

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e4412vsg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog[°]

Warning: DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

ISO 9001:2000 FS 507510 Zilog products are designed and manufactured under an ISO registered 9001:2000 Quality Management System. For more details, please visit www.zilog.com/quality.

zilog

Architectural Overview

Zilog's Z86E33/733/E34, E43/743/E44 8-Bit One-Time Programmable (OTP) Microcontrollers are members of Zilog's single-chip Z8[®] MCU family featuring enhanced wake-up circuitry, programmable Watchdog Timers, Low Noise EMI options, and easy hardware/ software system expansion capability.

Four basic address spaces support a wide range of memory configurations. The designer has access to three additional control registers that allow easy access to register mapped peripheral and I/O circuits.

For applications demanding powerful I/O capabilities, the Z86E33/733/E34 have 24 pins, and the Z86E43/743/E44 have 32 pins of dedicated input and output. These lines are grouped into four ports, eight lines per port, and are configurable under software control to provide timing, status signals, and parallel I/O with or without handshake, and address/ data bus for interfacing external memory.

Note: All signals with an overline are active Low. For example, B/\overline{W} , for which WORD is active Low, and \overline{B}/W , for which BYTE is active Low.

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

Power connections follow these conventional descriptions:

Features

Table 1 lists the features of Z86E33/733/E34, E43/743/E44.

Device	ROM (KB)	RAM ¹ (Bytes)	I/O Lines	Speed (MHz)
Z86E33	4	237	24	12
Z86733	8	237	24	12
Z86E34	16	237	24	12
Z86E43	4	236	32	12
Z86743	8	236	32	12

zilog ₈

Pin No	Symbol	Function	Direction
27	XTAL2	Crystal Oscillator	Output
28	XTAL1	Crystal Oscillator	Input
29-31	P31-P33	Port 3, Pins 1,2,3	Input
32	P34	Port 3, Pin 4	Output
33	AS	Address Strobe	Output
34	R//RL	ROM/ROMless select Input	
35	RESET	Reset	Input
36	P35	Port 3, Pin 5	Output
37	P37	Port 3, Pin 7	Output
38	P36	Port 3, Pin 6	Output
39	P30	Port 3, Pin 0	Input
40-41	P00-P01	Port 0, Pins 0,1	Input/Output
42-43	P10-P11	Port 1, Pins 0,1	Input/Output
44	P02	Port 0, Pin 2	Input/Output

Table 3. 44-Pin PLCC Pin Identification (Continued)

Zilog 24

Table 11. DC Electrical Characteristics T_A = 0 °C to +70 °C (Continued)

Symbol	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C		Conditions	Notes
T _{POR}	Power-On Reset	3.5V	2.0 ms	24	7	ms		
		5.5V	1.0 ms	13	4	ms		
V _{LV}	Auto Reset Voltage	9	2.3	3.0	2.8	V		11,12

Notes

1. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5 V and the V_{CC} voltage specification of 3.5 V guarantees only 3.5 V

- 2. STD Mode (not Low EMI Mode)
- 3. Z86E43/743/E44 only.
- 4. For analog comparator inputs when analog comparators are enabled
- 5. All outputs unloaded, I/O pins floating, inputs at rail.
- 6. CL1=CL2=22 pF.
- 7. Same as note 5 except inputs at $\rm V_{CC}$ 8. Clock must be forced Low, when XTAL1 is clock driven and XTAL2
- 9. WDT running
- 10. Auto Latch (mask option) selected.
- 11. Device does function down to the Auto Reset voltage
- 12. Max. temperature is 70 °C

Table 12. DC Electrical Characteristics T_A= -40 °C to +105 °C

Symbo I	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C	Units	Conditions	Notes
V _{CH}	Clock Input	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	Driven by	
	High Voltage	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V	External Clock Generator	
V _{CL}	Clock Input	4.5V	GND -0.3	0.2 V _{CC}	1.5	V	Driven by	
	Low Voltage	5.5V	GND -0.3	0.2 V _{CC}	1.5	V	External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.5	V		
V _{IL}	Input Low Voltage	4.5V	GND -0.3	0.2 V _{CC}	1.5	V		
		5.5V	GND -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High Voltage Low EMI Mode	4.5V	V _{CC} -0.4		4.8		I _{OH} = -0.5 mA	2
		5.5V	V _{CC} -0.4		4.8		I _{OH} = -0.5 mA	2

