Zilog - Z86E3312SSC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Obsolete
Z8
8-Bit
12MHz
EBI/EMI
POR, WDT
24
4KB (4K x 8)
ОТР
-
237 x 8
3.5V ~ 5.5V
-
Internal
0°C ~ 70°C (TA)
Surface Mount
28-SOIC (0.295", 7.50mm Width)
-
https://www.e-xfl.com/product-detail/zilog/z86e3312ssc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog

Table 1. Z86E33/733/E34, E43/743/E44 Features (Continued)

Device	ROM (KB)	RAM ¹ (Bytes)	I/O Lines	Speed (MHz)		
Z86E44	16	236	32	12		
¹ General-Purpose						

- Standard Temperature ($V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}$)
- Extended Temperature ($V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}$)
- Available Packages:
 - 28-Pin DIP/SOIC/PLCC OTP (E33/733/E34)
 - 40-Pin DIP OTP (E43/743/E44)
 - 44-Pin PLCC/LQFP OTP (E43/743/E44)
- Software Enabled Watchdog Timer (WDT)
- Push-Pull/Open-Drain Programmable on Port 0, Port 1, and Port 2
- 24/32 Input/Output Lines
- Clock-Free WDT Reset
- Auto Power-On Reset (POR)
- Programmable OTP Options:
 - RC Oscillator
 - EPROM Protect
 - Auto Latch Disable
 - Permanently Enabled WDT
 - Crystal Oscillator Feedback Resistor Disable
 - RAM Protect
- Low-Power Consumption: 60 mW
- Fast Instruction Pointer: 0.75 µs
- Two Standby Modes: STOP and HALT
- Digital Inputs CMOS Levels, Schmitt-Triggered
- Software Programmable Low EMI Mode
- Two Programmable 8-Bit Counter/Timers Each with a 6-Bit Programmable Prescaler
- Six Vectored, Priority Interrupts from Six Different Sources
- Two Comparators

zilog 4

Figure 2. EPROM Programming Block Diagram

Zilog[®],

Pin No	Symbol	Function	Direction
1-2	GND	Ground	
3-4	P12-P13	Port 1, Pins 2,3	Input/Output
5	P03	Port 0, Pin 3	Input/Output
6-10	P20-P24	Port 2, Pins 0,1,2,3,4	Input/Output
11	DS	Data Strobe	Output
12	NC	No Connection	
13	R/W	Read/Write	Output
14-16	P25-P27	Port 2, Pins 5,6,7	Input/Output
17-19	P04-P06	Port 0, Pins 4,5,6	Input/Output
20-21	P14-P15	Port 1, Pins 4,5	Input/Output
22	P07	Port 0, Pin 7	Input/Output
23-24	V _{CC}	Power Supply	
25-26	P16-P17	Port 1, Pins 6,7	Input/Output

Table 3. 44-Pin PLCC Pin Identification	CC Pin Identification	PLCC	44-Pin	Table 3.
---	-----------------------	------	--------	----------

zilog ₁₂

Pin No	Symbol	Function	Direction
30	/PGM	Prog. Mode	Input
31	GND	Ground	
32-34	NC	No Connection	
35-39	D0-D4	Data 0,1,2,3,4	Input/Output
40	NC	No Connection	

Table 5. 40-Pin DIP Package Pin Identification EPROM Mode (Continued)

Zilog ₁₄

Table 6. 44-Pin PLCC Pin Configuration EPROM Programming Mode (Continued)

Pin No	Symbol	Function	Direction
32-39	NC	No Connection	
40	CLR	Clear	Input
41	CLK	Clock	Input
42-43	NC	No Connection	
44	/PGM	Prog. Mode	Input

zilog | 17

Figure 9. Standard Mode 28-Pin DIP/SOIC Pin Configuration

Pin No	Symbol	Function	Direction
1-3	P25-P27	Port 2, Pins 5,6,	Input/Output
4-7	P04-P07	Port 0, Pins 4,5,6,7 In/Outp	out
8	V _{CC}	Power Supply	
9	XTAL2	Crystal Oscillator	Output
10	XTAL1	Crystal Oscillator	Input
11-13	P31-P33	Port 3, Pins 1,2,3	Input
14-15	P34-P35	Port 3, Pins 4,5	Output
16	P37	Port 3, Pin 7	Output
17	P36	Port 3, Pin 6	Output
18	P30	Port 3, Pin 0	Input
19-21	P00-P02	Port 0, Pins 0,1,2	Input/Output
22	V _{SS}	Ground	
23	P03	Port 0, Pin 3	Input/Output
24-28	P20-P24	Port 2, Pins 0,1,2,3,4	Input/Output

