI Emission Mode in the PCON register. The oscillator and all I/O ports can be programmed as low EMI emission mode independently. Use of this feature results in:

- The pre-drivers slew rate reduced to 10 ns typical.
- Low EMI output drivers have resistance of 200 Ohms (typical).
- Low EMI Oscillator.
- Internal SCLK/TCLK= XTAL operation limited to a maximum of 4 MHz 250 ns cycle time, when Low EMI Oscillator is selected.

Note: For emulation only: Do not set the emulator to emulate Port 1 in low EMI mode. Port 1 must always be configured in Standard Mode.

Zilog[®] 47

(Z86E43/743/E44 Only)

Figure 22. Program Memory Map

EPROM Protect. When in ROM Protect Mode, and executing out of External Program Memory, instructions LDC, LDCI, LDE, and LDEI cannot read Internal Program Memory.

When in EPROM Protect Mode and executing out of Internal Program Memory, instructions LDC, LDCI, LDE, and LDEI can read Internal Program Memory.

Data Memory (DM). In ROM Mode, the Z86E43/743/E44 can address up to 60156/48 KB of external data memory beginning at location 4096/8192/16384. In ROMless mode, the Z86E43/743/E44 can address up to 64 KB of data memory. External data memory may be included with, or separated from, the external program memory space. \overline{DM} , an optional I/0 function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 23). The state of the \overline{DM} signal is controlled by the type of instruction being executed. An LDC opcode references PROGRAM (\overline{DM} inactive) memory, and an LDE instruction references data (\overline{DM} active Low) memory.

zilog[®] ₆₀

from STOP mode when programmed as analog inputs. When the Stop Mode Recovery sources are selected in this register then SMR2 register bits D0, D1 must be set to zero.

Note: *If the Port 2 pin is configured as an output, this output level will be read by the SMR circuitry.*

zilog ,

Note: WDT time-out in STOP Mode will not reset SMR,SMR2,PCON, WDTMR, P2M, P3M, Ports 2 & 3 Data Registers, but will activate the T_{POR} delay.

WDTMR Register Accessibility. The WDTMR register is accessible only during the first 60 internal system clock cycles from the execution of the first instruction after Power-On Reset, Watchdog reset or a Stop Mode Recovery (Figure 33 and Figure 34). After this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in Bank F of the Expanded Register File at address location 0Fh.

Clock Free WDT Reset. The WDT will enable the Z8 to reset the I/0 pins whenever the WDT times out, even without a clock source running on the XTAL1 and XTAL2 pins. WDTMR Bit D4 must be 0 for the clock Free WDT to work. The I/O pins will default to their default settings.

WDTMR (F) 0F

>

* Default setting after RESET

Figure 33. Watchdog Timer Mode Register Write Only

* Default setting after RESET

Figure 38. Watchdog Timer Mode Register (Write Only)

Note: Not used in conjunction with SMR Source

Figure 39. Stop Mode Recovery Register2 (Write Only)

Zilog ₈₀

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.