Zilog - Z8673312VSG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	·
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8673312vsg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog[°] _{iv}

Table of Contents

Architectural Overview 1 Features 1
Functional Block Diagram 3
Pin Description
Electrical Characteristics
Absolute Maximum Ratings
Standard Test Conditions
Capacitance
DC Electrical Characteristics
Handshake Timing Diagrams
Pin Functions
EPROM Programming Mode 37
Application Precaution
Standard Mode
Functional Description 46
Package Information
Ordering Information
Customer Support

zilog

Architectural Overview

Zilog's Z86E33/733/E34, E43/743/E44 8-Bit One-Time Programmable (OTP) Microcontrollers are members of Zilog's single-chip Z8[®] MCU family featuring enhanced wake-up circuitry, programmable Watchdog Timers, Low Noise EMI options, and easy hardware/ software system expansion capability.

Four basic address spaces support a wide range of memory configurations. The designer has access to three additional control registers that allow easy access to register mapped peripheral and I/O circuits.

For applications demanding powerful I/O capabilities, the Z86E33/733/E34 have 24 pins, and the Z86E43/743/E44 have 32 pins of dedicated input and output. These lines are grouped into four ports, eight lines per port, and are configurable under software control to provide timing, status signals, and parallel I/O with or without handshake, and address/ data bus for interfacing external memory.

Note: All signals with an overline are active Low. For example, B/\overline{W} , for which WORD is active Low, and \overline{B}/W , for which BYTE is active Low.

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

Power connections follow these conventional descriptions:

Features

Table 1 lists the features of Z86E33/733/E34, E43/743/E44.

Device	ROM (KB)	RAM ¹ (Bytes)	I/O Lines	Speed (MHz)
Z86E33	4	237	24	12
Z86733	8	237	24	12
Z86E34	16	237	24	12
Z86E43	4	236	32	12
Z86743	8	236	32	12

CMOS Z8[®] OTP Microcontrollers Product Specification Zilog ₃

On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator, LC, RC, or External Clock Drive

Functional Block Diagram

•

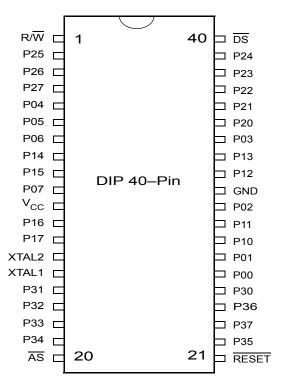

(E43/743/E44 Only) Output Input XTAL AS DS R/W RESET V_{CC} GND Machine Port 3 Timing & Inst. ĴĹ Control RESET Counter/ WDT, POR ALU TimerS (2) OTP FLAGS Interrupt Control Register Pointer Two Analog Program Comparators Counter **Register File** 7 Port 1 Port 2 Port 0 I/O Address or I/O Address/Data or I/O (Bit Programmable) (Nibble Programmable) (Byte Programmable) ((E43/743/E44 Only)

Figure 1 displays the functional block diagram.

Figure 1. Functional Block Diagram

Pin Description

Din No Symbol Eunction Direction

Table 2. 40-Pin DIP Pin Identification Standard Mode

1 R/\overline{W} Read/WriteOutput2-4P25-P27Port 2, Pins 5,6,7Input/Output5-7P04-P06Port 0, Pins 4,5,6Input/Output8-9P14-P15Port 1, Pins 4,5Input/Output10P07Port 0, Pin 7Input/Output11 V_{CC} Power Supply12-13P16-P17Port 1, Pins 6,7Input/Output14XTAL2Crystal OscillatorOutput	PIN NO	Symbol	Function	Direction
5-7 P04-P06 Port 0, Pins 4,5,6 Input/Output 8-9 P14-P15 Port 1, Pins 4,5 Input/Output 10 P07 Port 0, Pin 7 Input/Output 11 V _{CC} Power Supply Port 1, Pins 6,7 Input/Output	1	R/W	Read/Write	Output
8-9 P14-P15 Port 1, Pins 4,5 Input/Output 10 P07 Port 0, Pin 7 Input/Output 11 V _{CC} Power Supply 12-13 P16-P17 Port 1, Pins 6,7 Input/Output	2-4	P25-P27	Port 2, Pins 5,6,7	Input/Output
10 P07 Port 0, Pin 7 Input/Output 11 V _{CC} Power Supply 12-13 P16-P17 Port 1, Pins 6,7 Input/Output	5-7	P04-P06	Port 0, Pins 4,5,6	Input/Output
11V _{CC} Power Supply12-13P16-P17Port 1, Pins 6,7Input/Output	8-9	P14-P15	Port 1, Pins 4,5	Input/Output
12-13 P16-P17 Port 1, Pins 6,7 Input/Output	10	P07	Port 0, Pin 7	Input/Output
	11	V _{CC}	Power Supply	
14 XTAL2 Crystal Oscillator Output	12-13	P16-P17	Port 1, Pins 6,7	Input/Output
	14	XTAL2	Crystal Oscillator	Output

