

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

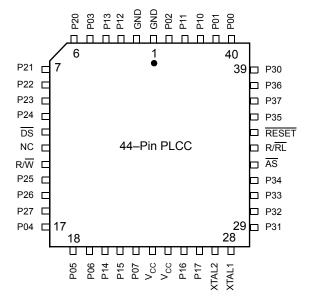
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	28
Core Size	8-Bit
Speed	12MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e4312vsc

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog ₆

Pin No	Symbol	Function	Direction
15	XTAL1	Crystal Oscillator	Input
16-18	P31-P33	Port 3, Pins 1,2,3	Input
19	P34	Port 3, Pin 4	Output
20	AS	Address Strobe	Output
21	RESET	Reset	Input
22	P35	Port 3, Pin 5	Output
23	P37	Port 3, Pin 7	Output
24	P36	Port 3, Pin 6	Output
25	P30	Port 3, Pin 0	Input
26-27	P00-P01	Port 0, Pins 0,1	Input/Output
28-29	P10-P11	Port 1, Pins 0,1	Input/Output
30	P02	Port 0, Pin 2	Input/Output
31	GND	Ground	
32-33	P12-P13	Port 1, Pins 2,3	Input/Output
34	P03	Port 0, Pin 3	Input/Output
35-39	P20-P24	Port 2, Pins 0, 1,2,3,4	Input/Output
40	DS	Data Strobe	Output

Table 2. 40-Pin DIP Pin Identification Standard Mode (Continued)

Zilog[®],

Pin No	Symbol	Function	Direction
1-2	GND	Ground	
3-4	P12-P13	Port 1, Pins 2,3	Input/Output
5	P03	Port 0, Pin 3	Input/Output
6-10	P20-P24	Port 2, Pins 0,1,2,3,4	Input/Output
11	DS	Data Strobe	Output
12	NC	No Connection	
13	R/W	Read/Write	Output
14-16	P25-P27	Port 2, Pins 5,6,7	Input/Output
17-19	P04-P06	Port 0, Pins 4,5,6	Input/Output
20-21	P14-P15	Port 1, Pins 4,5	Input/Output
22	P07	Port 0, Pin 7	Input/Output
23-24	V _{CC}	Power Supply	
25-26	P16-P17	Port 1, Pins 6,7	Input/Output

Zilog ₁₄

Table 6. 44-Pin PLCC Pin Configuration EPROM Programming Mode (Continued)

Pin No Symbol Function		Function	Direction
32-39	NC	No Connection	
40	CLR	Clear	Input
41	CLK	Clock	Input
42-43	NC	No Connection	
44	/PGM	Prog. Mode	Input

21

Total power dissipation should not exceed 1.21 W for the package. Power dissipation is calculated as follows:

 $\begin{array}{ll} \mbox{Total Power Dissipation} = & V_{DD} \; x \; [I_{DD} - (\mbox{sum of } I_{OH}), \\ & + \; \mbox{sum of } [(V_{DD} - V_{OH}) \; x \; I_{OH}] \\ & + \; \mbox{sum of } (V_{OL} \; x \; I_{OL}) \end{array}$

Standard Test Conditions

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Test Load).

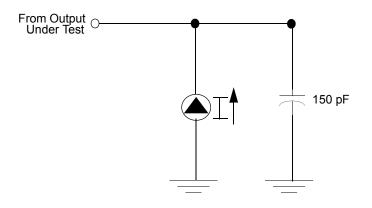


Figure 13. Test Load Diagram

Capacitance

 $T_A = 25$ °C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	12 pF
Output capacitance	0	12 pF
I/O capacitance	0	12 pF

