Zilog - Z8674312FSC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8674312fsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog[°]

Warning: DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

ISO 9001:2000 FS 507510 Zilog products are designed and manufactured under an ISO registered 9001:2000 Quality Management System. For more details, please visit www.zilog.com/quality.

CMOS Z8[®] OTP Microcontrollers Product Specification Zilog ₃

On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator, LC, RC, or External Clock Drive

Functional Block Diagram

•

(E43/743/E44 Only) Output Input XTAL AS DS R/W RESET V_{CC} GND Machine Port 3 Timing & Inst. ĴĹ Control RESET Counter/ WDT, POR ALU TimerS (2) OTP FLAGS Interrupt Control Register Pointer Two Analog Program Comparators Counter **Register File** Ę Port 1 Port 2 Port 0 I/O Address or I/O Address/Data or I/O (Bit Programmable) (Nibble Programmable) (Byte Programmable) ((E43/743/E44 Only)

Figure 1 displays the functional block diagram.

Figure 1. Functional Block Diagram

Zilog[®],

Pin No	Symbol	Function	Direction
1-2	GND	Ground	
3-4	P12-P13	Port 1, Pins 2,3	Input/Output
5	P03	Port 0, Pin 3	Input/Output
6-10	P20-P24	Port 2, Pins 0,1,2,3,4	Input/Output
11	DS	Data Strobe	Output
12	NC	No Connection	
13	R/W	Read/Write	Output
14-16	P25-P27	Port 2, Pins 5,6,7	Input/Output
17-19	P04-P06	Port 0, Pins 4,5,6	Input/Output
20-21	P14-P15	Port 1, Pins 4,5	Input/Output
22	P07	Port 0, Pin 7	Input/Output
23-24	V _{CC}	Power Supply	
25-26	P16-P17	Port 1, Pins 6,7	Input/Output

Table 3. 44-Pin PLCC Pin Identification	CC Pin Identification	PLCC	44-Pin	Table 3.
---	-----------------------	------	--------	----------

zilog ₁₀

Pin No	Symbol	Function	Direction
18	RESET	Reset	Input
19	P35	Port 3, Pin 5	Output
20	P37	Port 3, Pin 7	Output
21	P36	Port 3, Pin 6	Output
22	P30	Port 3, Pin 0	Input
23-24	P00-P01	Port 0, Pin 0,1	Input/Output
25-26	P10-P11	Port 1, Pins 0,1	Input/Output
27	P02	Port 0, Pin 2	Input/Output
28-29	GND	Ground	
30-31	P12-P13	Port 1, Pins 2,3	Input/Output
32	P03	Port 0, Pin 3	Input/Output
33-37	P20-24	Port 2, Pins 0,1,2,3,4	Input/Output
38	DS	Data Strobe	Output
39	NC	No Connection	
40	R/W	Read/Write	Output
41-43	P25-P27	Port 2, Pins 5,6,7	Input/Output
44	P04	Port 0, Pin 4	Input/Output

Table 4. 44-Pin LQFP Pin Identification (Continued)

Figure 11. EPROM Programming Mode 28-Pin DIP/SOIC Pin Configuration

Zilog ₃₂

No	Symbol	Parameter	V _{cc} ¹	Min	Max	Min	Max	Units	Notes
5	TwTinH	Timer Input High Width	3.5V	5TpC		5TpC			2,3,4
		5.5V	5TpC		5TpC			2,3,4	
6	TpTin	Timer Input Period	3.5V	8TpC		8TpC			2,3,4
			5.5V	8TpC		8TpC			2,3,4
7	TrTin,	TrTin, Timer Input Rise & Fall TfTin Timer	3.5V		100		100	ns	2,3,4
	Itlin		5.5V		100		100	ns	2,3,4
8A	TwIL	Int. Request Low Time	3.5V	100		100		ns	2,3,4,5
			5.5V	70		70		ns	2,3,4,5
8B	TwIL	Int. Request Low Time	3.5V	5TpC		5TpC			2,3,4,6
			5.5V	5TpC		5TpC			2,3,4,6
9	TwIH	Int. Request Input High	3.5V	5TpC		5TpC			2,3,4,5
		lime	5.5V	5TpC		5TpC			2,3,4,5
10	Twsm	Stop Mode Recovery	3.5V	12		12		ns	4,7
	Width S	Width Spec	5.5V	12		12		ns	4,7
11	Tost	Oscillator Startup Time	3.5V		5TpC		5TpC		4,7,8
			5.5V		5TpC		5TpC		4,7,8

