

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e3312vsg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog | III

Revision History

Each instance in Revision History reflects a change to this document from its previous revision. For more details, refer to the corresponding pages and appropriate links in the table below.

Date	Revision Level	Description	Page No
May 2008	01	Original issue.	All

CMOS Z8[®] OTP Microcontrollers Product Specification Zilog ₃

On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator, LC, RC, or External Clock Drive

Functional Block Diagram

•

(E43/743/E44 Only) Output Input XTAL AS DS R/W RESET V_{CC} GND Machine Port 3 Timing & Inst. ĴĹ Control RESET Counter/ WDT, POR ALU TimerS (2) OTP FLAGS Interrupt Control Register Pointer Two Analog Program Comparators Counter **Register File** 7 Port 1 Port 2 Port 0 I/O Address or I/O Address/Data or I/O (Bit Programmable) (Nibble Programmable) (Byte Programmable) ((E43/743/E44 Only)

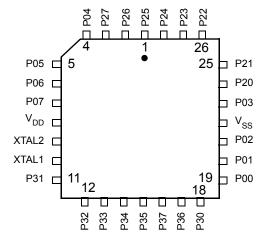
Figure 1 displays the functional block diagram.

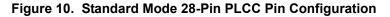
Figure 1. Functional Block Diagram

zilog ₁₂

Pin No	Symbol	Function	Direction
30	/PGM	Prog. Mode	Input
31	GND	Ground	
32-34	NC	No Connection	
35-39	D0-D4	Data 0,1,2,3,4	Input/Output
40	NC	No Connection	

Table 5. 40-Pin DIP Package Pin Identification EPROM Mode (Continued)


zilog ₁₆


Table 7. 44-Pin LQFP Pin Identification EPROM Programming Mode (Continued)

Pin No	Symbol	Function	Direction
33-37	D0-D4	Data 0,1,2,3,4	Input/Output
38-40	NC	No Connection	
41-43	D5-D7	Data 5,6,7	Input/Output
44	NC	No Connection	

PS022901-0508

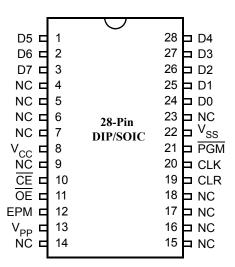


Figure 11. EPROM Programming Mode 28-Pin DIP/SOIC Pin Configuration

zilog 22

DC Electrical Characteristics

Table 11. DC Electrical Characteristics $T_A = 0$ °C to +70 °C

Symbol	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C		Conditions	Notes
V _{CH}	Clock Input	3.5V	0.7 V _{CC}	V _{CC} +0.3	1.8	V	Driven by	
	High Voltage	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	External Clock Generator	
V _{CL}	Clock Input	3.5V	GND -0.3	0.2 V _{CC}	0.9	V	Driven by	
	Low Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.5	V	External Clock Generator	
V _{IH}	Input High	3.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
	Voltage	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
V _{IL}	Input Low	3.5V	GND -0.3	0.2 V _{CC}	1.5	V		
	Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High	3.5V	V _{CC} -0.4		3.3		I _{OH} = -0.5 mA	
	Voltage Low EMI Mode	5.5V	V _{CC} -0.4		4.8			
V _{OH1}	Output High	3.5V	V _{CC} -0.4		3.3	V	I _{OH} = -2.0 mA	
	Voltage	5.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	
V _{OL}	Output Low	3.5V		0.4	0.2	V	I _{OL} = 1.0 mA	
	Voltage Low EMI Mode	5.5V		0.4	0.2	V	I _{OL} = 1.0 mA	
V _{OL1}	Output Low	3.5V		0.4	0.1	V	I _{OL} = +4.0 mA	2
	Voltage	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	2
V _{OL2}	Output Low	3.5V		1.2	0.5	V	I _{OL} = +10 mA	2
	Voltage	5.5V		1.2	0.5	V	I _{OL} = +10 mA	2
V _{RH}	Reset Input	3.5V	.8 V _{CC}	V _{CC}	1.7	V		3
	High Voltage	5.5V	.8 V _{CC}	V _{CC}	2.1	V		3
V _{RL}	Reset Input	3.5V	GND -0.3		1.3	V		3
	Low Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.7	V		3
V _{OLR}	Reset Output Low	3.5V		0.6	0.3	V	I _{OL} = 1.0 mA	3
	Voltage	5.5V		0.6	0.2	V	I _{OL} = 1.0 mA	3