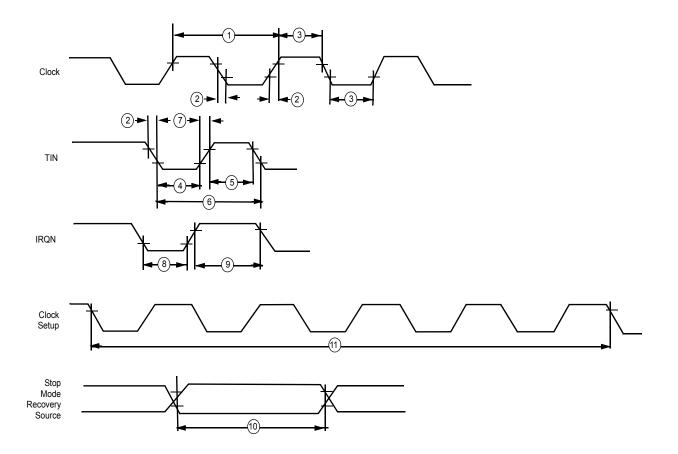


Figure 15. Additional Timing Diagram

Table 15. Additional Timing Table (Divide-By-One Mode) $T_A = 0$ °C to +70 °C

No	Symbol	Parameter	V _{cc} ¹	Min	Мах	Min	Мах	Units	Notes
1	ТрС	Input Clock Period	3.5V	250	DC	166	DC	ns	2,3,4
			5.5V	250	DC	166	DC	ns	2,3,4
2 TrC,TfC	TrC,TfC	Clock Input Rise & Fall Times	3.5V		25		25	ns	2,3,4
			5.5V		25		25	ns	2,3,4
3	TwC	Input Clock Width	3.5V	100		100		ns	2,3,4
			5.5V	100		100		ns	2,3,4
4 TwTinL		Timer Input Low Width	3.5V	100		100		ns	2,3,4
			5.5V	70		70		ns	2,3,4

Zilog ₃₃

No	Symbol	Parameter	V _{cc} ¹	Min	Мах	Min	Max	Units	Notes
2	TrC,TfC	Clock Input Rise & Fall	4.5V		25		25	ns	2,3,4
		Times	5.5V		25		25	ns	2,3,4
3	TwC	Input Clock Width	4.5V	100		100		ns	2,3,4
			5.5V	100		100		ns	2,3,4
4	TwTinL	Timer Input Low Width	4.5V	100		100		ns	2,3,4
			5.5V	70		70		ns	2,3,4
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			2,3,4
			5.5V	5TpC		5TpC			2,3,4
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			2,3,4
			5.5V	8TpC		8TpC			2,3,4
7	TrTin,	Timer Input Rise & Fall Timer	4.5V		100		100	ns	2,3,4
	TfTin		5.5V		100		100	ns	2,3,4
8A	TwIL	Int. Request Low Time	4.5V	100		100		ns	2,3,4,5
			5.5V	70		70		ns	2,3,4,5
8B	TwIL	Int. Request Low Time	4.5V	5TpC		5TpC			2,3,4,6
			5.5V	5TpC		5TpC			2,3,4,6
9	TwlH	Int. Request Input High	4.5V	5TpC		5TpC			2,3,4,5
		Time	5.5V	5TpC		5TpC			2,3,4,5
10	Twsm	Stop Mode Recovery	4.5V	12		12		ns	4,7
		Width Spec	5.5V	12		12		ns	4,7
11	Tost	Oscillator Startup Time	4.5V		5TpC		5TpC		4,7,8
			5.5V		5TpC		5TpC		4,7,8

Table 16. Additional Timing Table (Divide-By-One Mode) T_A = -40 °C to +105 °C (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 $V_{CC};$ for a logic 0.

3. SMR D1 = 0.

4. Maximum frequency for internal system clock is 4 MHz when using Low EMI OSC PCON Bit D7=0.

- 5. Interrupt request via Port 3 (P31-P33).
- 6. Interrupt request via Port 3 (P30).
- 7. SMR-D5 = 1, POR STOP Mode Delay is on.