Table 8. 28-Pin DIP/SOIC/PLCC Pin Identification Standard Mode

zilog ₂₀

Electrical Characteristics

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Min	Max	Units	Notes
-40	+105	С	
-65	+150	С	
-0.6	+7	V	1
-0.3	+7	V	
-0.6	V _{DD} +1	V	2
	1.21	W	
	220	mA	
	180	mA	
-600	+600	μA	3
-600	+600	μA	4
	25	mA	
	25	mA	
	3	mA	
	Min -40 -65 -0.6 -0.3 -0.6 -600 -600	MinMax -40 $+105$ -65 $+150$ -0.6 $+7$ -0.3 $+7$ -0.6 V_{DD} +1 1.21 220 180 -600 -600 $+600$ -600 $+600$ 25 25 3	Min Max Units -40 +105 C -65 +150 C -0.6 +7 V -0.3 +7 V -0.6 V _{DD} +1 V -0.6 V _{DD} mA -600 +600 μA -600 25 mA 3 mA

Notes

1. This applies to all pins except XTAL pins and where otherwise noted.

2. There is no input protection diode from pin to V_{DD}.

3. This excludes XTAL pins.

4. Device pin is not at an output Low state.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

Zilog 24

Table 11. DC Electrical Characteristics T_A = 0 °C to +70 °C (Continued)

Symbol	Parameter	V _{cc} ¹	Min	Мах	Typical @ 25°C	Units	Conditions	Notes
T _{POR}	Power-On Reset	3.5V	2.0 ms	24	7	ms		
		5.5V	1.0 ms	13	4	ms		
V _{LV}	Auto Reset Voltage	1	2.3	3.0	2.8	V		11,12

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V

- 2. STD Mode (not Low EMI Mode)
- 3. Z86E43/743/E44 only.
- 4. For analog comparator inputs when analog comparators are enabled
- 5. All outputs unloaded, I/O pins floating, inputs at rail.
- 6. CL1=CL2=22 pF.
- 7. Same as note 5 except inputs at $\rm V_{CC}$ 8. Clock must be forced Low, when XTAL1 is clock driven and XTAL2
- 9. WDT running
- 10. Auto Latch (mask option) selected.
- 11. Device does function down to the Auto Reset voltage
- 12. Max. temperature is 70 °C

Table 12. DC Electrical Characteristics T_A= -40 °C to +105 °C

Symbo					Typical			
I	Parameter	V _{CC} ¹	Min	Мах	@ 25°C	Units	Conditions	Notes
V _{CH}	Clock Input	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	Driven by	
	High Voltage	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V	GND -0.3	0.2 V _{CC}	1.5	V	Driven by	
		5.5V	GND -0.3	0.2 V _{CC}	1.5	V	External Clock Generator	
V _{IH}	Input High Voltage	4.5V	$0.7 V_{CC}$	V _{CC} +0.3	2.5	V		
		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
V _{IL}	Input Low	4.5V	GND -0.3	0.2 V _{CC}	1.5	V		
	Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High	4.5V	V _{CC} -0.4		4.8		I _{OH} = -0.5 mA	2
	Voltage Low EMI Mode	5.5V	V _{CC} -0.4		4.8		I _{OH} = -0.5 mA	2

Zilog²⁸

Table 13. DC Electrical Characteristics $T_A = 0$ °C to +70 °C, 12 MHz (Continued)

