
E·XFL

Zilog - Z86E4412FSC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e4412fsc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog[°]

Warning: DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

ISO 9001:2000 FS 507510 Zilog products are designed and manufactured under an ISO registered 9001:2000 Quality Management System. For more details, please visit www.zilog.com/quality.

zilog

Table 1. Z86E33/733/E34, E43/743/E44 Features (Continued)

Device	ROM (KB)	RAM ¹ (Bytes)	I/O Lines	Speed (MHz)
Z86E44	16	236	32	12
¹ General-Purpos	se			

- Standard Temperature ($V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}$)
- Extended Temperature ($V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}$)
- Available Packages:
 - 28-Pin DIP/SOIC/PLCC OTP (E33/733/E34)
 - 40-Pin DIP OTP (E43/743/E44)
 - 44-Pin PLCC/LQFP OTP (E43/743/E44)
- Software Enabled Watchdog Timer (WDT)
- Push-Pull/Open-Drain Programmable on Port 0, Port 1, and Port 2
- 24/32 Input/Output Lines
- Clock-Free WDT Reset
- Auto Power-On Reset (POR)
- Programmable OTP Options:
 - RC Oscillator
 - EPROM Protect
 - Auto Latch Disable
 - Permanently Enabled WDT
 - Crystal Oscillator Feedback Resistor Disable
 - RAM Protect
- Low-Power Consumption: 60 mW
- Fast Instruction Pointer: 0.75 µs
- Two Standby Modes: STOP and HALT
- Digital Inputs CMOS Levels, Schmitt-Triggered
- Software Programmable Low EMI Mode
- Two Programmable 8-Bit Counter/Timers Each with a 6-Bit Programmable Prescaler
- Six Vectored, Priority Interrupts from Six Different Sources
- Two Comparators

zilog |₉

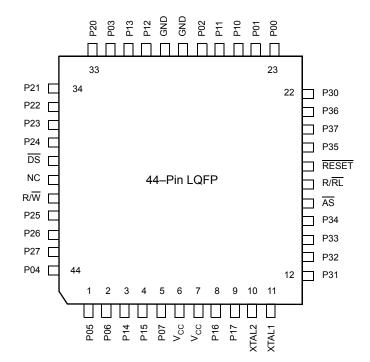


Figure 5. 44-Pin LQFP Pin Configuration Standard Mode

Table 4. 44-Pin LQFP Pin Identification

Pin No	Symbol	Symbol Function	
1-2	P05-P06	Port 0, Pins 5,6 Input/Ou	
3-4	P14-P15	Port 1, Pins 4,5	Input/Output
5	P07	Port 0, Pin 7	Input/Output
6-7	V _{CC}	Power Supply	
8-9	P16-P17	Port 1, Pins 6,7 Input/C	
10	XTAL2	Crystal Oscillator Output	
11	XTAL1	Crystal Oscillator Input	
12-14	P31-P33	Port 3, Pins 1,2,3	Input
15	P34	Port 3, Pin 4 Output	
16	AS	Address Strobe Output	
17	R//RL	ROM/ROMIess select Input	

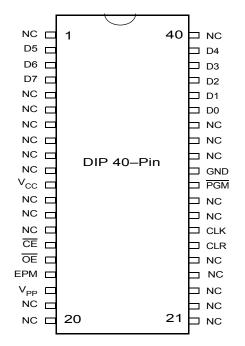


Figure 6. 40-Pin DIP Pin Configuration EPROM Mode

Table 5. 40-Pin DIP Package Pin Identification EPROM Mode

Pin No	Symbol	Function	Direction
1	NC	No Connection	
2-4	D5-D7	Data 5,6,7	Input/Output
5-10	NC	No Connection	
11	V _{CC}	Power Supply	
12-14	NC	No Connection	
15	CE	Chip Select Ing	
16	OE	Output Enable Input	
17	EPM	EPROM Prog. Mode Input	
18	V _{PP}	Prog. Voltage Input	
19-25	NC	No Connection	
26	CLR	Clear	Input
27	CLK	Clock	Input
28-29	NC	No Connection	

zilog ₁₂

Pin No	Symbol	Function	Direction
30	/PGM	Prog. Mode	Input
31	GND	Ground	
32-34	NC	No Connection	
35-39	D0-D4	Data 0,1,2,3,4	Input/Output
40	NC	No Connection	

Table 5. 40-Pin DIP Package Pin Identification EPROM Mode (Continued)