Zilog[°] 27

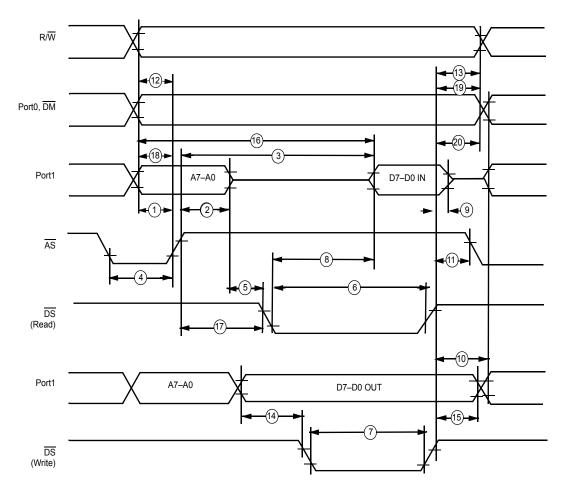
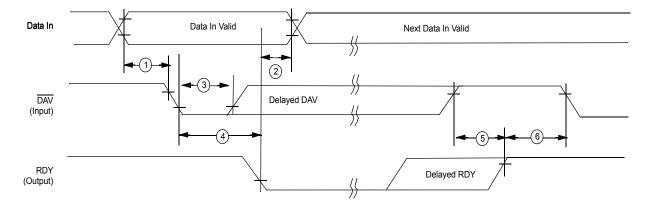



Figure 14. External I/O or Memory Read/Write Timing (Z86E43/743/E44 Only)

Table 13. DC Electrical Characteristics $T_A = 0$ °C to +70 °C, 12 MHz
--

No.	Symbol	Parameter	V _{CC} ¹	Min	Max	Units	Notes
1	TdA(AS)	Address Valid to \overline{AS} Rise Delay	3.5V	35		ns	2
			5.5V	35		ns	2
2	TdAS(A)	AS Rise to Address Float Delay	3.5V	45		ns	2
			5.5V	45		ns	2
3	TdAS(DR)	AS Rise to Read Data Req'd Valid	3.5V		250	ns	2,3
			5.5V		250	ns	2,3

Handshake Timing Diagrams

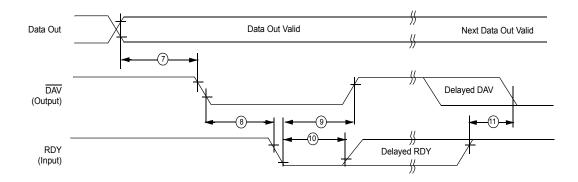


Figure 17. Output Handshake Timing

Table 17. Additional Timing Table (Divide by Two Mode) T_A	= 0 °C to +70 °C
--	------------------

No	Symbol	Parameter	V _{CC} ¹	Min	Max	Min	Max	Units Conditions	Notes
1	ТрС	Input Clock Period	3.5V	62.5	DC	250	DC	ns	2,6,4
			5.5V	62.5	DC	250	DC	ns	2,6,4
2	TrC,TfC	Clock Input Rise &	3.5V		15		25	ns	2,6,4
	Fall Times	Fall Times	5.5V		15		25	ns	2,6,4
3	TwC	Input Clock Width	3.5V	31		31		ns	2,6,4
			5.5V	31		31		ns	2,6,4

zilog[°] 36

No	Symbol	Parameter	V _{CC} ¹	Min	Мах	Min	Мах	Units	Conditions	Notes
1	ТрС	Input Clock Period	3.5V	62.5	DC	250	DC	ns		2,6,4
			5.5V	62.5	DC	250	DC	ns		2,6,4
2	TrC,TfC	Clock Input Rise &	3.5V		15		25	ns		2,6,4
		Fall Times	5.5V		15		25	ns		2,6,4
3	TwC	Input Clock Width	3.5V	31		31		ns		2,6,4
			5.5V	31		31		ns		2,6,4
4	TwTinL	Timer Input Low	3.5V	70		70		ns		2,6,4
		Width	5.5V	70		70		ns		2,6,4
5	5 TwTinH	Timer Input High	3.5V	5TpC		5TpC				2,6,4
		Width	5.5V	5TpC		5TpC				2,6,4
6	TpTin	Timer Input Period	3.5V	8TpC		8TpC				2,6,4
			5.5V	8TpC		8TpC				2,6,4
7	TrTin,	Timer Input Rise &	3.5V		100		100	ns		2,6,4
	TfTin	Fall Timer	5.5V		100		100	ns		2,6,4
8A	TwIL	Int. Request Low	3.5V	70		70		ns		2,6,4,5
		Time	5.5V	70		70		ns		2,6,4,5
8B	TwIL	Int. Request Low	3.5V	5TpC		5TpC				2,6,4,5
		Time	5.5V	5TpC		5TpC				2,6,4,5
9	TwlH	Int. Request Input	3.5V	5TpC		5TpC				2,6,4,5
		High Time	5.5V	5TpC		5TpC				2,6,4,5
10	Twsm	Stop Mode	3.5V	12		12		ns		6,7
		Recovery Width Spec	5.5V	12		12		ns		6,7
11	Tost	Oscillator Startup	3.5V		5TpC		5TpC			6,7
		Time	5.5V		5TpC		5TpC			6,7

Table 18. Additional Timing Table (Divide by Two Mode) $T_A = -40 \degree C$ to +105 $\degree C$

zilog

The Z86E43/743/E44 does not reset WDTMR, SMR, P2M, and P3M registers on a Stop-Mode Recovery operation.