No.	Symbol	Parameter	V _{CC} ¹	Min	Max	Units	Notes
4 TwAS	TwAS	AS Low Width	3.5V	55		ns	2
			5.5V	55		ns	2
5	TdAS(DS)	Address Float to DS Fall	3.5V	0		ns	
			5.5V	0		ns	
6	TwDSR	DS (Read) Low Width	3.5V	200		ns	2,3
			5.5V	200		ns	2,3
7	TwDSW	DS (Write) Low Width	3.5V	110		ns	2,3
			5.5V	110		ns	2,3
8	TdDSR(DR)	DS Fail to Read Data Req'd Valid	3.5V		150	ns	2,3
			5.5V		150	ns	2,3
9	ThDR(DS)	Read Data to $\overline{\text{DS}}$ Rise Hold Time	3.5V	0		ns	2
			5.5V	0		ns	2
10	TdDS(A)	DS(A) DS Rise to Address Active	3.5V	45		ns	2
		Delay	5.5V	55		ns	2
11	TdDS(AS) DS Rise to AS Fall Delay		3.5V	30		ns	2
			5.5V	45		ns	2
12	TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	3.5V	45		ns	2
			5.5V	45		ns	2
13	TdDS(R/W)	DS Rise to R/W Not Valid	3.5V	45		ns	2
			5.5V	45		ns	2
14	TdDW(DSW)	Write Data Valid to DS Fall (Write)	3.5V	55		ns	2
		Delay	5.5V	55		ns	2
15	TdDS(DW)	DS Rise to Write Data Not Valid	3.5V	45		ns	2
		Delay	5.5V	55		ns	2
16	TdA(DR)	Address Valid to Read Data Req'd	3.5V		310	ns	2,3
		Valid	5.5V		310	ns	2,3
17	TdAS(DS)	$\overline{\text{AS}}$ Rise to $\overline{\text{DS}}$ Fall Delay	3.5V	65		ns	2
			5.5V	65		ns	2

Zilog ₃₂

No	Symbol	Parameter	V _{cc} ¹	Min	Max	Min	Max	Units	Notes
5	TwTinH	Timer Input High Width	3.5V	5TpC		5TpC			2,3,4
			5.5V	5TpC		5TpC			2,3,4
6	TpTin	Timer Input Period	3.5V	8TpC		8TpC			2,3,4
			5.5V	8TpC		8TpC			2,3,4
7	TrTin,	Timer Input Rise & Fall	3.5V		100		100	ns	2,3,4
	Itlin	Timer	5.5V		100		100	ns	2,3,4
8A	TwIL	Int. Request Low Time	3.5V	100		100		ns	2,3,4,5
			5.5V	70		70		ns	2,3,4,5
8B	TwIL	Int. Request Low Time	3.5V	5TpC		5TpC			2,3,4,6
			5.5V	5TpC		5TpC			2,3,4,6
9	TwIH	Int. Request Input High	3.5V	5TpC		5TpC			2,3,4,5
		Time	5.5V	5TpC		5TpC			2,3,4,5
10	Twsm	Twsm Stop Mode Recovery Width Spec	3.5V	12		12		ns	4,7
			5.5V	12		12		ns	4,7
11	Tost	Oscillator Startup Time	3.5V		5TpC		5TpC		4,7,8
			5.5V		5TpC		5TpC		4,7,8

Table 15. Additional Timing Table (Divide-By-One Mode) $T_A = 0$ °C to +70 °C (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 $V_{CC};$ for a logic 0.

3. SMR D1 = 0.

4. Maximum frequency for internal system clock is 4 MHz when using Low EMI OSC PCON Bit D7 = 0.

5. Interrupt request via Port 3 (P31-P33).

6. Interrupt request via Port 3 (P30).

7. SMR-D5 = 1, POR STOP Mode Delay is on.

8. For RC and LC oscillator, and for oscillator driven by clock driver.

Table 16. Additional Timing Table (Divide-By-One Mode) $T_A = -40$ °C to +105 °C

No	Symbol	Parameter	V _{cc} ¹	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	250	DC	166	DC	ns	2,3,4
			5.5V	250	DC	166	DC	ns	2,3,4

Zilog ₃₃

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units	Notes
2	TrC,TfC	Clock Input Rise & Fall Times	4.5V		25		25	ns	2,3,4
			5.5V		25		25	ns	2,3,4
3	TwC	Input Clock Width	4.5V	100		100		ns	2,3,4
			5.5V	100		100		ns	2,3,4
4	TwTinL	Timer Input Low Width	4.5V	100		100		ns	2,3,4
			5.5V	70		70		ns	2,3,4
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			2,3,4
			5.5V	5TpC		5TpC			2,3,4
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			2,3,4
			5.5V	8TpC		8TpC			2,3,4
7	TrTin,	Timer Input Rise & Fall Timer	4.5V		100		100	ns	2,3,4
	TfTin		5.5V		100		100	ns	2,3,4
8A	TwIL	Int. Request Low Time	4.5V	100		100		ns	2,3,4,5
			5.5V	70		70		ns	2,3,4,5
8B	TwIL	L Int. Request Low Time	4.5V	5TpC		5TpC			2,3,4,6
			5.5V	5TpC		5TpC			2,3,4,6
9	TwIH	Int. Request Input High Time	4.5V	5TpC		5TpC			2,3,4,5
			5.5V	5TpC		5TpC			2,3,4,5
10	Twsm	Stop Mode Recovery Width Spec	4.5V	12		12		ns	4,7
			5.5V	12		12		ns	4,7
11	Tost	Oscillator Startup Time	4.5V		5TpC		5TpC		4,7,8
			5.5V		5TpC		5TpC		4,7,8

Table 16. Additional Timing Table (Divide-By-One Mode) T_A = -40 °C to +105 °C (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 $V_{CC};$ for a logic 0.