Table 15. Additional Timing Table (Divide-By-One Mode) $T_A = 0$ °C to +70 °C (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 $V_{CC};$ for a logic 0.

3. SMR D1 = 0.

4. Maximum frequency for internal system clock is 4 MHz when using Low EMI OSC PCON Bit D7 = 0.

5. Interrupt request via Port 3 (P31-P33).

6. Interrupt request via Port 3 (P30).

7. SMR-D5 = 1, POR STOP Mode Delay is on.

8. For RC and LC oscillator, and for oscillator driven by clock driver.

Table 16. Additional Timing Table (Divide-By-One Mode) $T_A = -40$ °C to +105 °C

No	Symbol	Parameter	V _{cc} ¹	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	250	DC	166	DC	ns	2,3,4
			5.5V	250	DC	166	DC	ns	2,3,4

Handshake Timing Diagrams

Figure 17. Output Handshake Timing

Table 17. Additional Timing	Table (Divide by Two	Mode) T _A = 0 °C to +70 °C
-----------------------------	----------------------	---------------------------------------

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units Conditions	Notes
1	ТрС	Input Clock Period	3.5V	62.5	DC	250	DC	ns	2,6,4
			5.5V	62.5	DC	250	DC	ns	2,6,4
2	TrC,TfC Clock Input Rise & Fall Times	Clock Input Rise &	3.5V		15		25	ns	2,6,4
		Fall Times	5.5V		15		25	ns	2,6,4
3	TwC	Input Clock Width	3.5V	31		31		ns	2,6,4
			5.5V	31		31		ns	2,6,4

Zilog ₃₅

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units	Conditions	Notes
4	TwTinL	Timer Input Low	3.5V	70		70		ns		2,6,4
		Width	5.5V	70		70		ns		2,6,4
5	TwTinH	Timer Input High	3.5V	5TpC		5TpC				2,6,4
		Width	5.5V	5TpC		5TpC				2,6,4
6	TpTin	Timer Input Period	3.5V	8TpC		8TpC				2,6,4
			5.5V	8TpC		8TpC				2,6,4
7	TrTin,	Timer Input Rise &	3.5V		100		100	ns		2,6,4
	TfTin	Fall Timer	5.5V		100		100	ns		2,6,4
8A	TwIL	Int. Request Low	3.5V	70		70		ns		2,6,4,5
		Time	5.5V	70		70		ns		2,6,4,5
8B	TwIL	Int. Request Low	3.5V	5TpC		5TpC				2,6,4,5
		Time	5.5V	5TpC		5TpC				2,6,4,5
9	TwlH	Int. Request Input	3.5V	5TpC		5TpC				2,6,4,5
		High Time	5.5V	5TpC		5TpC				2,6,4,5
10	Twsm	Stop Mode	3.5V	12		12		ns		6,7
		Recovery Width Spec	5.5V	12		12		ns		6,7
11	Tost	Oscillator Startup	3.5V		5TpC		5TpC			6,7
		Time	5.5V		5TpC		5TpC			6,7
12	Twdt	Watchdog Timer	3.5V	7		10		ms	D0 =0	8,9
		Delay Time Before	5.5V	3.5		5		ms	D1 = 0	5,11
		limeout	3.5V	14		20		ms	D0 =1	5,11
			5.5V	7		10		ms	D1 = 0	5,11
			3.5V	28		40		ms	D1 = 0	5,11
			5.5V	14		20		ms	D1 = 1	5,11
			3.5V	112		160		ms	D0 = 1	5,11
			5.5V	56		80		ms	D1 = 1	5,11

Table 17. Additional Timing Table (Divide by Two Mode) $T_A = 0 \degree C$ to +70 $\degree C$ (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 VC0 for a logic 1 and 0.2 VGC for a logic 0.