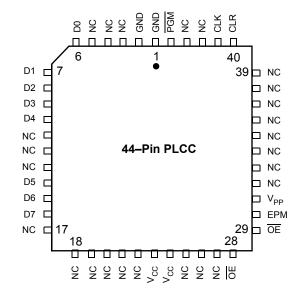


Figure 7. 44-Pin PLCC Pin Configuration EPROM Programming Mode

D: 11	• • •		Direction
Pin No	Symbol	Symbol Function	
1-2	GND	Ground	
3-5	NC	No Connection	
6-10	D0-D4	Data 0,1,2,3,4	Input/Output
11-13	NC	No Connection	
14-16	D5-D7	Data 5,6,7	Input/Output
17-22	NC	No Connection	
23-24	V _{CC}	Power Supply	
25-27	NC	No Connection	
28	CE	Chip Select	Input
29	OE	Output Enable	Input
30	EPM	EPROM Prog. Mode	Input
31	V _{PP}	Prog. Voltage	Input

zilog ₁₅

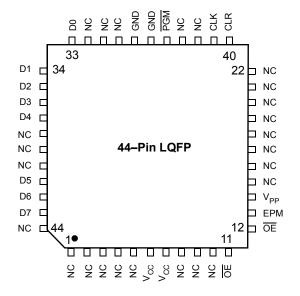


Figure 8. 44-Pin LQFP Pin Configuration EPROM Programming Mode

Pin No	Symbol	Function	Direction
1-5	NC	No Connection	
6-7	V _{CC}	Power Supply	
8-10	NC	No Connection	
11	CE	Chip Select	Input
12	OE	Output Enable	Input
13	EPM	EPROM Prog. Mode Input	
14	V _{PP}	Prog. Voltage Input	
15-22	NC	No Connection	
23	CLR	Clear Input	
24	CLK	Clock Input	
25-26	NC	No Connection	
27	/PGM	Prog. Mode	Input
28-29	GND	Ground	
30-32	NC	No Connection	

Table 7. 44-Pin LQFP Pin Identification EPROM Programming Mode

zilog ₁₆

Table 7. 44-Pin LQFP Pin Identification EPROM Programming Mode (Continued)

Pin No	Symbol	Function	Direction
33-37	D0-D4	Data 0,1,2,3,4	Input/Output
38-40	NC	No Connection	
41-43	D5-D7	Data 5,6,7	Input/Output
44	NC	No Connection	

PS022901-0508

zilog ₂₀

Electrical Characteristics

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Parameter Min		Мах	Units	Notes
Ambient Temperature under Bias	-40	+105	С	
Storage Temperature	-65	+150	С	
Voltage on any Pin with Respect to V _{SS}	-0.6	+7	V	1
Voltage on V _{DD} Pin with Respect to V _{SS} –0.3			V	
Voltage on XTAL1, P32, P33 and $\overline{\text{RESET}}$ Pins with Respect to V _{SS} –0.6		V _{DD} +1	V	2
Total Power Dissipation		1.21	W	
Maximum Allowable Current out of V _{SS}		220	mA	
Maximum Allowable Current into V _{DD}		180	mA	
Maximum Allowable Current into an Input Pin	-600	+600	μA	3
Maximum Allowable Current into an Open-Drain Pin -600		+600	μA	4
Maximum Allowable Output Current Sunk by Any I/O Pin		25	mA	
Maximum Allowable Output Current Sourced by Any I/O Pin		25	mA	
Maximum Allowable Output Current Sunk by RESET Pin		3	mA	

Notes

1. This applies to all pins except XTAL pins and where otherwise noted.

2. There is no input protection diode from pin to V_{DD}.

3. This excludes XTAL pins.

4. Device pin is not at an output Low state.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

Zilog[°] 27

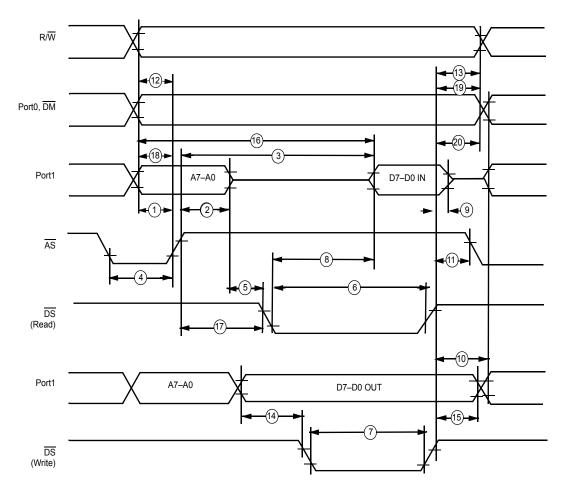


Figure 14. External I/O or Memory Read/Write Timing (Z86E43/743/E44 Only)