zilog ₆

Pin No	Symbol	Function	Direction
15	XTAL1	Crystal Oscillator	Input
16-18	P31-P33	Port 3, Pins 1,2,3	Input
19	P34	Port 3, Pin 4	Output
20	AS	Address Strobe	Output
21	RESET	Reset	Input
22	P35	Port 3, Pin 5	Output
23	P37	Port 3, Pin 7	Output
24	P36	Port 3, Pin 6	Output
25	P30	Port 3, Pin 0	Input
26-27	P00-P01	Port 0, Pins 0,1	Input/Output
28-29	P10-P11	Port 1, Pins 0,1	Input/Output
30	P02	Port 0, Pin 2	Input/Output
31	GND	Ground	
32-33	P12-P13	Port 1, Pins 2,3	Input/Output
34	P03	Port 0, Pin 3	Input/Output
35-39	P20-P24	Port 2, Pins 0, 1,2,3,4	Input/Output
40	DS	Data Strobe	Output

Table 2. 40-Pin DIP Pin Identification Standard Mode (Continued)

21

Total power dissipation should not exceed 1.21 W for the package. Power dissipation is calculated as follows:

 $\begin{array}{ll} \mbox{Total Power Dissipation} = & V_{DD} \; x \; [I_{DD} - (\mbox{sum of } I_{OH}), \\ & + \; \mbox{sum of } [(V_{DD} - V_{OH}) \; x \; I_{OH}] \\ & + \; \mbox{sum of } (V_{OL} \; x \; I_{OL}) \end{array}$

Standard Test Conditions

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Test Load).

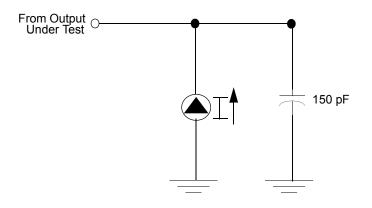


Figure 13. Test Load Diagram

Capacitance

 $T_A = 25$ °C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	12 pF
Output capacitance	0	12 pF
I/O capacitance	0	12 pF