8. For RC and LC oscillator, and for oscillator driven by clock driver.

Zilog ₃₅

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units	Conditions	Notes
4	TwTinL	Timer input Low	3.5V	70		70		ns		2,6,4
		Width	5.5V	70		70		ns		2,6,4
5	TwTinH	Timer Input High	3.5V	5TpC		5TpC				2,6,4
		Width	5.5V	5TpC		5TpC				2,6,4
6	TpTin	Timer Input Period	3.5V	8TpC		8TpC				2,6,4
			5.5V	8TpC		8TpC				2,6,4
7	TrTin,	Timer Input Rise &	3.5V		100		100	ns		2,6,4
	TfTin	Fall Timer	5.5V		100		100	ns		2,6,4
8A	TwIL	Int. Request Low	3.5V	70		70		ns		2,6,4,5
		Time	5.5V	70		70		ns		2,6,4,5
8B	TwIL	Int. Request Low	3.5V	5TpC		5TpC				2,6,4,5
		Time	5.5V	5TpC		5TpC				2,6,4,5
9	TwlH	Int. Request Input	3.5V	5TpC		5TpC				2,6,4,5
		High Time	5.5V	5TpC		5TpC				2,6,4,5
10	Twsm	Stop Mode	3.5V	12		12		ns		6,7
		Recovery Width Spec	5.5V	12		12		ns		6,7
11	Tost	Oscillator Startup	3.5V		5TpC		5TpC			6,7
		Time	5.5V		5TpC		5TpC			6,7
12	Twdt	Watchdog Timer	3.5V	7		10		ms	D0 =0	8,9
		Delay Time Before	5.5V	3.5		5		ms	D1 = 0	5,11
		Timeout	3.5V	14		20		ms	D0 =1	5,11
			5.5V	7		10		ms	D1 = 0	5,11
			3.5V	28		40		ms	D1 = 0	5,11
			5.5V	14		20		ms	D1 = 1	5,11
			3.5V	112		160		ms	D0 = 1	5,11
			5.5V	56		80		ms	D1 = 1	5,11

Table 17. Additional Timing Table (Divide by Two Mode) $T_A = 0 \degree C$ to +70 $\degree C$ (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing Reference uses 0.7 VC0 for a logic 1 and 0.2 VGC for a logic 0.

3. SMR D1 = 0.

4. SMR-D5 = 1, POR STOP Mode Delay is on

- 5. Interrupt request via Port 3 (P31-P33)
- 6. Interrupt request via Port 3 (P30).

7. Maximum frequency for internal system clock is 2 MHz when using Low EMI OSC PCON Bit D7 = 0

8. Reg. WDTMR.

9. Using internal RC.

zilog[®]

Port 1 can be placed in the high-impedance state along with Port 0, \overline{AS} , \overline{DS} , and R/\overline{W} , allowing the Z86E43/743/E44 to share common resources in multiprocessor and DMA applications. In ROM mode, Port 1 is defined as input after reset.

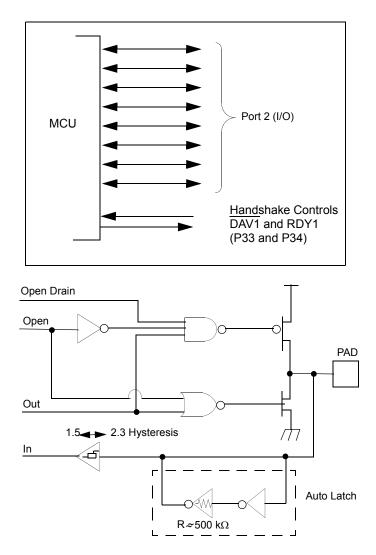


Figure 19. Port 1 Configuration (Z86E43/743/E44 Only)

Port 2 (P27-P20). Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port. These eight I/O lines can be configured under software control as an input or output, independently. All input buffers are Schmitt-triggered. Bits programmed as outputs can be globally programmed as either push-pull or open-drain. Low EMI output buffers can be globally programmed by the software. When used as an I/O port, Port 2 can be placed under handshake control. After reset, Port 2 is defined as an input.

Zilog 42

In Handshake Mode, Port 3 lines P31 and P36 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to bit 7 of Port 2 (see Figure 20).