ROMless (input, active Low). This pin, when connected to GND, disables the internal ROM and forces the device to function as a Z86C90/C89 ROMless Z8. (Note that, when left unconnected or pulled High to V_{CC} , the device functions nor

Note: When using in ROM Mode in High EMI (noisy) environment, the ROMless pins should be connected directly to V_{CC} .

 $\overline{\mathbf{DS}}$ (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of $\overline{\mathbf{DS}}$. For WRITE operations, the falling edge of $\overline{\mathbf{DS}}$ indicates that output data is valid.

AS (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle for external memory transfer. Address output is from Port 0/Port 1 for all external programs. Memory address transfers are valid at the trailing edge of \overline{AS} . Under program control, \overline{AS} is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write.

Port 0 (P07-P00). Port 0 is an 8-bit, bidirectional, CMOS-compatible I/0 port. These eight I/O lines can be configured under software control as a nibble I/0 port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and nibble programmed. Either nibble output that can be globally programmed as push-pull or opendrain. Low EMI output buffers can be globally programmed by the software. Port 0 can be placed under handshake control. In Handshake Mode, Port 3 lines P32 and P35 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to Port 0's upper nibble. The lower nibble must have the same direction as the upper nibble.

For external memory references, Port 0 provides address bits A11-A8 (lower nibble) or Al 5-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. In ROMless mode, after a hardware reset, Port 0 is configured as address lines Al 5-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include re-configuration to eliminate this extended timing mode. In ROM mode, Port 0 is defined as input after reset.

Port 0 can be set in the High-Impedance Mode if selected as an address output state, along with Port 1 and the control signals \overline{AS} , \overline{DS} , and R/\overline{W} (Figure 18).

Zilog 42

In Handshake Mode, Port 3 lines P31 and P36 are used as handshake control lines. The handshake direction is determined by the configuration (input or output) assigned to bit 7 of Port 2 (see Figure 20).

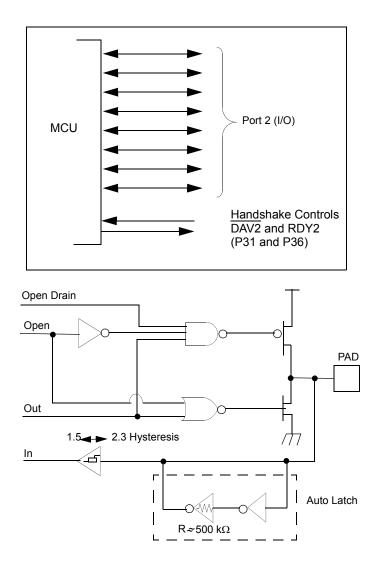
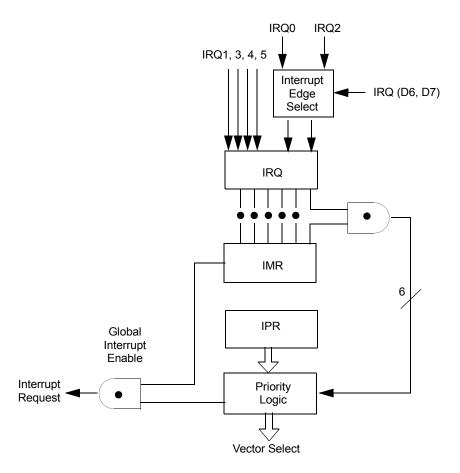
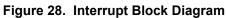
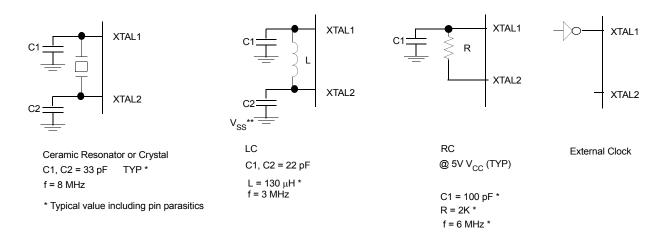




Figure 20. Port 2 Configuration

Port 3 (P37-P30). Port 3 is an 8-bit, CMOS-compatible port with four fixed inputs (P33-P30) and four fixed outputs (P37-P34). These eight lines can be configured by software for interrupt and handshake control functions. Port 3, Pin 0 is Schmitt- triggered. P31, P32, and P33 are standard CMOS inputs with single trip point (no Auto Latches) and P34, P35, P36, and P37 are push-pull output lines. Low EMI output buffers can be globally programmed by the software. Two on-board comparators can process analog signals on P31