Zilog[®] ₃₀

TdDS(A) TdDS(AS)	DSRise to Address ActiveDelayDSRise to ASFall Delay	4.5V 5.5V 4.5V	45 55		ns	2
TdDS(AS)			55			
TdDS(AS)	$\overline{\text{DS}}$ Rise to $\overline{\text{AS}}$ Fall Delay	4 E\/			ns	2
		4.5V	45		ns	2
		5.5V	45		ns	2
TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	4.5V	45		ns	2
		5.5V	45		ns	2
TdDS(R/W)	DS Rise to R/W Not Valid	4.5V	45		ns	2
		5.5V	45		ns	2
TdDW(DSW)			55		ns	2
	Delay	5.5V	55		ns	2
TdDS(DW)	DS Rise to Write Data Not Valid	4.5V	55		ns	2
	Delay	5.5V	55		ns	2
TdA(DR)	Address Valid to Read Data Req'd	4.5V		310	ns	2,3
	Valid		ns	2,3		
TdAS(DS)	AS Rise to DS Fall Delay	4.5V	65		ns	2
		5.5V	65		ns	2
TdDM(AS)	DM Valid to AS Rise Delay	4.5V	35		ns	2
		5.5V	35		ns	2
ThDS(AS)	DS Valid to Address Valid Hold Time	4.5V	35		ns	2
		5.5V	35		ns	2
-	TdDS(R/W) TdDW(DSW) TdDS(DW) TdA(DR) TdAS(DS) TdDM(AS)	TdDS(R/W) DS Rise to R/W Not Valid TdDW(DSW) Write Data Valid to DS Fall (Write) Delay TdDS(DW) DS Rise to Write Data Not Valid Delay TdDS(DW) DS Rise to Write Data Not Valid Delay TdA(DR) Address Valid to Read Data Req'd Valid TdAS(DS) AS Rise to DS Fall Delay TdDM(AS) DM Valid to AS Rise Delay	5.5VTdDS(R/W)DS Rise to R/W Not Valid4.5VTdDW(DSW)Write Data Valid to DS Fall (Write) Delay4.5VTdDS(DW)DS Rise to Write Data Not Valid Delay4.5VTdDS(DW)DS Rise to Write Data Not Valid Delay4.5VTdA(DR)Address Valid to Read Data Req'd Valid4.5VTdAS(DS)AS Rise to DS Fall Delay4.5VTdDM(AS)DM Valid to AS Rise Delay4.5VThDS(AS)DS Valid to Address Valid Hold Time4.5V	$\overline{IdDS(R/W)}$ \overline{DS} Rise to R/W Not Valid $\overline{4.5V}$ 45 $\overline{IdDS(R/W)}$ \overline{DS} Rise to R/W Not Valid $4.5V$ 45 $\overline{IdDW(DSW)}$ Write Data Valid to \overline{DS} Fall (Write) Delay $4.5V$ 55 $\overline{IdDS(DW)}$ \overline{DS} Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{IdDS(DW)}$ \overline{DS} Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{IdA(DR)}$ $\overline{Address}$ Valid to Read Data Req'd Valid $4.5V$ 55 $\overline{IdAS(DS)}$ \overline{AS} Rise to \overline{DS} Fall Delay $4.5V$ 65 $\overline{IdDM(AS)}$ \overline{DM} Valid to \overline{AS} Rise Delay $4.5V$ 35 $\overline{InDS(AS)}$ \overline{DS} Valid to Address Valid Hold Time $4.5V$ 35	$\overline{\text{TdDS}(\text{R/W})}$ $\overline{\text{DS}}$ Rise to R/W Not Valid $\overline{4.5V}$ 45 $\overline{\text{TdDW}(\text{DSW})}$ Write Data Valid to $\overline{\text{DS}}$ Fall (Write) Delay $4.5V$ 55 $\overline{\text{TdDS}(\text{DW})}$ $\overline{\text{DS}}$ Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{\text{TdDS}(\text{DW})}$ $\overline{\text{DS}}$ Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{\text{TdDS}(\text{DW})}$ $\overline{\text{DS}}$ Rise to Write Data Not Valid 	TdDS(R/W)DS Rise to R/W Not Valid $5.5V$ 45 nsTdDS(R/W)DS Rise to R/W Not Valid $4.5V$ 45 ns $5.5V$ 45 nsTdDW(DSW)Write Data Valid to DS Fall (Write) Delay $4.5V$ 55 nsTdDS(DW)DS Rise to Write Data Not Valid Delay $4.5V$ 55 nsTdDS(DW)DS Rise to Write Data Not Valid Delay $4.5V$ 55 nsTdA(DR)Address Valid to Read Data Req'd Valid $4.5V$ 310 nsTdAS(DS)AS Rise to DS Fall Delay $4.5V$ 65 nsTdDM(AS)DM Valid to AS Rise Delay $4.5V$ 35 nsThDS(AS)DS Valid to Address Valid Hold Time 4.5V $4.5V$ 35 ns

Table 14. DC Electrical Characteristics $T_A = -40$ °C to +105 °C, 12 MHz (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing numbers given are for minimum TpC.

3. When using extended memory timing, add 2 TpC.

Standard Test Load

All timing references use 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

For Standard Mode (not Low-EMI Mode for outputs) with SMR, D1 = 0, D0 = 0.