Zilog 24

Table 11. DC Electrical Characteristics T_A = 0 °C to +70 °C (Continued)

Symbol	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C		Conditions	Notes
T _{POR}	Power-On Reset	3.5V	2.0 ms	24	7	ms		
		5.5V	1.0 ms	13	4	ms		
V _{LV}	Auto Reset Voltage	9	2.3	3.0	2.8	V		11,12

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V

- 2. STD Mode (not Low EMI Mode)
- 3. Z86E43/743/E44 only.
- 4. For analog comparator inputs when analog comparators are enabled
- 5. All outputs unloaded, I/O pins floating, inputs at rail.
- 6. CL1=CL2=22 pF.
- 7. Same as note 5 except inputs at $\rm V_{CC}$ 8. Clock must be forced Low, when XTAL1 is clock driven and XTAL2
- 9. WDT running
- 10. Auto Latch (mask option) selected.
- 11. Device does function down to the Auto Reset voltage
- 12. Max. temperature is 70 °C

Table 12. DC Electrical Characteristics T_A= -40 °C to +105 °C

Symbo I	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C	Units	Conditions	Notes
V _{CH}	Clock Input	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	Driven by	
	High Voltage	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	External Clock Generator	
V _{CL}	Clock Input	4.5V	GND -0.3	0.2 V _{CC}	1.5	V	Driven by	
	Low Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.5	V	External Clock Generator	
V _{IH}	Input High	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
	Voltage	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
V _{IL}	Input Low	4.5V	GND -0.3	0.2 V _{CC}	1.5	V		
	Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High Voltage Low EMI Mode	4.5V	V _{CC} -0.4		4.8		I _{OH} = -0.5 mA	2
		5.5V	V _{CC} -0.4		4.8		I _{OH} = -0.5 mA	2

Zilog²⁸

Table 13. DC Electrical Characteristics $T_A = 0$ °C to +70 °C, 12 MHz (Continued)

No.	Symbol	Parameter	V _{cc} ¹	Min	Мах	Units	Notes
4	TwAS	AS Low Width	3.5V	55		ns	2
			5.5V	55		ns	2
5	TdAS(DS)	Address Float to DS Fall	3.5V	0		ns	
			5.5V	0		ns	
6	TwDSR	DS (Read) Low Width	3.5V	200		ns	2,3
			5.5V	200		ns	2,3
7	TwDSW	DS (Write) Low Width	3.5V	110		ns	2,3
			5.5V	110		ns	2,3
8	TdDSR(DR)	DS Fail to Read Data Req'd Valid	3.5V		150	ns	2,3
			5.5V		150	ns	2,3
9	ThDR(DS)	Read Data to $\overline{\text{DS}}$ Rise Hold Time	3.5V	0		ns	2
			5.5V	0		ns	2
10	TdDS(A)	DS Rise to Address Active	3.5V	45		ns	2
		Delay	5.5V	55		ns	2
11	TdDS(AS)	$\overline{\text{DS}}$ Rise to $\overline{\text{AS}}$ Fall Delay	3.5V	30		ns	2
			5.5V	45		ns	2
12	TdR/W(AS)	R/W Valid to AS Rise Delay	3.5V	45		ns	2
			5.5V	45		ns	2
13	TdDS(R/W)	DS Rise to R/W Not Valid	3.5V	45		ns	2
			5.5V	45		ns	2
14	TdDW(DSW)	Write Data Valid to DS Fall (Write)	3.5V	55		ns	2
		Delay	5.5V	55		ns	2
15	TdDS(DW)	DS Rise to Write Data Not Valid	3.5V	45		ns	2
		Delay	5.5V	55		ns	2
16	TdA(DR)	Address Valid to Read Data Req'd	3.5V		310	ns	2,3
		Valid	5.5V		310	ns	2,3
17	TdAS(DS)	$\overline{\text{AS}}$ Rise to $\overline{\text{DS}}$ Fall Delay	3.5V	65		ns	2
			5.5V	65		ns	2

