

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	16MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e3416ssc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CMOS Z8[®] OTP Microcontrollers Product Specification Zilog ₃

On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator, LC, RC, or External Clock Drive

Functional Block Diagram

•

(E43/743/E44 Only) Output Input XTAL AS DS R/W RESET V_{CC} GND Machine Port 3 Timing & Inst. ĴĹ Control RESET Counter/ WDT, POR ALU TimerS (2) OTP FLAGS Interrupt Control Register Pointer Two Analog Program Comparators Counter **Register File** Ę Port 1 Port 2 Port 0 I/O Address or I/O Address/Data or I/O (Bit Programmable) (Nibble Programmable) (Byte Programmable) ((E43/743/E44 Only)

Figure 1 displays the functional block diagram.

Figure 1. Functional Block Diagram

Pin Description

Din No Symbol Eunction Direction

Table 2. 40-Pin DIP Pin Identification Standard Mode

FIIINO	Symbol	runction	Direction
1	R/W	Read/Write	Output
2-4	P25-P27	Port 2, Pins 5,6,7	Input/Output
5-7	P04-P06	Port 0, Pins 4,5,6	Input/Output
8-9	P14-P15	Port 1, Pins 4,5	Input/Output
10	P07	Port 0, Pin 7	Input/Output
11	V _{CC}	Power Supply	
12-13	P16-P17	Port 1, Pins 6,7	Input/Output
14	XTAL2	Crystal Oscillator	Output

zilog | 17

Figure 9. Standard Mode 28-Pin DIP/SOIC Pin Configuration

Pin No	Symbol	Function	Direction
1-3	P25-P27	Port 2, Pins 5,6,	Input/Output
4-7	P04-P07	Port 0, Pins 4,5,6,7 In/Outp	out
8	V _{CC}	Power Supply	
9	XTAL2	Crystal Oscillator	Output
10	XTAL1	Crystal Oscillator	Input
11-13	P31-P33	Port 3, Pins 1,2,3	Input
14-15	P34-P35	Port 3, Pins 4,5	Output
16	P37	Port 3, Pin 7	Output
17	P36	Port 3, Pin 6	Output
18	P30	Port 3, Pin 0	Input
19-21	P00-P02	Port 0, Pins 0,1,2	Input/Output
22	V _{SS}	Ground	
23	P03	Port 0, Pin 3	Input/Output
24-28	P20-P24	Port 2, Pins 0,1,2,3,4	Input/Output

Table 8. 28-Pin DIP/SOIC/PLCC Pin Identification Standard Mode

Figure 11. EPROM Programming Mode 28-Pin DIP/SOIC Pin Configuration

zilog ₂₀

Electrical Characteristics

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Min	Max	Units	Notes
-40	+105	С	
-65	+150	С	
-0.6	+7	V	1
-0.3	+7	V	
-0.6	V _{DD} +1	V	2
	1.21	W	
	220	mA	
	180	mA	
-600	+600	μA	3
-600	+600	μA	4
	25	mA	
	25	mA	
	3	mA	
	Min -40 -65 -0.6 -0.3 -0.6 -600 -600	MinMax -40 $+105$ -65 $+150$ -0.6 $+7$ -0.3 $+7$ -0.6 V_{DD} +1 1.21 220 180 -600 -600 $+600$ -600 $+600$ 25 25 3	Min Max Units -40 +105 C -65 +150 C -0.6 +7 V -0.3 +7 V -0.6 V _{DD} +1 V -0.6 V _{DD} mA -600 +600 μA -600 25 mA 3 mA

Notes

1. This applies to all pins except XTAL pins and where otherwise noted.

2. There is no input protection diode from pin to V_{DD}.

3. This excludes XTAL pins.

4. Device pin is not at an output Low state.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

Zilog 24

Table 11. DC Electrical Characteristics T_A = 0 °C to +70 °C (Continued)

Symbol	Parameter	V _{cc} ¹	Min	Мах	Typical @ 25°C	Units	Conditions	Notes
T _{POR}	Power-On Reset	3.5V	2.0 ms	24	7	ms		
		5.5V	1.0 ms	13	4	ms		
V _{LV}	Auto Reset Voltage	1	2.3	3.0	2.8	V		11,12