Zilog ₃₃

No	Symbol	Parameter	V _{cc} ¹	Min	Мах	Min	Max	Units	Notes	
2	TrC,TfC	Clock Input Rise & Fall	4.5V		25		25	ns	2,3,4	
		Times	5.5V		25		25	ns	2,3,4	
3	TwC	Input Clock Width	4.5V	100		100		ns	2,3,4	
			5.5V	100		100		ns	2,3,4	
4	TwTinL	Timer Input Low Width	4.5V	100		100		ns	2,3,4	
			5.5V	70		70		ns	2,3,4	
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			2,3,4	
				5.5V	5TpC		5TpC			2,3,4
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			2,3,4	
			5.5V	8TpC		8TpC			2,3,4	
7	TrTin,	, Timer Input Rise & Fall Timer	4.5V		100		100	ns	2,3,4	
	TfTin		5.5V		100		100	ns	2,3,4	
8A	TwIL	Int. Request Low Time	4.5V	100		100		ns	2,3,4,5	
			5.5V	70		70		ns	2,3,4,5	
8B	TwIL	Int. Request Low Time	4.5V	5TpC		5TpC			2,3,4,6	
			5.5V	5TpC		5TpC			2,3,4,6	
9	TwlH	Int. Request Input High	4.5V	5TpC		5TpC			2,3,4,5	
		Time	5.5V	5TpC		5TpC			2,3,4,5	
10	Twsm	Stop Mode Recovery	4.5V	12		12		ns	4,7	
		Width Spec	5.5V	12		12		ns	4,7	
11	Tost	Oscillator Startup Time	4.5V		5TpC		5TpC		4,7,8	
			5.5V		5TpC		5TpC		4,7,8	

Table 16. Additional Timing Table (Divide-By-One Mode) T_A = -40 °C to +105 °C (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 $V_{CC};$ for a logic 0.

3. SMR D1 = 0.

4. Maximum frequency for internal system clock is 4 MHz when using Low EMI OSC PCON Bit D7=0.

- 5. Interrupt request via Port 3 (P31-P33).
- 6. Interrupt request via Port 3 (P30).
- 7. SMR-D5 = 1, POR STOP Mode Delay is on.

8. For RC and LC oscillator, and for oscillator driven by clock driver.

Zilog ₃₅

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units	Conditions	Notes
4	TwTinL	Timer input Low	3.5V	70		70		ns		2,6,4
		Width	5.5V	70		70		ns		2,6,4
5	TwTinH	Timer Input High	3.5V	5TpC		5TpC				2,6,4
		Width	5.5V	5TpC		5TpC				2,6,4
6	TpTin	Timer Input Period	3.5V	8TpC		8TpC				2,6,4
			5.5V	8TpC		8TpC				2,6,4
7	TrTin,	Timer Input Rise &	3.5V		100		100	ns		2,6,4
	TfTin	Fall Timer	5.5V		100		100	ns		2,6,4
8A	TwIL	Int. Request Low	3.5V	70		70		ns		2,6,4,5
		Time	5.5V	70		70		ns		2,6,4,5
8B	TwIL	Int. Request Low Time	3.5V	5TpC		5TpC				2,6,4,5
			5.5V	5TpC		5TpC				2,6,4,5
9	TwlH	Int. Request Input	3.5V	5TpC		5TpC				2,6,4,5
		High Time	5.5V	5TpC		5TpC				2,6,4,5
10	Twsm	Stop Mode Recovery Width Spec	3.5V	12		12		ns		6,7
			5.5V	12		12		ns		6,7
11	Tost	Oscillator Startup	3.5V		5TpC		5TpC			6,7
		Time	5.5V		5TpC		5TpC			6,7
12	Twdt	Watchdog Timer	3.5V	7		10		ms	D0 =0	8,9
		Delay Time Before	5.5V	3.5		5		ms	D1 = 0	5,11
		Timeout	3.5V	14		20		ms	D0 =1	5,11
			5.5V	7		10		ms	D1 = 0	5,11
			3.5V	28		40		ms	D1 = 0	5,11
			5.5V	14		20		ms	D1 = 1	5,11
			3.5V	112		160		ms	D0 = 1	5,11
			5.5V	56		80		ms	D1 = 1	5,11

Table 17. Additional Timing Table (Divide by Two Mode) $T_A = 0 \degree C$ to +70 $\degree C$ (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 VC0 for a logic 1 and 0.2 VGC for a logic 0.

3. SMR D1 = 0.

4. SMR-D5 = 1, POR STOP Mode Delay is on

- 5. Interrupt request via Port 3 (P31-P33)
- 6. Interrupt request via Port 3 (P30).