Zilog[®] ₃₀

TdDS(A) TdDS(AS)	DSRise to Address ActiveDelayDSRise to ASFall Delay	4.5V 5.5V 4.5V	45 55		ns	2
TdDS(AS)			55			
TdDS(AS)	$\overline{\text{DS}}$ Rise to $\overline{\text{AS}}$ Fall Delay	4 E\/			ns	2
		4.5V	45		ns	2
		5.5V	45		ns	2
TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	4.5V	45		ns	2
		5.5V	45		ns	2
TdDS(R/W)	DS Rise to R/W Not Valid	4.5V	45		ns	2
		5.5V	45		ns	2
TdDW(DSW)	Write Data Valid to $\overline{\text{DS}}$ Fall (Write)	4.5V	55		ns	2
	Delay	5.5V	55		ns	2 2 2
TdDS(DW)	DS Rise to Write Data Not Valid	4.5V	55		ns	2
	Delay	5.5V	55		ns	2
TdA(DR)	Address Valid to Read Data Req'd	4.5V		310	ns	2,3
	Valid	5.5V		310	ns	2,3
TdAS(DS)	AS Rise to DS Fall Delay	4.5V	65		ns	2
		5.5V	65		ns	2
TdDM(AS)	DM Valid to AS Rise Delay	4.5V	35		ns	2
		5.5V	35		ns	2
ThDS(AS)	DS Valid to Address Valid Hold Time	4.5V	35		ns	2
		5.5V	35		ns	2
-	TdDS(R/W) TdDW(DSW) TdDS(DW) TdA(DR) TdAS(DS) TdDM(AS)	TdDS(R/W) DS Rise to R/W Not Valid TdDW(DSW) Write Data Valid to DS Fall (Write) Delay TdDS(DW) DS Rise to Write Data Not Valid Delay TdDS(DW) DS Rise to Write Data Not Valid Delay TdA(DR) Address Valid to Read Data Req'd Valid TdAS(DS) AS Rise to DS Fall Delay TdDM(AS) DM Valid to AS Rise Delay	5.5VTdDS(R/W)DS Rise to R/W Not Valid4.5VTdDW(DSW)Write Data Valid to DS Fall (Write) Delay4.5VTdDS(DW)DS Rise to Write Data Not Valid Delay4.5VTdDS(DW)DS Rise to Write Data Not Valid Delay4.5VTdA(DR)Address Valid to Read Data Req'd Valid4.5VTdAS(DS)AS Rise to DS Fall Delay4.5VTdDM(AS)DM Valid to AS Rise Delay4.5VThDS(AS)DS Valid to Address Valid Hold Time4.5V	$\overline{IdDS(R/W)}$ \overline{DS} Rise to R/W Not Valid $\overline{4.5V}$ 45 $\overline{IdDS(R/W)}$ \overline{DS} Rise to R/W Not Valid $4.5V$ 45 $\overline{IdDW(DSW)}$ Write Data Valid to \overline{DS} Fall (Write) Delay $4.5V$ 55 $\overline{IdDS(DW)}$ \overline{DS} Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{IdDS(DW)}$ \overline{DS} Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{IdA(DR)}$ $\overline{Address}$ Valid to Read Data Req'd Valid $4.5V$ 55 $\overline{IdAS(DS)}$ \overline{AS} Rise to \overline{DS} Fall Delay $4.5V$ 65 $\overline{IdDM(AS)}$ \overline{DM} Valid to \overline{AS} Rise Delay $4.5V$ 35 $\overline{InDS(AS)}$ \overline{DS} Valid to Address Valid Hold Time $4.5V$ 35	$\overline{\text{TdDS}(\text{R/W})}$ $\overline{\text{DS}}$ Rise to R/W Not Valid $\overline{4.5V}$ 45 $\overline{\text{TdDW}(\text{DSW})}$ Write Data Valid to $\overline{\text{DS}}$ Fall (Write) Delay $4.5V$ 55 $\overline{\text{TdDS}(\text{DW})}$ $\overline{\text{DS}}$ Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{\text{TdDS}(\text{DW})}$ $\overline{\text{DS}}$ Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{\text{TdDS}(\text{DW})}$ $\overline{\text{DS}}$ Rise to Write Data Not Valid Delay $4.5V$ 55 $\overline{\text{TdDS}(\text{DW})}$ $\overline{\text{Address Valid to Read Data Req'd}}$ $4.5V$ 310 $\overline{\text{TdA}(\text{DR})}$ $\overline{\text{Address Valid to Read Data Req'd}}$ $4.5V$ 310 $\overline{\text{TdAS}(\text{DS})}$ $\overline{\text{AS}}$ Rise to $\overline{\text{DS}}$ Fall Delay $4.5V$ 65 $\overline{\text{TdDM}(\text{AS})}$ $\overline{\text{DM}}$ Valid to $\overline{\text{AS}}$ Rise Delay $4.5V$ 35 $\overline{\text{ThDS}(\text{AS})}$ $\overline{\text{DS}}$ Valid to Address Valid Hold Time} $4.5V$ 35	TdDS(R/W)DS Rise to R/W Not Valid $5.5V$ 45 nsTdDS(R/W)DS Rise to R/W Not Valid $4.5V$ 45 ns $5.5V$ 45 nsTdDW(DSW)Write Data Valid to DS Fall (Write) Delay $4.5V$ 55 nsTdDS(DW)DS Rise to Write Data Not Valid Delay $4.5V$ 55 nsTdDS(DW)DS Rise to Write Data Not Valid Delay $4.5V$ 55 nsTdA(DR)Address Valid to Read Data Req'd Valid $4.5V$ 310 nsTdAS(DS)AS Rise to DS Fall Delay $4.5V$ 65 nsTdDM(AS)DM Valid to AS Rise Delay $4.5V$ 35 nsThDS(AS)DS Valid to Address Valid Hold Time 4.5V $4.5V$ 35 ns