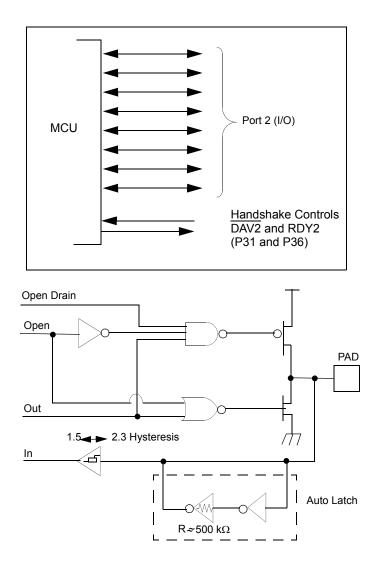


Figure 20. Port 2 Configuration

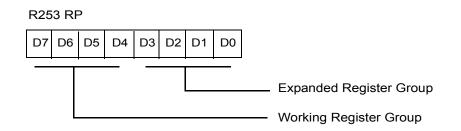
Port 3 (P37-P30). Port 3 is an 8-bit, CMOS-compatible port with four fixed inputs (P33-P30) and four fixed outputs (P37-P34). These eight lines can be configured by software for interrupt and handshake control functions. Port 3, Pin 0 is Schmitt- triggered. P31, P32, and P33 are standard CMOS inputs with single trip point (no Auto Latches) and P34, P35, P36, and P37 are push-pull output lines. Low EMI output buffers can be globally programmed by the software. Two on-board comparators can process analog signals on P31

zilog[°]

Pin	I/O	CTC1	Analog	Interrup	t P0 HS	P1 HS	P2 HS	Ext
P30	IN			IRQ3				
P31	IN	T _{IN}	AN1	IRQ2		D/R		
P32	IN		AN2	IRQ0	D/R			
P33	IN		REF	IRQ1		D/R		
P34	OUT		AN1-Out			R/D		DM
P35	OUT				R/D			
P36	OUT	T _{OUT}				R/D		
P37	OUT		An2-Out					
-								

Table 19. Port 3 Pin Assignments

Comparator Inputs. Port 3, P31, and P32, each have a comparator front end. The comparator reference voltage P33 is common to both comparators. In analog mode, P31 and P32 are the positive input of the comparators and P33 is the reference voltage of the comparators.


Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33-P31) that are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. Auto Latches are available on Port 0, Port 1, Port 2, and P30. There are no Auto Latches on P31, P32, and P33.

Low EMI Emission. The Z86E43/743/E44 can be programmed to operate in a low EMI Emission Mode in the PCON register. The oscillator and all I/O ports can be programmed as low EMI emission mode independently. Use of this feature results in:

- The pre-drivers slew rate reduced to 10 ns typical.
- Low EMI output drivers have resistance of 200 Ohms (typical).
- Low EMI Oscillator.
- Internal SCLK/TCLK= XTAL operation limited to a maximum of 4 MHz 250 ns cycle time, when Low EMI Oscillator is selected.

Note: For emulation only: Do not set the emulator to emulate Port 1 in low EMI mode. Port 1 must always be configured in Standard Mode.

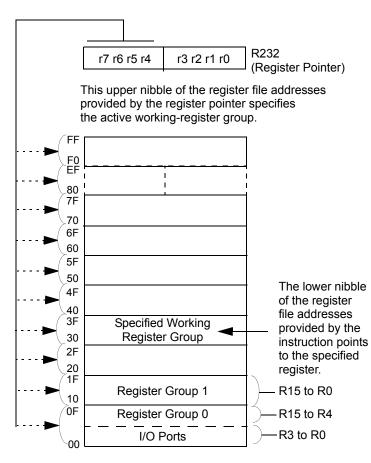

Default after RESET = 00h

Figure 24. Register Pointer Register

Expanded Register File (ERF). The register file has been expanded to allow for additional system control registers, mapping of additional peripheral devices and input/output ports into the register address area. The Z8 register address space RO through R15 is implemented as 16 groups of 16 registers per group (see Figure 26). These register banks are known as the Expanded Register File (ERF).

The low nibble (D3-D0) of the Register Pointer (RP) select the active ERF Bank, and the high nibble (D7-D4) of register RP select the working register group. Three system configuration registers reside in the Expanded Register File at bank FH: PCON, SMR, and WDTMR. The rest of the Expanded Register is not physically implemented and is reserved for future expansion.

zilog ₅₀

* Expanded Register Group (0) is selected in this figure by handling bits D3 to D0 as "0" in Register R253 (RP).

Figure 25. Register Pointer

zilog

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register (IPR). An interrupt machine cycle is activated when an interrupt request is granted. Thus, disabling all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in bits D7 and D6 of the IRQ Register (R250). The configuration is shown in Table 21.