Table 13. DC Electrical Characteristics $T_A = 0$ °C to +70 °C, 12 MHz
--

No.	Symbol	Parameter	V _{CC} ¹	Min	Max	Units	Notes
1	TdA(AS)	Address Valid to \overline{AS} Rise Delay	3.5V	35		ns	2
			5.5V	35		ns	2
2	TdAS(A)	AS Rise to Address Float Delay	3.5V	45		ns	2
			5.5V	45		ns	2
3	TdAS(DR)	AS Rise to Read Data Req'd Valid	3.5V		250	ns	2,3
			5.5V		250	ns	2,3

Zilog²⁸

Table 13. DC Electrical Characteristics $T_A = 0$ °C to +70 °C, 12 MHz (Continued)

No.	Symbol	Parameter	V _{cc} ¹	Min	Мах	Units	Notes
4	TwAS	AS Low Width	3.5V	55		ns	2
			5.5V	55		ns	2
5	TdAS(DS)	Address Float to $\overline{\text{DS}}$ Fall	3.5V	0		ns	
			5.5V	0		ns	
6	TwDSR	DS (Read) Low Width	3.5V	200		ns	2,3
			5.5V	200		ns	2,3
7	TwDSW	DS (Write) Low Width	3.5V	110		ns	2,3
			5.5V	110		ns	2,3
8	TdDSR(DR)	DS Fail to Read Data Req'd Valid	3.5V		150	ns	2,3
			5.5V		150	ns	2,3
9	ThDR(DS)	Read Data to $\overline{\text{DS}}$ Rise Hold Time	3.5V	0		ns	2
			5.5V	0		ns	2
10	TdDS(A)	DS Rise to Address Active Delay	3.5V	45		ns	2
			5.5V	55		ns	2
11	TdDS(AS)	$\overline{\text{DS}}$ Rise to $\overline{\text{AS}}$ Fall Delay	3.5V	30		ns	2
			5.5V	45		ns	2
12	TdR/W(AS)	S) R/\overline{W} Valid to \overline{AS} Rise Delay	3.5V	45		ns	2
			5.5V	45		ns	2
13	TdDS(R/W)	$PS(R/W)$ DS Rise to R/\overline{W} Not Valid	3.5V	45		ns	2
			5.5V	45		ns	2
14	TdDW(DSW)	DSW) Write Data Valid to DS Fall (Write) Delay	3.5V	55		ns	2
			5.5V	55		ns	2
15	TdDS(DW)	DS Rise to Write Data Not Valid Delay	3.5V	45		ns	2
			5.5V	55		ns	2
16	TdA(DR)	DR) Address Valid to Read Data Req'd Valid	3.5V		310	ns	2,3
			5.5V		310	ns	2,3
17	TdAS(DS)	$\overline{\text{AS}}$ Rise to $\overline{\text{DS}}$ Fall Delay	3.5V	65		ns	2
			5.5V	65		ns	2

Zilog[®] ₃₀

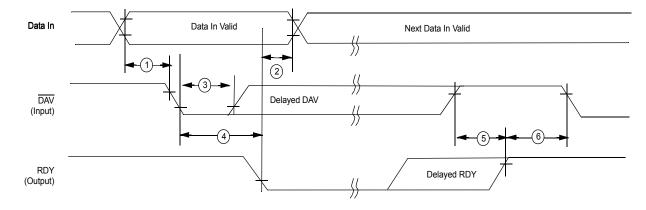
No.	Symbol	Parameter	V _{CC} ¹	Min	Мах	Units	Notes
10	TdDS(A)	DS Rise to Address Active Delay	4.5V	45		ns	2
			5.5V	55		ns	2
11	TdDS(AS)	$\overline{\text{DS}}$ Rise to $\overline{\text{AS}}$ Fall Delay	4.5V	45		ns	2
			5.5V	45		ns	2
12	TdR/W(AS)	R/\overline{W} Valid to \overline{AS} Rise Delay	4.5V	45		ns	2
			5.5V	45		ns	2
13	TdDS(R/W)	$\overline{\text{DS}}$ Rise to R/ $\overline{\text{W}}$ Not Valid	4.5V	45		ns	2
			5.5V	45		ns	2
14	TdDW(DSW)	Write Data Valid to DS Fall (Write) Delay	4.5V	55		ns	2
			5.5V	55		ns	2
15	TdDS(DW)	DS Rise to Write Data Not Valid Delay	4.5V	55		ns	2
			5.5V	55		ns	2
16	TdA(DR)	Address Valid to Read Data Req'd Valid	4.5V		310	ns	2,3
			5.5V		310	ns	2,3
17	TdAS(DS)	$\overline{\text{AS}}$ Rise to $\overline{\text{DS}}$ Fall Delay	4.5V	65		ns	2
			5.5V	65		ns	2
18	TdDM(AS)	DM Valid to AS Rise Delay	4.5V	35		ns	2
			5.5V	35		ns	2
19	ThDS(AS)	S(AS) DS Valid to Address Valid Hold Time	4.5V	35		ns	2
			5.5V	35		ns	2
Notoo							