Table 14. DC Electrical Characteristics $T_A = -40$ °C to +105 °C, 12 MHz (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing numbers given are for minimum TpC.

3. When using extended memory timing, add 2 TpC.

Standard Test Load

All timing references use 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

For Standard Mode (not Low-EMI Mode for outputs) with SMR, D1 = 0, D0 = 0.

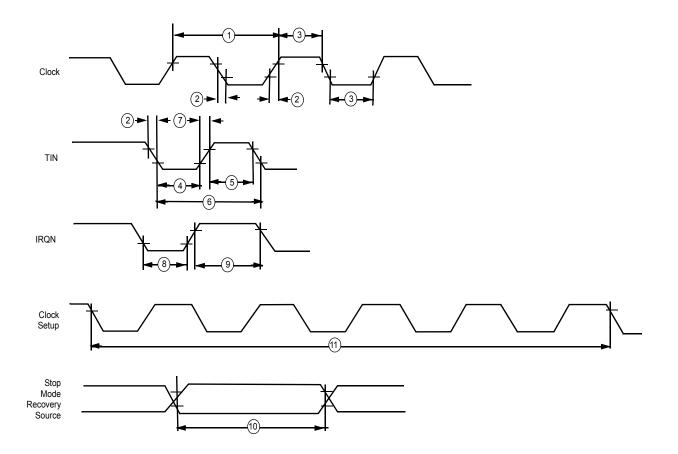
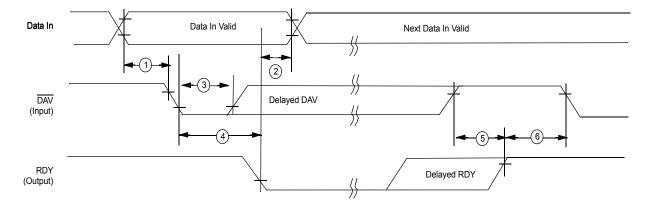