	IRO	Inte	Interrupt Edge			
D7	D6	P31	P32			
0	0	F	F			
0	1	F	R			
1	0	R	F			
1	1	R/F	R/F			
	= Falling Edge = Rising Edge					

Table 21. IRQ Register Configuration

Clock. The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 10 kHz to 16 MHz max, with a series resistance (RS) less than or equal to 100Ω .

The crystal should be connected across XTAL1 and XTAL2 using the vendor's recommended capacitor values from each pin directly to device pin Ground. The RC oscillator option can be selected in the programming mode. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL1 to Ground (Table 29).

zilog

Comparator Output Port 3 (D0). Bit 0 controls the comparator output in Port 3. A "1" in this location brings the comparator outputs to P34 and P37, and a "0" releases the Port to its standard I/O configuration. The default value is 0.

Port 1 Open-Drain (D1). Port 1 can be configured as an open-drain by resetting this bit (D1=0) or configured as push-pull active by setting this bit (D1=1). The default value is 1.

Port 0 Open-Drain (D2). Port 0 can be configured as an open-drain by resetting this bit (D2=0) or configured as push-pull active by setting this bit (D2=1). The default value is 1.

Low EMI Port 0 (D3). Port 0 can be configured as a Low EMI Port by resetting this bit (D3=0) or configured as a Standard Port by setting this bit (D3=1). The default value is 1.

Low EMI Port 1 (D4). Port 1 can be configured as a Low EMI Port by resetting this bit (D4=0) or configured as a Standard Port by setting this bit (D4=1). The default value is 1.

Note: The emulator does not support Port 1 low EMI mode and must be set D4 = 1.

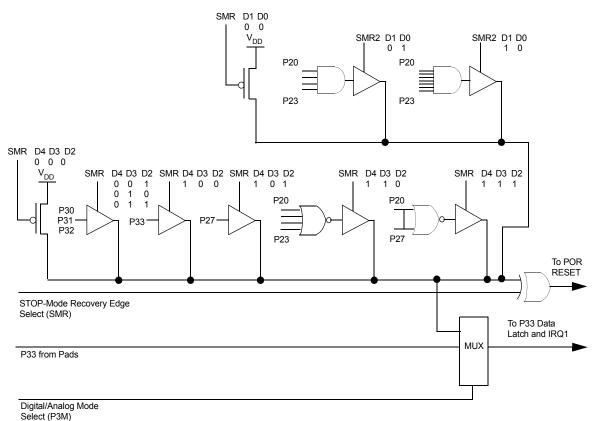
Low EMI Port 2 (D5). Port 2 can be configured as a Low EMI Port by resetting this bit (D5=0) or configured as a Standard Port by setting this bit (D5=1). The default value is 1.

Low EMI Port 3 (D6). Port 3 can be configured as a Low EMI Port by resetting this bit (D6=0) or configured as a Standard Port by setting this bit (D6=1). The default value is 1.

Low EMI OSC (D7). This bit of the PCON Register controls the low EMI noise oscillator. A "1" in this location configures the oscillator with standard drive. While a "0" configures the oscillator with low noise drive, however, it does not affect the relationship of SCLK and XTAL. The low EMI mode will reduce the drive of the oscillator (OSC). The default value is 1.

Note: 4 *MHz* is the maximum external clock frequency when running in the low EMI oscillator mode.

Stop-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 31). All bits are Write Only except bit 7 which is a Read Only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power-on cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the Stop Mode Recovery Source. The SMR is located in Bank F of the Expanded Register File at address 0BH.

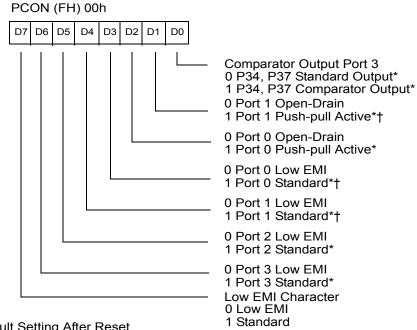

>

>

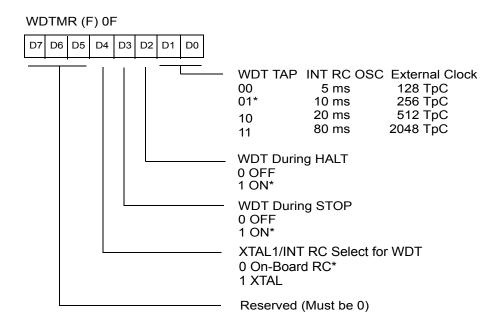
zilog ₆₀

from STOP mode when programmed as analog inputs. When the Stop Mode Recovery sources are selected in this register then SMR2 register bits D0, D1 must be set to zero.