3. SMR D1 = 0.

4. SMR-D5 = 1, POR STOP Mode Delay is on

- 5. Interrupt request via Port 3 (P31-P33)
- 6. Interrupt request via Port 3 (P30).

7. Maximum frequency for internal system clock is 2 MHz when using Low EMI OSC PCON Bit D7 = 0

8. Reg. WDTMR.

9. Using internal RC.

zilog[°] 36

No	Symbol	Parameter	V _{CC} ¹	Min	Мах	Min	Max	Units	Conditions	Notes
1	ТрС	Input Clock Period	3.5V	62.5	DC	250	DC	ns		2,6,4
			5.5V	62.5	DC	250	DC	ns		2,6,4
2	TrC,TfC	Clock Input Rise &	3.5V		15		25	ns		2,6,4
		Fall Times	5.5V		15		25	ns		2,6,4
3	TwC	Input Clock Width	3.5V	31		31		ns		2,6,4
			5.5V	31		31		ns		2,6,4
4	TwTinL	Timer Input Low	3.5V	70		70		ns		2,6,4
		Width	5.5V	70		70		ns		2,6,4
5	TwTinH	Timer Input High	3.5V	5TpC		5TpC				2,6,4
		Width	5.5V	5TpC		5TpC				2,6,4
6	TpTin	Timer Input Period	3.5V	8TpC		8TpC				2,6,4
			5.5V	8TpC		8TpC				2,6,4
7	TrTin,	Timer Input Rise &	3.5V		100		100	ns		2,6,4
	TfTin	Fall Timer	5.5V		100		100	ns		2,6,4
8A	TwIL	Int. Request Low	3.5V	70		70		ns		2,6,4,5
		Time	5.5V	70		70		ns		2,6,4,5
8B	TwIL	Int. Request Low	3.5V	5TpC		5TpC				2,6,4,5
		Time	5.5V	5TpC		5TpC				2,6,4,5
9	TwlH	Int. Request Input	3.5V	5TpC		5TpC				2,6,4,5
		High Time	5.5V	5TpC		5TpC				2,6,4,5
10	Twsm	Stop Mode	3.5V	12		12		ns		6,7
		Recovery Width Spec	5.5V	12		12		ns		6,7
11	Tost	Oscillator Startup	3.5V		5TpC		5TpC			6,7
		Time	5.5V		5TpC		5TpC			6,7

Table 18. Additional Timing Table (Divide by Two Mode) $T_A = -40 \degree C$ to +105 $\degree C$

zilog

RAM Protect. The upper portion of the RAM's address spaces 80h to EFh (excluding the control registers) can be protected from reading and writing. This option can be selected during the EPROM Programming Mode. After this option is selected, the user can activate this feature from the internal EPROM. D6 of the IMR control register (R251) is used to turn off/on the RAM protect by loading a 0 or 1, respectively. A "1" in D6 indicates RAM Protect enabled.

Stack. The Z86E43/743/E44 external data memory or the internal register file can be used for the stack. The 16-bit Stack Pointer (R254-R255) is used for the external stack, which can reside anywhere in the data memory for ROMless mode, but only from 4096/8192/16384 to 65535 in ROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack on the Z8 that resides within the 236 general-purpose registers (R4-R239). SPH (R254) can be used as a general-purpose register when using internal stack only. R254 and R255 are set to 00H after any reset or Stop Mode Recovery.

Counter/Timers. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The Ti prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (see Figure 27).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256), that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching one (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 serves as a timer output (T_{OUT}) through which T0, T1, or the internal clock can be output. The counter/timers can be cascaded by connecting the T0 output to the input of T1.