Figure 15. Additional Timing Diagram

Table 15. Additional Timing Table (Divide-By-One Mode) $T_A = 0$ °C to +70 °C

No	Symbol	Parameter	V _{cc} ¹	Min	Мах	Min	Мах	Units	Notes
1	ТрС	Input Clock Period	3.5V	250	DC	166	DC	ns	2,3,4
		5.5V	250	DC	166	DC	ns	2,3,4	
2	TrC,TfC	Clock Input Rise & Fall	3.5V		25		25	ns 2 ns 2 ns 2 ns 2 ns 2	2,3,4
		Times	5.5V		25		25	ns	2,3,4
3	TwC	Input Clock Width	3.5V	100		100		ns	2,3,4
			5.5V	100		100		ns	2,3,4
4	TwTinL	Timer Input Low Width	3.5V	100		100		ns	2,3,4
			5.5V	70		70		ns	2,3,4

Handshake Timing Diagrams

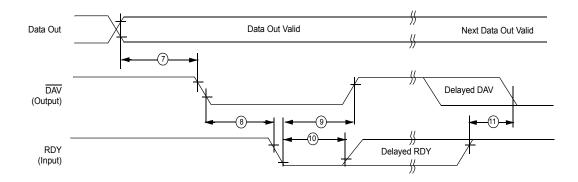


Figure 17. Output Handshake Timing

Table 17. Additional Timing Table (Divide by Two Mode) T_A	= 0 °C to +70 °C
--	------------------

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units Conditions	Notes
1	ТрС	Input Clock Period	3.5V	62.5	DC	250	DC	ns	2,6,4
			5.5V	62.5	DC	250	DC	ns	2,6,4
2	TrC,TfC	Clock Input Rise &	3.5V		15		25	ns	2,6,4
		Fall Times	5.5V		15		25	ns	2,6,4
3	TwC	Input Clock Width	3.5V	31		31		ns	2,6,4
			5.5V	31		31		ns	2,6,4

zilog[®] ₃

Table 18. Additional Timing Table (Divide by Two Mode) T_A = -40 °C to +105 °C (Continued)

No	Symbol	Parameter	V _{cc} ¹	Min	Max	Min	Max	Units	Conditions	Notes
12	12 Twdt	Watchdog Timer Delay Time Before	3.5V	7		10		ms	D0 =0	8,9
			5.5V	3.5		5		ms	D1 = 0	5,11
	Timeout	3.5V	14		20		ms	D0 =1	5,11	
			5.5V	7		10		ms	D1 = 0	5,11
			3.5V	28		40		ms	D1 = 0	5,11
			5.5V	14		20		ms	D1 = 1	5,11
		3.5V	112		160		ms	D0 = 1	5,11	
			5.5V	56		80		ms	D1 = 1	5,11

Notes

The V_{CC} voltage specification of 5.5 V guarantees 5.0 V ± 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

- 2. Timing Reference uses 0.7 VC0 for a logic 1 and 0.2 VGC for a logic 0.
- 3. SMR D1 = 0.
- 4. SMR-D5 = 1, POR STOP Mode Delay is on
- 5. Interrupt request via Port 3 (P31-P33)
- 6. Interrupt request via Port 3 (P30).
- 7. Maximum frequency for internal system clock is 2 MHz when using Low EMI OSC PCON Bit D7 = 0
- 8. Reg. WDTMR.
- 9. Using internal RC.