Table 14. DC Electrical Characteristics $T_A = -40$ °C to +105 °C, 12 MHz (Continued)

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V.

2. Timing numbers given are for minimum TpC.


3. When using extended memory timing, add 2 TpC.

Standard Test Load

All timing references use 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

For Standard Mode (not Low-EMI Mode for outputs) with SMR, D1 = 0, D0 = 0.

Handshake Timing Diagrams

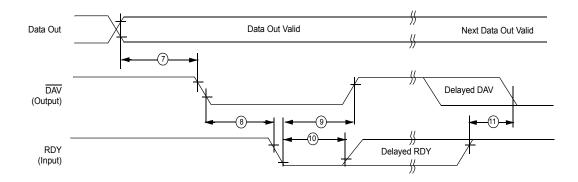


Figure 17. Output Handshake Timing

Table 17. Additional Timing Table (Divide by	Two Mode) T _A = 0 °C to +70 °C
--	---

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Мах	Units Conditions	Notes
1	ТрС	Input Clock Period	3.5V	62.5	DC	250	DC	ns	2,6,4
			5.5V	62.5	DC	250	DC	ns	2,6,4
2	2 TrC,TfC	Clock Input Rise & Fall Times	3.5V		15		25	ns	2,6,4
			5.5V		15		25	ns	2,6,4
3	TwC	Input Clock Width	3.5V	31		31		ns	2,6,4
			5.5V	31		31		ns	2,6,4

zilog

RAM Protect. The upper portion of the RAM's address spaces 80h to EFh (excluding the control registers) can be protected from reading and writing. This option can be selected during the EPROM Programming Mode. After this option is selected, the user can activate this feature from the internal EPROM. D6 of the IMR control register (R251) is used to turn off/on the RAM protect by loading a 0 or 1, respectively. A "1" in D6 indicates RAM Protect enabled.

Stack. The Z86E43/743/E44 external data memory or the internal register file can be used for the stack. The 16-bit Stack Pointer (R254-R255) is used for the external stack, which can reside anywhere in the data memory for ROMless mode, but only from 4096/8192/16384 to 65535 in ROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack on the Z8 that resides within the 236 general-purpose registers (R4-R239). SPH (R254) can be used as a general-purpose register when using internal stack only. R254 and R255 are set to 00H after any reset or Stop Mode Recovery.

Counter/Timers. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The Ti prescaler is driven by internal or external clock sources; however, the TO prescaler is driven by the internal clock only (see Figure 27).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256), that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching one (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 serves as a timer output (T_{OUT}) through which T0, T1, or the internal clock can be output. The counter/timers can be cascaded by connecting the T0 output to the input of T1.

zilog

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register (IPR). An interrupt machine cycle is activated when an interrupt request is granted. Thus, disabling all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. All interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests need service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in bits D7 and D6 of the IRQ Register (R250). The configuration is shown in Table 21.

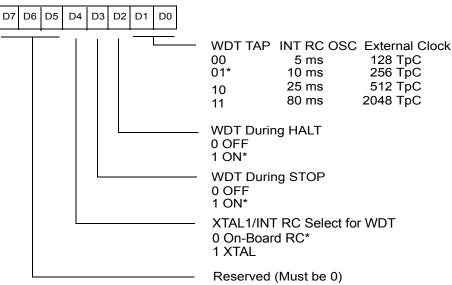
	IRO	Inte	Interrupt Edge				
D7	D6	P31	P32				
0	0	F	F				
0	1	F	R				
1	0	R	F				
1	1	R/F	R/F				
Notes 1. F = Falling Edge 2. R = Rising Edge							

Table 21. IRQ Register Configuration

Clock. The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 10 kHz to 16 MHz max, with a series resistance (RS) less than or equal to 100Ω .