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V

- 2. STD Mode (not Low EMI Mode)
- 3. Z86E43/743/E44 only.
- 4. For analog comparator inputs when analog comparators are enabled
- 5. All outputs unloaded, I/O pins floating, inputs at rail.
- 6. CL1=CL2=22 pF.
- 7. Same as note 5 except inputs at $\rm V_{CC}$ 8. Clock must be forced Low, when XTAL1 is clock driven and XTAL2
- 9. WDT running
- 10. Auto Latch (mask option) selected.
- 11. Device does function down to the Auto Reset voltage
- 12. Max. temperature is 70 °C

Table 12. DC Electrical Characteristics T_A= -40 °C to +105 °C

Symbo					Typical			
I	Parameter	V _{CC} ¹	Min	Мах	@ 25°C	Units	Conditions	Notes
V _{CH}	Clock Input	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	Driven by	
	High voltage	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	External Clock Generator	
V _{CL} Cloc Low	Clock Input	4.5V	GND -0.3	0.2 V _{CC}	1.5	V	Driven by	
	Low Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.5	V	External Clock Generator	
V _{IH}	Input High Voltage	4.5V	$0.7 V_{CC}$	V _{CC} +0.3	2.5	V		
		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
V _{IL}	Input Low	4.5V	GND -0.3	0.2 V _{CC}	1.5	V		
	Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High Voltage Low EMI Mode	4.5V	V _{CC} -0.4		4.8		I _{OH} = -0.5 mA	2
		5.5V	V _{CC} -0.4		4.8		I _{OH} = -0.5 mA	2

Zilog²⁸

Table 13. DC Electrical Characteristics $T_A = 0$ °C to +70 °C, 12 MHz (Continued)

No.	Symbol	Parameter	V _{CC} ¹	Min	Max	Units	Notes
4	TwAS	AS Low Width	3.5V	55		ns	2
			5.5V	55		ns	2
5	TdAS(DS)	Address Float to DS Fall	3.5V	0		ns	
			5.5V	0		ns	
6	TwDSR	DS (Read) Low Width	3.5V	200		ns	2,3
			5.5V	200		ns	2,3
7	TwDSW	DS (Write) Low Width	3.5V	110		ns	2,3
			5.5V	110		ns	2,3
8	TdDSR(DR)	DS Fail to Read Data Req'd Valid	3.5V		150	ns	2,3
			5.5V		150	ns	2,3
9	ThDR(DS)	Read Data to $\overline{\text{DS}}$ Rise Hold Time	3.5V	0		ns	2
				0		ns	2
10	TdDS(A)	DS Rise to Address Active	3.5V	45		ns	2
		Delay	5.5V	55		ns	2
11	TdDS(AS)	DS Rise to AS Fall Delay	3.5V	30		ns	2
			5.5V	45		ns	2
12	TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	3.5V	45		ns	2
			5.5V	45		ns	2
13	TdDS(R/W)	DS Rise to R/W Not Valid	3.5V	45		ns	2
			5.5V	45		ns	2
14	TdDW(DSW)	Write Data Valid to DS Fall (Write)	3.5V	55		ns	2
		Delay	5.5V	55		ns	2
15	TdDS(DW)	DS Rise to Write Data Not Valid	3.5V	45		ns	2
		Delay	5.5V	55		ns	2
16	TdA(DR)	Address Valid to Read Data Req'd	3.5V		310	ns	2,3
		Valid	5.5V		310	ns	2,3
17	TdAS(DS)	AS Rise to DS Fall Delay	3.5V	65		ns	2
			5.5V	65		ns	2