7. Maximum frequency for internal system clock is 2 MHz when using Low EMI OSC PCON Bit D7 = 0

8. Reg. WDTMR.

9. Using internal RC.

zilog[®] ₃

Table 18. Additional Timing Table (Divide by Two Mode) T_A = -40 °C to +105 °C (Continued)

No	Symbol	Parameter	V _{cc} ¹	Min	Max	Min	Max	Units	Conditions	Notes
12	Twdt	Watchdog Timer	3.5V	7		10		ms	D0 =0	8,9
		Delay Time Before	5.5V	3.5		5		ms	D1 = 0	5,11
	Timeout	3.5V	14		20		ms	D0 =1	5,11	
		5.5V	7		10		ms	D1 = 0	5,11	
			3.5V	28		40		ms	D1 = 0	5,11
				5.5V	14		20		ms	D1 = 1
			3.5V	112		160		ms	D0 = 1	5,11
			5.5V	56		80		ms	D1 = 1	5,11

Notes

The V_{CC} voltage specification of 5.5 V guarantees 5.0 V ± 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

- 2. Timing Reference uses 0.7 VC0 for a logic 1 and 0.2 VGC for a logic 0.
- 3. SMR D1 = 0.
- 4. SMR-D5 = 1, POR STOP Mode Delay is on
- 5. Interrupt request via Port 3 (P31-P33)
- 6. Interrupt request via Port 3 (P30).
- 7. Maximum frequency for internal system clock is 2 MHz when using Low EMI OSC PCON Bit D7 = 0
- 8. Reg. WDTMR.
- 9. Using internal RC.

Pin Functions

EPROM Programming Mode

D7-D0 Data Bus. The data can be read from or written to external memory through the data bus.

 V_{CC} Power Supply. This pin must supply 5 V during the EPROM read mode and 6 V during other modes.

CE Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.

OE Output Enable (active Low). This pin drives the direction of the Data Bus. When this pin is Low, the Data Bus is output, when High, the Data Bus is input.

EPM EPROM Program Mode. This pin controls the different EPROM Program Mode by applying different voltages.

 V_{PP} Program Voltage. This pin supplies the program voltage.

PGM Program Mode (active Low). When this pin is Low, the data is programmed to the EPROM through the Data Bus.

zilog

The Z86E43/743/E44 does not reset WDTMR, SMR, P2M, and P3M registers on a Stop-Mode Recovery operation.

ROMless (input, active Low). This pin, when connected to GND, disables the internal ROM and forces the device to function as a Z86C90/C89 ROMless Z8. (Note that, when left unconnected or pulled High to V_{CC} , the device functions nor

Note: When using in ROM Mode in High EMI (noisy) environment, the ROMless pins should be connected directly to V_{CC} .

 $\overline{\mathbf{DS}}$ (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of $\overline{\mathbf{DS}}$. For WRITE operations, the falling edge of $\overline{\mathbf{DS}}$ indicates that output data is valid.

AS (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle for external memory transfer. Address output is from Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of \overline{AS} . Under program control, \overline{AS} is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

Port 0 (P07-P00). Port 0 is an 8-bit, bidirectional, CMOS-compatible I/0 port. These eight I/O lines can be configured under software control as a nibble I/0 port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and nibble programmed. Either nibble output that can be globally programmed as push-pull or opendrain. Low EMI output buffers can be globally programmed by the software. Port 0 can be placed under handshake control. In Handshake Mode, Port 3 lines P32 and P35 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to Port 0's upper nibble. The lower nibble must have the same direction as the upper nibble.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or Al 5-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. In ROMless mode, after a hardware reset, Port 0 is configured as address lines Al 5-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include re-configuration to eliminate this extended timing mode. In ROM mode, Port 0 is defined as input after reset.

Port 0 can be set in the High-Impedance Mode if selected as an address output state, along with Port 1 and the control signals \overline{AS} , \overline{DS} , and R/\overline{W} (Figure 18).

zilog[®]

Port 1 can be placed in the high-impedance state along with Port 0, \overline{AS} , \overline{DS} , and R/\overline{W} , allowing the Z86E43/743/E44 to share common resources in multiprocessor and DMA applications. In ROM mode, Port 1 is defined as input after reset.