Pin Functions

EPROM Programming Mode

D7-D0 Data Bus. The data can be read from or written to external memory through the data bus.

 V_{CC} Power Supply. This pin must supply 5 V during the EPROM read mode and 6 V during other modes.

CE Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.

OE Output Enable (active Low). This pin drives the direction of the Data Bus. When this pin is Low, the Data Bus is output, when High, the Data Bus is input.

EPM EPROM Program Mode. This pin controls the different EPROM Program Mode by applying different voltages.

 V_{PP} Program Voltage. This pin supplies the program voltage.

PGM Program Mode (active Low). When this pin is Low, the data is programmed to the EPROM through the Data Bus.

zilog[®] 4

Port 1 can be placed in the high-impedance state along with Port 0, \overline{AS} , \overline{DS} , and R/\overline{W} , allowing the Z86E43/743/E44 to share common resources in multiprocessor and DMA applications. In ROM mode, Port 1 is defined as input after reset.

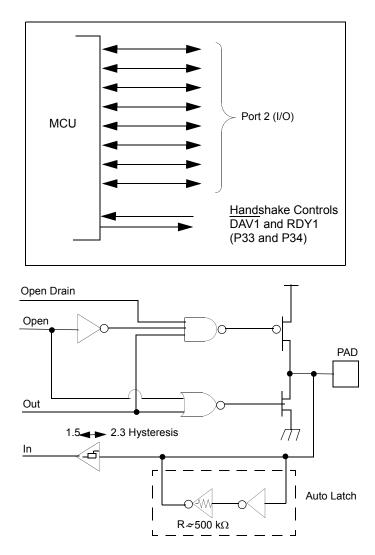
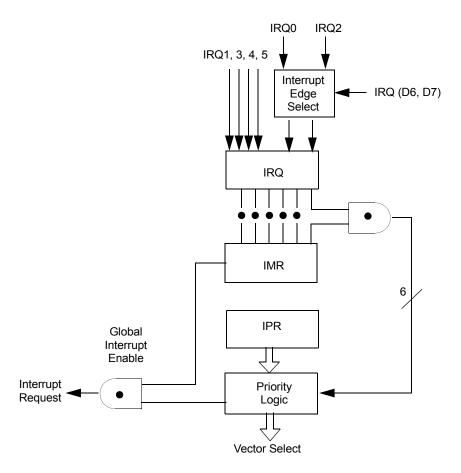


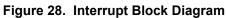
Figure 19. Port 1 Configuration (Z86E43/743/E44 Only)

Port 2 (P27-P20). Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port. These eight I/O lines can be configured under software control as an input or output, independently. All input buffers are Schmitt-triggered. Bits programmed as outputs can be globally programmed as either push-pull or open-drain. Low EMI output buffers can be globally programmed by the software. When used as an I/O port, Port 2 can be placed under handshake control. After reset, Port 2 is defined as an input.

zilog .

and P32 with reference to the voltage on P33. The analog function is enabled by setting the D1 of Port 3 Mode Register (P3M). The comparator output can be outputted from P34 and P37, respectively, by setting PCON register Bit D0 to 1 state. For the interrupt function, P30 and P33 are falling edge triggered interrupt inputs. P31 and P32 can be programmed as falling, rising or both edges triggered interrupt inputs (see Figure 21). Access to Counter/Timer 1 is made through P31 (T_{IN}) and P36 (T_{OUT}). Handshake tines for Port 0, Port 1, and Port 2 are also available on Port 3 (see Table 19).