3. SMR D1 = 0.

4. Maximum frequency for internal system clock is 4 MHz when using Low EMI OSC PCON Bit D7=0.

- 5. Interrupt request via Port 3 (P31-P33).
- 6. Interrupt request via Port 3 (P30).
- 7. SMR-D5 = 1, POR STOP Mode Delay is on.

8. For RC and LC oscillator, and for oscillator driven by clock driver.

Handshake Timing Diagrams

Figure 17. Output Handshake Timing

Table 17. Additional Timinç	Table (Divide by Two	o Mode) T _A = 0 °C to +70 °C
-----------------------------	----------------------	---

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units Conditions	Notes
1 TpC	Input Clock Period	3.5V	62.5	DC	250	DC	ns	2,6,4	
			5.5V	62.5	DC	250	DC	ns	2,6,4
2 TrC,TfC	TrC,TfC	Clock Input Rise & Fall Times	3.5V		15		25	ns	2,6,4
			5.5V		15		25	ns	2,6,4
3 TwC	Input Clock Width	3.5V	31		31		ns	2,6,4	
			5.5V	31		31		ns	2,6,4

zilog

The Z86E43/743/E44 does not reset WDTMR, SMR, P2M, and P3M registers on a Stop-Mode Recovery operation.

ROMless (input, active Low). This pin, when connected to GND, disables the internal ROM and forces the device to function as a Z86C90/C89 ROMless Z8. (Note that, when left unconnected or pulled High to V_{CC} , the device functions nor

Note: When using in ROM Mode in High EMI (noisy) environment, the ROMless pins should be connected directly to V_{CC} .

 $\overline{\mathbf{DS}}$ (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of $\overline{\mathbf{DS}}$. For WRITE operations, the falling edge of $\overline{\mathbf{DS}}$ indicates that output data is valid.

AS (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle for external memory transfer. Address output is from Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of \overline{AS} . Under program control, \overline{AS} is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

Port 0 (P07-P00). Port 0 is an 8-bit, bidirectional, CMOS-compatible I/0 port. These eight I/O lines can be configured under software control as a nibble I/0 port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and nibble programmed. Either nibble output that can be globally programmed as push-pull or opendrain. Low EMI output buffers can be globally programmed by the software. Port 0 can be placed under handshake control. In Handshake Mode, Port 3 lines P32 and P35 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to Port 0's upper nibble. The lower nibble must have the same direction as the upper nibble.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or Al 5-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. In ROMless mode, after a hardware reset, Port 0 is configured as address lines Al 5-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include re-configuration to eliminate this extended timing mode. In ROM mode, Port 0 is defined as input after reset.

Port 0 can be set in the High-Impedance Mode if selected as an address output state, along with Port 1 and the control signals \overline{AS} , \overline{DS} , and R/\overline{W} (Figure 18).

Figure 27. Counter/Timer Block Diagram

Interrupts. The MCU has six different interrupts from six different sources. The interrupts are maskable and prioritized (Figure 28). The six sources are divided as follows: four sources are claimed by Port 3 lines P33-P30) and two in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 20).

zilog

Comparator Output Port 3 (D0). Bit 0 controls the comparator output in Port 3. A "1" in this location brings the comparator outputs to P34 and P37, and a "0" releases the Port to its standard I/O configuration. The default value is 0.

Port 1 Open-Drain (D1). Port 1 can be configured as an open-drain by resetting this bit (D1=0) or configured as push-pull active by setting this bit (D1=1). The default value is 1.

Port 0 Open-Drain (D2). Port 0 can be configured as an open-drain by resetting this bit (D2=0) or configured as push-pull active by setting this bit (D2=1). The default value is 1.

Low EMI Port 0 (D3). Port 0 can be configured as a Low EMI Port by resetting this bit (D3=0) or configured as a Standard Port by setting this bit (D3=1). The default value is 1.