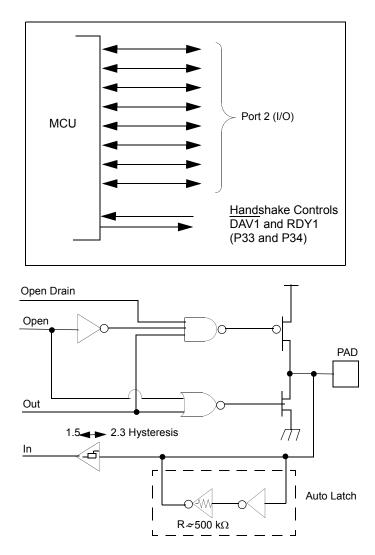


Figure 19. Port 1 Configuration (Z86E43/743/E44 Only)

Port 2 (P27-P20). Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port. These eight I/O lines can be configured under software control as an input or output, independently. All input buffers are Schmitt-triggered. Bits programmed as outputs can be globally programmed as either push-pull or open-drain. Low EMI output buffers can be globally programmed by the software. When used as an I/O port, Port 2 can be placed under handshake control. After reset, Port 2 is defined as an input.

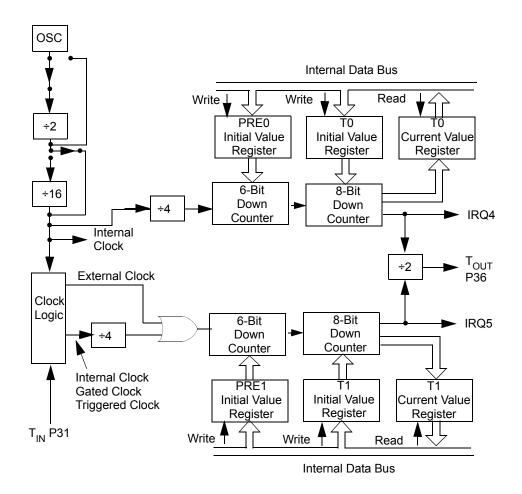
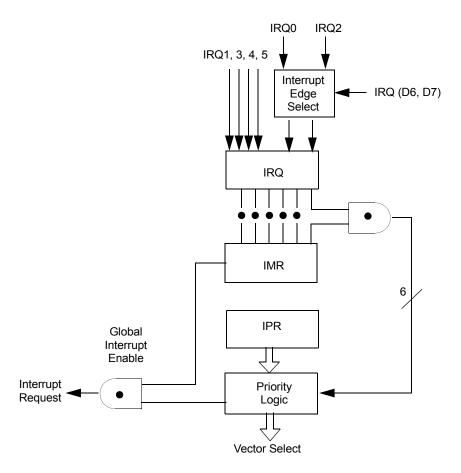
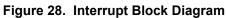




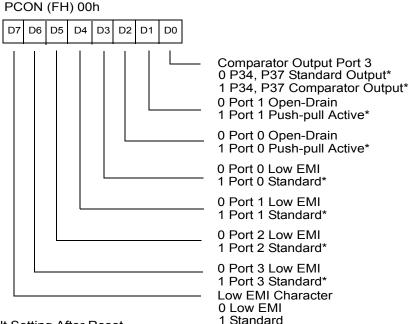
Figure 27. Counter/Timer Block Diagram

Interrupts. The MCU has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 28). The six sources are divided as follows: four sources are claimed by Port 3 lines P33-P30) and two in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 20).

Name	Source	Vector Location	Comments External (P32), Rising/Falling Edge Triggered	
IRQ0	DAV0, IRQ0	0,1		
IRQ1	IRQ1	2,3	External (P33), Falling Edge Triggered	
IRQ2	DAV2, IRQ2, T _{IN}	4,5	External (P31), Rising/Falling Edge Triggered	
IRQ3	IRQ3	6,7	External (P30), Falling Edge Triggered	
1RQ4	ТО	8,9	Internal	
IRQ5	T1	10,11	Internal	

PS022901-0508

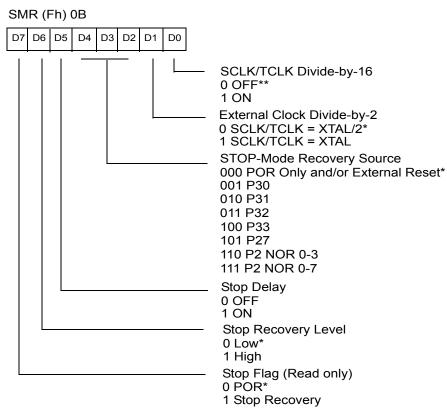
Zilog[®] 57


FF NOP ; clear the pipeline6F STOP ; enter STOP mode

or

FF NOP ; clear the pipeline7F HALT ; enter HALT mode

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. STOP Mode is terminated by one of the following resets: either by WDT time-out, POR, a Stop Mode Recovery Source, which is defined by the SMR register or external reset. This causes the processor to restart the application program at address 000Ch.