Note: When enabling or disabling analog mode, the following is recommended:


- 1. Allow two NOP decays before reading this comparator output.
- 2. Disable global interrupts, switch to analog mode, clear interrupts, and then re-enable interrupts.
- 3. IRQ register bits 3 to 0 must be cleared after enabling analog mode.
- **Note:** P33-P30 differs from the Z86C33/C43/233/243 in that there is no clamping diode to V_{CC} due to the EPROM high-voltage circuits. Exceeding the V_{IH} maximum specification during standard operating mode may cause the device to enter EPROM mode.

>

>

Name	Source	Vector Location	Comments
IRQ0	DAV0, IRQ0	0,1	External (P32), Rising/Falling Edge Triggered
IRQ1	IRQ1	2,3	External (P33), Falling Edge Triggered
IRQ2	DAV2, IRQ2, T _{IN}	4,5	External (P31), Rising/Falling Edge Triggered
IRQ3	IRQ3	6,7	External (P30), Falling Edge Triggered
1RQ4	Т0	8,9	Internal
IRQ5	T1	10,11	Internal

PS022901-0508

zilog

Comparator Output Port 3 (D0). Bit 0 controls the comparator output in Port 3. A "1" in this location brings the comparator outputs to P34 and P37, and a "0" releases the Port to its standard I/O configuration. The default value is 0.

Port 1 Open-Drain (D1). Port 1 can be configured as an open-drain by resetting this bit (D1=0) or configured as push-pull active by setting this bit (D1=1). The default value is 1.

Port 0 Open-Drain (D2). Port 0 can be configured as an open-drain by resetting this bit (D2=0) or configured as push-pull active by setting this bit (D2=1). The default value is 1.

Low EMI Port 0 (D3). Port 0 can be configured as a Low EMI Port by resetting this bit (D3=0) or configured as a Standard Port by setting this bit (D3=1). The default value is 1.

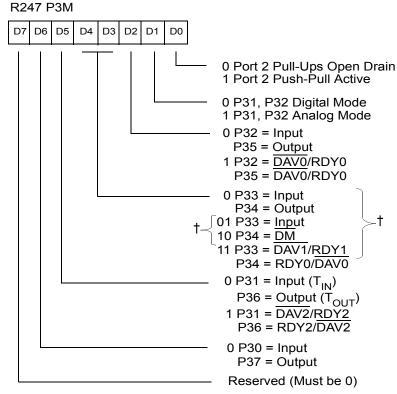
Low EMI Port 1 (D4). Port 1 can be configured as a Low EMI Port by resetting this bit (D4=0) or configured as a Standard Port by setting this bit (D4=1). The default value is 1.

Note: The emulator does not support Port 1 low EMI mode and must be set D4 = 1.

Low EMI Port 2 (D5). Port 2 can be configured as a Low EMI Port by resetting this bit (D5=0) or configured as a Standard Port by setting this bit (D5=1). The default value is 1.

Low EMI Port 3 (D6). Port 3 can be configured as a Low EMI Port by resetting this bit (D6=0) or configured as a Standard Port by setting this bit (D6=1). The default value is 1.

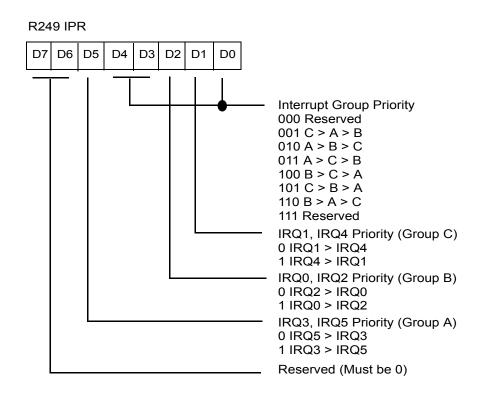
Low EMI OSC (D7). This bit of the PCON Register controls the low EMI noise oscillator. A "1" in this location configures the oscillator with standard drive. While a "0" configures the oscillator with low noise drive, however, it does not affect the relationship of SCLK and XTAL. The low EMI mode will reduce the drive of the oscillator (OSC). The default value is 1.