Low EMI Port 1 (D4). Port 1 can be configured as a Low EMI Port by resetting this bit (D4=0) or configured as a Standard Port by setting this bit (D4=1). The default value is 1.

Note: The emulator does not support Port 1 low EMI mode and must be set D4 = 1.

Low EMI Port 2 (D5). Port 2 can be configured as a Low EMI Port by resetting this bit (D5=0) or configured as a Standard Port by setting this bit (D5=1). The default value is 1.

Low EMI Port 3 (D6). Port 3 can be configured as a Low EMI Port by resetting this bit (D6=0) or configured as a Standard Port by setting this bit (D6=1). The default value is 1.

Low EMI OSC (D7). This bit of the PCON Register controls the low EMI noise oscillator. A "1" in this location configures the oscillator with standard drive. While a "0" configures the oscillator with low noise drive, however, it does not affect the relationship of SCLK and XTAL. The low EMI mode will reduce the drive of the oscillator (OSC). The default value is 1.

Note: 4 *MHz* is the maximum external clock frequency when running in the low EMI oscillator mode.

Stop-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 31). All bits are Write Only except bit 7 which is a Read Only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power-on cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the Stop Mode Recovery Source. The SMR is located in Bank F of the Expanded Register File at address 0BH.

>

>

Zilog

Reset and initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT is driven either by an on-board RC oscillator or an external oscillator from XTAL1 pin. The POR clock source is selected with bit 4 of the WDT register.

Note: *Execution of the WDT instruction affects the Z (Zero), S (Sign), and V (Overflow) flags.*

WDT Time-Out Period (D0 and D1). Bits 0 and 1 control a tap circuit that determines the time-out periods that can be obtained (Table 23). The default value of DO and Dl are 1 and 0, respectively.

D1	DO	Time-out of the Internal RC OSC	Time-out of the System Clock				
0	0	5 ms	128 SCLK				
0	1	10 ms ¹	256 SCLK ¹				
1	0	20 ms	512 SCLK				
1	1	80 ms	2048 SCLK				
Note: The default setting is 10 ms.							

Table 23. Time-out Period of WDT

>

WDT During HALT Mode (D2). This bit determines whether or not the WDT is active during HALT Mode. A "1" indicates that the WDT is active during HALT. A "0" disables the WDT in HALT Mode. The default value is "1 ". WDT During STOP Mode (D3). This bit determines whether or not the WDT is active during STOP mode. A "1" indicates active during STOP. A "0" disables the WDT during STOP Mode. This is applicable only when the WDT clock source is the internal RC oscillator.

Clock Source For WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1, and the WDT is stopped in STOP Mode. The default configuration of this bit is 0, which selects the RC oscillator.

Permanent WDT. When this feature is enabled, the WDT is enabled after reset and will operate in Run and HALT Mode. The control bits in the WDTMR do not affect the WDT operation. If the clock source of the WDT is the internal RC oscillator, then the WDT will run in STOP mode. If the clock source of the WDT is the XTAL1 pin, then the WDT will not run in STOP mode.

* Default setting after RESET

Figure 38. Watchdog Timer Mode Register (Write Only)

Note: Not used in conjunction with SMR Source

Figure 39. Stop Mode Recovery Register2 (Write Only)

Zilog[®] ₇₄

Figure 50. Interrupt Request Register (FA_h: Read/Write)

Default After Reset = 00h

Figure 53. Register Pointer (FD_h: Read/Write)

Default After Reset = 00h

zilog ₇₉

Ordering Information

Table 24.Ordering Information

Product	Speed (MHz)	Package Type	Pin Count
Z86E3312PSC	12	PDIP	28
Z86E3312SCC	12	SOIC	28
Z86E3312PSC	12	PLCC	28
Z86E3412PEC	12	PDIP	28
Z86E3412PSC	12	PDIP	28
Z86E3412SSC	12	SOIC	28
Z86E3412VSC	12	PLCC	28
Z86E4312FSC	12	LQFP	44
Z86E4312PSC	12	PDIP	40
Z86E4312VSC	12	PLCC	44
Z86E4412FSC	12	LQFP	44
Z86E4412PEC	12	PDIP	40
Z86E4412PSC	12	PDIP	40
Z86E4412VSC	12	PLCC	44
Z8673312PSC	12	PDIP	28
Z8673312SSC	12	SOIC	28
Z8673312VSC	12	PLCC	28
Z8674312FSC	12	LQFP	44
Z8674312PSC	12	PDIP	40
Z8674312VSC	12	PLCC	44