Port Configuration Register (PCON). The PCON register configures the ports individually; comparator output on Port 3, open-drain on Port 0 and Port 1, low EMI on Ports 0, 1, 2 and 3, and low EMI oscillator. The PCON register is located in the expanded register file at Bank F, location 00 (Figure 30).

* Default Setting After Reset

* Default setting after RESET

** Default setting after RESET and STOP-Mode Recovery

Figure 31. Stop Mode Recovery Register (Write-Only Except Bit D7, Which Is Read-Only)

SCLK/TCLK Divide-by-16 Select (D0). This bit of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

External Clock Divide-by-Two (D1). This bit can eliminate the oscillator divide-by-two circuitry. When this bit is 0, the System Clock (SCLK) and Timer Clock (TCLK) are equal to the external clock frequency divided by two. The SCLK/TCLK is equal to the external clock frequency when this bit is set (D1=1). Using this bit together with D7 of PCON further helps lower EMI (that is, D7 (PCON) = 0, D1 (SMR) = 1). The default setting is zero.

Stop Mode Recovery Source (D2, D3, and D4). These three bits of the SMR register specify the wake up source of the Stop Mode Recovery (Figure 32). Table 22 shows the SMR source selected with the setting of D2 to D4. P33-P31 cannot be used to wake up

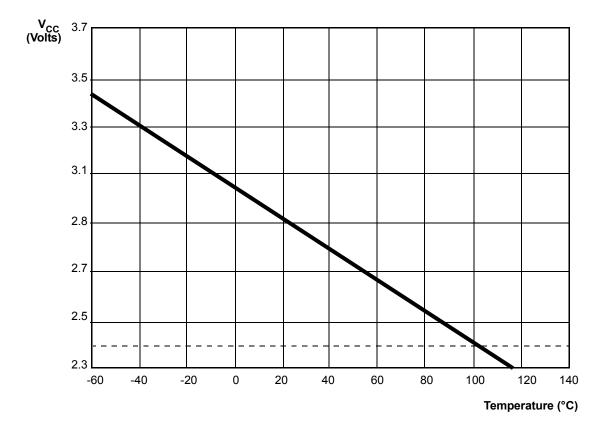
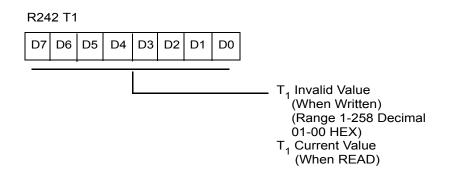
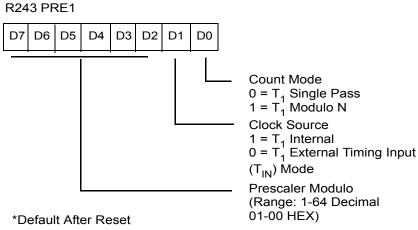
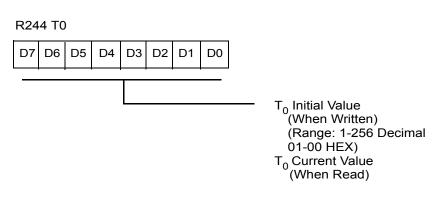




Figure 35. Typical V_{LV} Voltage vs. Temperature



zilog ₇₉

Ordering Information

Table 24.Ordering Information

Z86E3312PSC	12	PDIP	
		r Dir	28
Z86E3312SCC	12	SOIC	28
Z86E3312PSC	12	PLCC	28
Z86E3412PEC	12	PDIP	28
Z86E3412PSC	12	PDIP	28
Z86E3412SSC	12	SOIC	28
Z86E3412VSC	12	PLCC	28
Z86E4312FSC	12	LQFP	44
Z86E4312PSC	12	PDIP	40
Z86E4312VSC	12	PLCC	44
Z86E4412FSC	12	LQFP	44
Z86E4412PEC	12	PDIP	40
Z86E4412PSC	12	PDIP	40
Z86E4412VSC	12	PLCC	44
Z8673312PSC	12	PDIP	28
Z8673312SSC	12	SOIC	28
Z8673312VSC	12	PLCC	28
Z8674312FSC	12	LQFP	44
Z8674312PSC	12	PDIP	40
Z8674312VSC	12	PLCC	44

Zilog ₈₀

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.