Figure 27. Counter/Timer Block Diagram

Interrupts. The MCU has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 28). The six sources are divided as follows: four sources are claimed by Port 3 lines P33-P30) and two in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 20).

* Default setting after RESET

** Default setting after RESET and STOP-Mode Recovery

Figure 31. Stop Mode Recovery Register (Write-Only Except Bit D7, Which Is Read-Only)

SCLK/TCLK Divide-by-16 Select (D0). This bit of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

External Clock Divide-by-Two (D1). This bit can eliminate the oscillator divide-by-two circuitry. When this bit is 0, the System Clock (SCLK) and Timer Clock (TCLK) are equal to the external clock frequency divided by two. The SCLK/TCLK is equal to the external clock frequency when this bit is set (D1=1). Using this bit together with D7 of PCON further helps lower EMI (that is, D7 (PCON) = 0, D1 (SMR) = 1). The default setting is zero.

Stop Mode Recovery Source (D2, D3, and D4). These three bits of the SMR register specify the wake up source of the Stop Mode Recovery (Figure 32). Table 22 shows the SMR source selected with the setting of D2 to D4. P33-P31 cannot be used to wake up

Z8 Control Register Diagrams

Ordering Information

* Default Setting After Reset † Must be set to "1" for Z86E33/733/E34

Figure 36. Port Configuration Register (PCON) (Write Only)

Zilog ₆₇

Note: Note used in conjunction with SMR2 Source

* Default setting after RESET

** Default setting after RESET and STOP-Mode Recovery

Figure 37. Stop Mode Recovery Register (Write Only Except Bit D7, Which is Read Only)

Figure 41. Timer Mode Register (F1_h: Read/Write)

Default After Reset = 00h † Z86E33/733/E34 Must be 00

Zilog ₇₃

Reset Condition = 0100 1101B For ROMless Condition = 1011 0110B † Z86E33/733/E34 Must be 00 * Default after Reset

Figure 48. Port 0 and 1 Mode Register (F8_h: Write Only)

Package Information

Figure 56. 40-PIN DIP Package Diagram

SYMBOL	МШИ	/ ETER	INCH		
STMDOL	MIN	MAX	MIN	MAX	
A1	0.05	0,25	,002	.010	
A2	2.00	2.25	.078	.089	
b	0.25	0.45	.010	.018	
c	0.13	0.20	.005	.008	
HD	13.70	14.15	.539	.557	
D	9.90	10.10	.390	.398	
HE	13.70	14.15	.539	.557	
E	9.90	10.10	.390	.398	
e	0.80	BSC	.0315	BSC	
L	0.60	1.20	.024	.047	

NOTES: 1. CONTROLLING DIMENSIONS : WILLIMETER 2. LEAD COPLANARITY : MAX <u>.10</u> .004"

zilog ₇₉

Ordering Information

Table 24.Ordering Information

Product	Speed (MHz)	Package Type	Pin Count
Z86E3312PSC	12	PDIP	28
Z86E3312SCC	12	SOIC	28
Z86E3312PSC	12	PLCC	28
Z86E3412PEC	12	PDIP	28
Z86E3412PSC	12	PDIP	28
Z86E3412SSC	12	SOIC	28
Z86E3412VSC	12	PLCC	28
Z86E4312FSC	12	LQFP	44
Z86E4312PSC	12	PDIP	40
Z86E4312VSC	12	PLCC	44
Z86E4412FSC	12	LQFP	44
Z86E4412PEC	12	PDIP	40
Z86E4412PSC	12	PDIP	40
Z86E4412VSC	12	PLCC	44
Z8673312PSC	12	PDIP	28
Z8673312SSC	12	SOIC	28
Z8673312VSC	12	PLCC	28
Z8674312FSC	12	LQFP	44
Z8674312PSC	12	PDIP	40
Z8674312VSC	12	PLCC	44