The crystal should be connected across XTAL1 and XTAL2 using the vendor's recommended capacitor values from each pin directly to device pin Ground. The RC oscillator option can be selected in the programming mode. The RC oscillator configuration must be an external resistor connected from XTAL1 to XTAL2, with a frequency-setting capacitor from XTAL1 to Ground (Table 29).

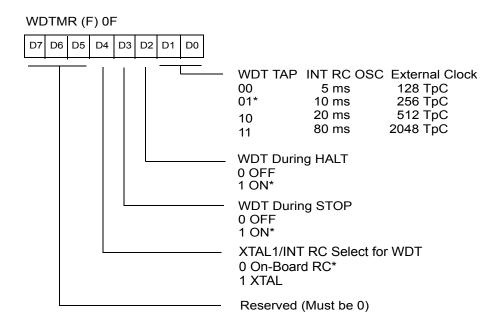
zilog ,


Note: WDT time-out in STOP Mode will not reset SMR,SMR2,PCON, WDTMR, P2M, P3M, Ports 2 & 3 Data Registers, but will activate the T_{POR} delay.

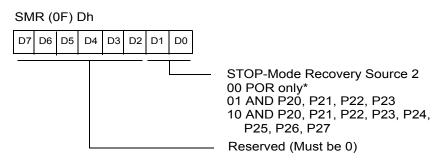
WDTMR Register Accessibility. The WDTMR register is accessible only during the first 60 internal system clock cycles from the execution of the first instruction after Power-On Reset, Watchdog reset or a Stop Mode Recovery (Figure 33 and Figure 34). After this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in Bank F of the Expanded Register File at address location 0Fh.

Clock Free WDT Reset. The WDT will enable the Z8 to reset the I/0 pins whenever the WDT times out, even without a clock source running on the XTAL1 and XTAL2 pins. WDTMR Bit D4 must be 0 for the clock Free WDT to work. The I/O pins will default to their default settings.

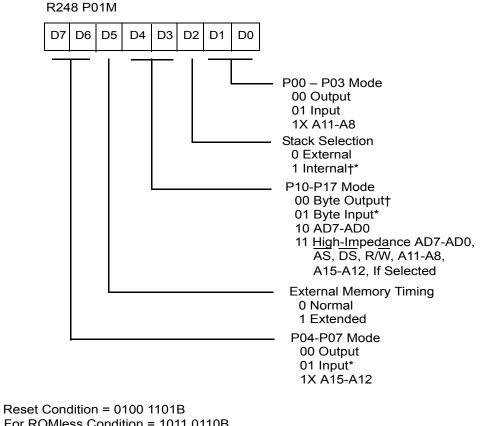
WDTMR (F) 0F


>

* Default setting after RESET

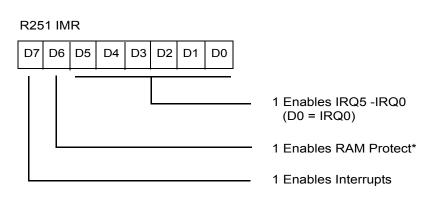

Figure 33. Watchdog Timer Mode Register Write Only

* Default setting after RESET

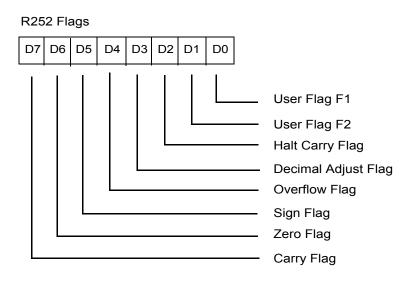

Figure 38. Watchdog Timer Mode Register (Write Only)

Note: Not used in conjunction with SMR Source

Figure 39. Stop Mode Recovery Register2 (Write Only)


Zilog ₇₃

Reset Condition = 0100 1101B For ROMless Condition = 1011 0110B † Z86E33/733/E34 Must be 00 * Default after Reset


Figure 48. Port 0 and 1 Mode Register (F8_h: Write Only)

* This option must be selected when ROM code is submitted for ROM Masking, otherwise this control bit is disabled permanently

Zilog ₈₀

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.