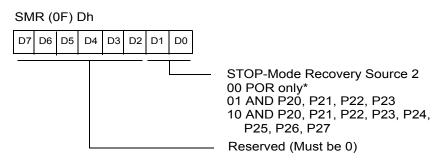
Note: *If the Port 2 pin is configured as an output, this output level will be read by the SMR circuitry.*



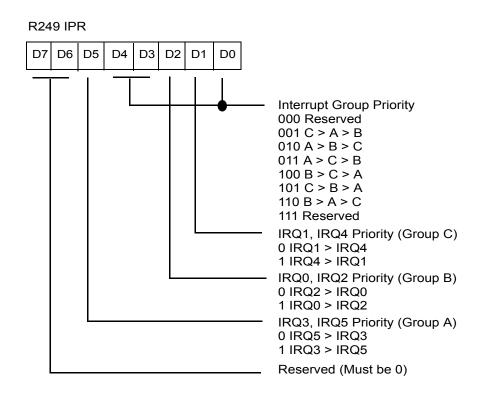
Z8 Control Register Diagrams


Ordering Information

* Default Setting After Reset † Must be set to "1" for Z86E33/733/E34


Figure 36. Port Configuration Register (PCON) (Write Only)

* Default setting after RESET


Figure 38. Watchdog Timer Mode Register (Write Only)

Note: Not used in conjunction with SMR Source

Figure 39. Stop Mode Recovery Register2 (Write Only)

Zilog[®] ₇₄

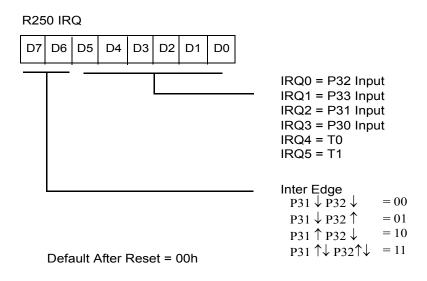


Figure 50. Interrupt Request Register (FA_h: Read/Write)

Package Information

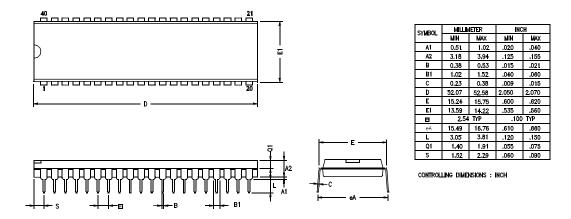
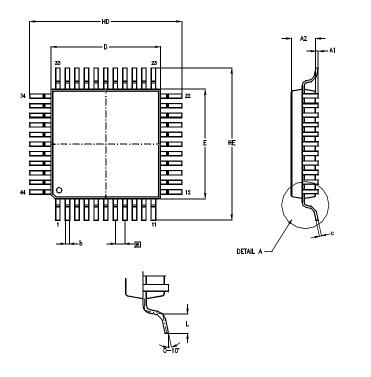



Figure 56. 40-PIN DIP Package Diagram

SYMBOL	MILLIN	/ETER	INCH		
STMDOL	MIN	MAX	MIN	MAX	
A1	0.05	0,25	,002	.010	
A2	2.00	2.25	.078	.089	
b	0.25	0.45	.010	.018	
с	0.13	0.20	.005	.008	
HD	13.70	14.15	.539	.557	
D	9.90	10.10	.390	.398	
HE	13.70	14.15	.539	.557	
E	9.90	10.10	.390	.398	
e	0.80	0.80 BSC		BSC	
L	0.60	1.20	.024	.047	

NOTES: 1. CONTROLLING DIMENSIONS : WILLIMETER 2. LEAD COPLANARITY : MAX <u>.10</u> .004"

Zilog 80

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.