Zilog[®] ₃₀

No.	Symbol	Parameter	V _{CC} ¹	Min	Мах	Units	Notes
10	TdDS(A)	DS Rise to Address Active	4.5V	45		ns	2
		Delay	5.5V	55		ns	2
11	TdDS(AS)	DS Rise to AS Fall Delay	4.5V	45		ns	2
			5.5V	45		ns	2
12	TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	4.5V	45		ns	2
			V_{CC} MinMaxUnitsNoe $4.5V$ 45ns2 $5.5V$ 55ns2 $4.5V$ 45ns2 $5.5V$ 45ns2ay $4.5V$ 45ns2 $5.5V$ 45ns2 $5.5V$ 45ns2 10 $4.5V$ 45ns2 11 $4.5V$ 45ns2 $5.5V$ 45ns2 11 $4.5V$ 55ns2 12 $5.5V$ 65ns2 12 $5.5V$ 35ns2 12 $4.5V$ 35ns2 12 $5.5V$ 35ns2 12 $5.5V$ 35ns2 13 12 12 12 12 14 12 12 12 12 12 12 12 12 12 13 12 <td>2</td>	2			
13	TdDS(R/W)	DS Rise to R/W Not Valid	4.5V	45		ns	2
			5.5V	45		ns	2
14	4 TdDW(DSW) Write Data Va	Write Data Valid to $\overline{\text{DS}}$ Fall (Write)	4.5V	55		ns	2
		Delay	5.5V	55		ns	2
15	TdDS(DW)	DS Rise to Write Data Not Valid	4.5V	55		ns	2
		Delay	5.5V	55		ns	2
16	TdA(DR)	Address Valid to Read Data Req'd	4.5V		310	ns	2,3
		Valid	5.5V		310	ns	2,3
17	TdAS(DS)	AS Rise to DS Fall Delay	4.5V	65		ns	2
			5.5V	65		ns	2
18	TdDM(AS)	DM Valid to AS Rise Delay	4.5V	35		ns	2
			5.5V	35		ns	2
19	ThDS(AS)	DS Valid to Address Valid Hold Time	4.5V	35		ns	2
			5.5V	35		ns	2

Table 14. DC Electrical Characteristics $T_A = -40$ °C to +105 °C, 12 MHz (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing numbers given are for minimum TpC.

3. When using extended memory timing, add 2 TpC.

Standard Test Load

All timing references use 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

For Standard Mode (not Low-EMI Mode for outputs) with SMR, D1 = 0, D0 = 0.

Figure 15. Additional Timing Diagram

Table 15. Additional Timing Table (Divide-By-One Mode) $T_A = 0$ °C to +70 °C

No	Symbol	Parameter	V _{CC} ¹	Min	Мах	Min	Мах	Units	Notes
1	ТрС	Input Clock Period	3.5V	250	DC	166	DC	ns	2,3,4
			5.5V	250	DC	166	DC	ns	2,3,4
2	2 TrC,TfC	Clock Input Rise & Fall	3.5V		25		25	ns	2,3,4
		Times	5.5V		25		25	Units ns	2,3,4
3	TwC	Input Clock Width	3.5V	100		100		ns	2,3,4
			5.5V	100		100		ns	2,3,4
4	TwTinL	Timer Input Low Width	3.5V	100		100		ns	2,3,4
			5.5V	70		70		ns	2,3,4

Zilog ₃₃

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units	Notes
2	TrC,TfC	Clock Input Rise & Fall	4.5V		25		25	ns	2,3,4
		Times	5.5V		25		25	ns	2,3,4
3	TwC	Input Clock Width	4.5V	100		100		ns	2,3,4
			5.5V	100		100		ns	2,3,4
4	TwTinL	Timer Input Low Width	4.5V	100		100		ns	2,3,4
			5.5V	70		70		ns	2,3,4
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			2,3,4
			5.5V	5TpC		5TpC			2,3,4
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			2,3,4
			5.5V	8TpC		8TpC			2,3,4
7	TrTin,	Timer Input Rise & Fall	4.5V		100		100	ns	2,3,4
	TfTin	Timer	5.5V		100		100	ns	2,3,4
8A	TwIL	Int. Request Low Time	4.5V	100		100		ns	2,3,4,5
			5.5V	70		70		ns	2,3,4,5
8B	TwIL	Int. Request Low Time	4.5V	5TpC		5TpC			2,3,4,6
			5.5V	5TpC		5TpC			2,3,4,6
9	TwIH	Int. Request Input High	4.5V	5TpC		5TpC			2,3,4,5
		Time	5.5V	5TpC		5TpC			2,3,4,5
10	Twsm	Stop Mode Recovery	4.5V	12		12		ns	4,7
		Width Spec	5.5V	12		12		ns	4,7
11	Tost	Oscillator Startup Time	4.5V		5TpC		5TpC		4,7,8
			5.5V		5TpC		5TpC		4,7,8

Table 16. Additional Timing Table (Divide-By-One Mode) T_A = -40 °C to +105 °C (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 $V_{CC};$ for a logic 0.