Note: 4 *MHz* is the maximum external clock frequency when running in the low EMI oscillator mode.

Stop-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 31). All bits are Write Only except bit 7 which is a Read Only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power-on cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the Stop Mode Recovery Source. The SMR is located in Bank F of the Expanded Register File at address 0BH.

>

>



Default After Reset = 00h † Z86E33/733/E34 Must be 00

Zilog[®] ₇₄

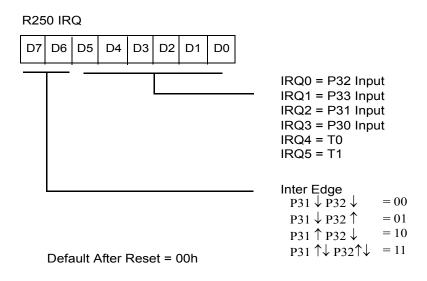


Figure 50. Interrupt Request Register (FA_h: Read/Write)

Package Information

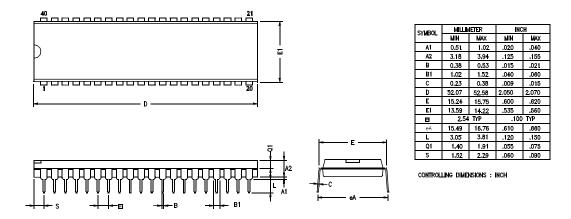
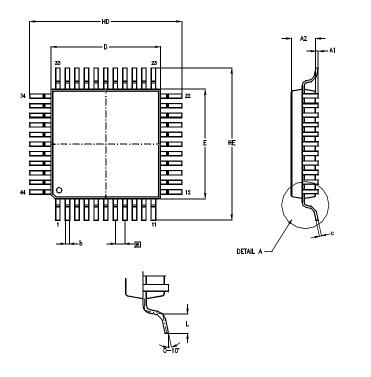
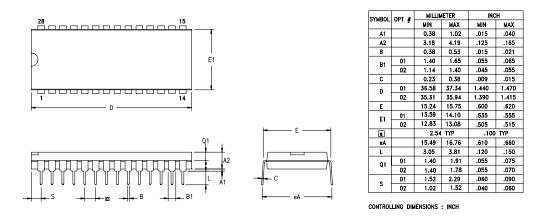



Figure 56. 40-PIN DIP Package Diagram



SYMBOL	МІШІ	/ETER	INCH		
STMDOL	MIN MAX		MIN	MAX	
A1	0.05	0,25	,002	.010	
A2	2.00	2.25	.078	.089	
b	0.25	0.45	.010	.018	
с	0.13	0.20	.005	.008	
HD	13.70	14.15	.539	.557	
D	9.90	10.10	.390	.398	
HE	13.70	14.15	.539	.557	
E	9.90	10.10	.390	.398	
e	e 0.80 BSC		.0315 BSC		
L	0.60	1.20	.024	.047	

NOTES: 1. CONTROLLING DIMENSIONS : WILLIMETER 2. LEAD COPLANARITY : MAX <u>.10</u> .004"

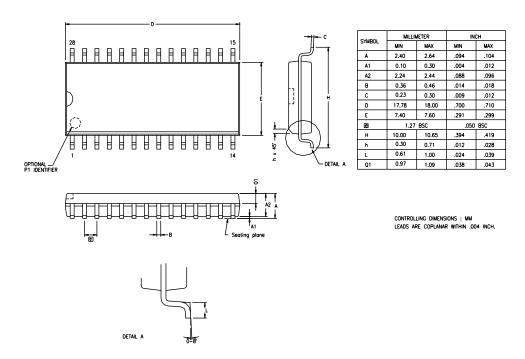


Figure 59. 28-Pin SOIC Package Diagram