3. SMR D1 = 0.

4. Maximum frequency for internal system clock is 4 MHz when using Low EMI OSC PCON Bit D7=0.

- 5. Interrupt request via Port 3 (P31-P33).
- 6. Interrupt request via Port 3 (P30).
- 7. SMR-D5 = 1, POR STOP Mode Delay is on.

8. For RC and LC oscillator, and for oscillator driven by clock driver.

zilog[®] ₃

Table 18. Additional Timing Table (Divide by Two Mode) T_A = -40 °C to +105 °C (Continued)

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units	Conditions	Notes
12	Twdt	Watchdog Timer	3.5V	7		10		ms	D0 =0	8,9
	Delay Time Befor Timeout	Delay Time Before	5.5V	3.5		5		ms	D1 = 0	5,11
		Timeout	3.5V	14		20		ms	D0 =1	5,11
			5.5V	7		10		ms	D1 = 0	5,11
			3.5V	28		40		ms	D1 = 0	5,11
			5.5V	14		20		ms	D1 = 1	5,11
			3.5V	112		160		ms	D0 = 1	5,11
			5.5V	56		80		ms	D1 = 1	5,11

Notes

The V_{CC} voltage specification of 5.5 V guarantees 5.0 V ± 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

- 2. Timing Reference uses 0.7 VC0 for a logic 1 and 0.2 VGC for a logic 0.
- 3. SMR D1 = 0.
- 4. SMR-D5 = 1, POR STOP Mode Delay is on
- 5. Interrupt request via Port 3 (P31-P33)
- 6. Interrupt request via Port 3 (P30).
- 7. Maximum frequency for internal system clock is 2 MHz when using Low EMI OSC PCON Bit D7 = 0
- 8. Reg. WDTMR.
- 9. Using internal RC.

Pin Functions

EPROM Programming Mode

D7-D0 Data Bus. The data can be read from or written to external memory through the data bus.

 V_{CC} Power Supply. This pin must supply 5 V during the EPROM read mode and 6 V during other modes.

CE Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.

OE Output Enable (active Low). This pin drives the direction of the Data Bus. When this pin is Low, the Data Bus is output, when High, the Data Bus is input.

EPM EPROM Program Mode. This pin controls the different EPROM Program Mode by applying different voltages.

 V_{PP} Program Voltage. This pin supplies the program voltage.

PGM Program Mode (active Low). When this pin is Low, the data is programmed to the EPROM through the Data Bus.

zilog 4

Figure 18. Port 0 Configuration

Port 1 (P17-P10). Port 1 is an 8-bit, bidirectional, CMOS-compatible port with multiplexed Address (A7-A0) and Data (D7-D0) ports. These eight I/O lines can be programmed as inputs or outputs or can be configured under software control as an Address/ Data port for interfacing external memory. The input buffers are Schmitt-triggered and the output buffers can be globally programmed as either push-pull or open-drain. Low EMI output buffers can be globally programmed by the software. Port 1 can be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls RDY1 and DAV1 (Ready and Data Available). To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines (see Figure 19).

Zilog 46

Functional Description

>

>

The MCU incorporates the following special functions to enhance the standard Z8 architecture to provide the user with increased design flexibility.

RESET. The device is reset in one of three ways:

- 1. Power-On Reset
- 2. Watchdog Timer
- 3. Stop Mode Recovery Source
- **Note:** Having the Auto Power-On Reset circuitry built-in, the MCU does not need to be connected to an external power-on reset circuit. The reset time is T_{POR} . The MCU does not re-initialize WDTMR, SMR, P2M, and P3M registers to their reset values on a Stop Mode Recovery operation.
 - **Note:** The device V_{CC} must rise up to the operating V_{CC} specification before the T_{POR} expires.

Program Memory. The MCU can address up to 4/8/16 KB of Internal Program Memory (see Figure 22). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For EPROM mode, byte 12 (000Ch) to address 4095 (0FFFh)/8191 (1FFFh)/16384 (3FFFh), consists of programmable EPROM. After reset, the program counter points at the address 000Ch, which is the starting address of the user program.

In ROMless mode, the Z86E43/743/E44 can address up to 64 KB of External Program Memory. The ROM/ROMless option is only available on the 44-pin devices.

Zilog[®] 47

(Z86E43/743/E44 Only)

Figure 22. Program Memory Map

EPROM Protect. When in ROM Protect Mode, and executing out of External Program Memory, instructions LDC, LDCI, LDE, and LDEI cannot read Internal Program Memory.

When in EPROM Protect Mode and executing out of Internal Program Memory, instructions LDC, LDCI, LDE, and LDEI can read Internal Program Memory.

Data Memory (DM). In ROM Mode, the Z86E43/743/E44 can address up to 60156/48 KB of external data memory beginning at location 4096/8192/16384. In ROMless mode, the Z86E43/743/E44 can address up to 64 KB of data memory. External data memory may be included with, or separated from, the external program memory space. \overline{DM} , an optional I/0 function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 23). The state of the \overline{DM} signal is controlled by the type of instruction being executed. An LDC opcode references PROGRAM (\overline{DM} inactive) memory, and an LDE instruction references data (\overline{DM} active Low) memory.

zilog ₅₀

* Expanded Register Group (0) is selected in this figure by handling bits D3 to D0 as "0" in Register R253 (RP).

Figure 25. Register Pointer

Name	Source	Vector Location	Comments
IRQ0	DAV0, IRQ0	0,1	External (P32), Rising/Falling Edge Triggered
IRQ1	IRQ1	2,3	External (P33), Falling Edge Triggered
IRQ2	DAV2, IRQ2, T _{IN}	4,5	External (P31), Rising/Falling Edge Triggered
IRQ3	IRQ3	6,7	External (P30), Falling Edge Triggered
1RQ4	Т0	8,9	Internal
IRQ5	T1	10,11	Internal

PS022901-0508

zilog

Figure 29. Oscillator Configuration

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR timer allows V_{CC} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- 1. Power fail to Power OK status
- 2. Stop Mode Recovery (if D5 of SMR=0)
- 3. WDT time-out

The POR time is a nominal 5 ms. Bit 5 of the STOP mode Register (SMR) determines whether the POR timer is by-passed after Stop Mode Recovery (typical for an external clock and RC/LC oscillators with fast start up times).

HALT. Turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupt IRQ0, IRQ1, and IRQ2 remain active. The device is recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after the HALT. In order to enter STOP or HALT Mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, you must execute a NOP (Opcode = FFh) immediately before the appropriate sleep instruction, that is:

* Default setting after RESET

** Default setting after RESET and STOP-Mode Recovery

Figure 31. Stop Mode Recovery Register (Write-Only Except Bit D7, Which Is Read-Only)

SCLK/TCLK Divide-by-16 Select (D0). This bit of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

External Clock Divide-by-Two (D1). This bit can eliminate the oscillator divide-by-two circuitry. When this bit is 0, the System Clock (SCLK) and Timer Clock (TCLK) are equal to the external clock frequency divided by two. The SCLK/TCLK is equal to the external clock frequency when this bit is set (D1=1). Using this bit together with D7 of PCON further helps lower EMI (that is, D7 (PCON) = 0, D1 (SMR) = 1). The default setting is zero.

Stop Mode Recovery Source (D2, D3, and D4). These three bits of the SMR register specify the wake up source of the Stop Mode Recovery (Figure 32). Table 22 shows the SMR source selected with the setting of D2 to D4. P33-P31 cannot be used to wake up

zilog ,

Note: WDT time-out in STOP Mode will not reset SMR,SMR2,PCON, WDTMR, P2M, P3M, Ports 2 & 3 Data Registers, but will activate the T_{POR} delay.

WDTMR Register Accessibility. The WDTMR register is accessible only during the first 60 internal system clock cycles from the execution of the first instruction after Power-On Reset, Watchdog reset or a Stop Mode Recovery (Figure 33 and Figure 34). After this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in Bank F of the Expanded Register File at address location 0Fh.

Clock Free WDT Reset. The WDT will enable the Z8 to reset the I/0 pins whenever the WDT times out, even without a clock source running on the XTAL1 and XTAL2 pins. WDTMR Bit D4 must be 0 for the clock Free WDT to work. The I/O pins will default to their default settings.

WDTMR (F) 0F

>

* Default setting after RESET

Figure 33. Watchdog Timer Mode Register Write Only

Figure 35. Typical V_{LV} Voltage vs. Temperature