Name	Source	Vector Location	Comments
IRQ0	DAV0, IRQ0	0,1	External (P32), Rising/Falling Edge Triggered
IRQ1	IRQ1	2,3	External (P33), Falling Edge Triggered
IRQ2	DAV2, IRQ2, T _{IN}	4,5	External (P31), Rising/Falling Edge Triggered
IRQ3	IRQ3	6,7	External (P30), Falling Edge Triggered
1RQ4	Т0	8,9	Internal
IRQ5	T1	10,11	Internal

PS022901-0508

zilog

Figure 29. Oscillator Configuration

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for the Power-On Reset (POR) timer function. The POR timer allows V_{CC} and the oscillator circuit to stabilize before instruction execution begins.

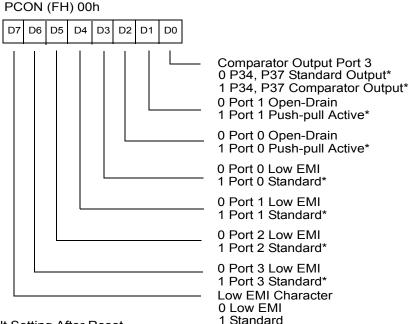
The POR timer circuit is a one-shot timer triggered by one of three conditions:

- 1. Power fail to Power OK status
- 2. Stop Mode Recovery (if D5 of SMR=0)
- 3. WDT time-out

The POR time is a nominal 5 ms. Bit 5 of the STOP mode Register (SMR) determines whether the POR timer is by-passed after Stop Mode Recovery (typical for an external clock and RC/LC oscillators with fast start up times).

HALT. Turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupt IRQ0, IRQ1, and IRQ2 remain active. The device is recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after the HALT. In order to enter STOP or HALT Mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, you must execute a NOP (Opcode = FFh) immediately before the appropriate sleep instruction, that is:

Zilog[®] 57


FF NOP ; clear the pipeline6F STOP ; enter STOP mode

or

FF NOP ; clear the pipeline7F HALT ; enter HALT mode

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. STOP Mode is terminated by one of the following resets: either by WDT time-out, POR, a Stop Mode Recovery Source, which is defined by the SMR register or external reset. This causes the processor to restart the application program at address 000Ch.

Port Configuration Register (PCON). The PCON register configures the ports individually; comparator output on Port 3, open-drain on Port 0 and Port 1, low EMI on Ports 0, 1, 2 and 3, and low EMI oscillator. The PCON register is located in the expanded register file at Bank F, location 00 (Figure 30).

* Default Setting After Reset

zilog

Comparator Output Port 3 (D0). Bit 0 controls the comparator output in Port 3. A "1" in this location brings the comparator outputs to P34 and P37, and a "0" releases the Port to its standard I/O configuration. The default value is 0.

Port 1 Open-Drain (D1). Port 1 can be configured as an open-drain by resetting this bit (D1=0) or configured as push-pull active by setting this bit (D1=1). The default value is 1.

Port 0 Open-Drain (D2). Port 0 can be configured as an open-drain by resetting this bit (D2=0) or configured as push-pull active by setting this bit (D2=1). The default value is 1.

Low EMI Port 0 (D3). Port 0 can be configured as a Low EMI Port by resetting this bit (D3=0) or configured as a Standard Port by setting this bit (D3=1). The default value is 1.

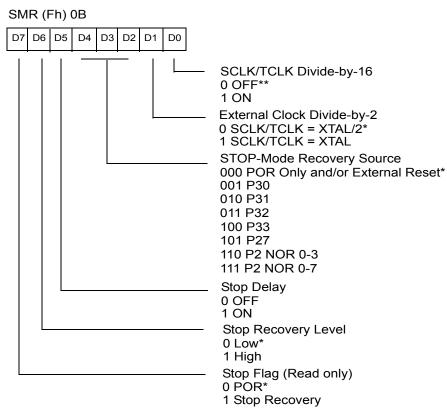
Low EMI Port 1 (D4). Port 1 can be configured as a Low EMI Port by resetting this bit (D4=0) or configured as a Standard Port by setting this bit (D4=1). The default value is 1.

Note: The emulator does not support Port 1 low EMI mode and must be set D4 = 1.

Low EMI Port 2 (D5). Port 2 can be configured as a Low EMI Port by resetting this bit (D5=0) or configured as a Standard Port by setting this bit (D5=1). The default value is 1.

Low EMI Port 3 (D6). Port 3 can be configured as a Low EMI Port by resetting this bit (D6=0) or configured as a Standard Port by setting this bit (D6=1). The default value is 1.

Low EMI OSC (D7). This bit of the PCON Register controls the low EMI noise oscillator. A "1" in this location configures the oscillator with standard drive. While a "0" configures the oscillator with low noise drive, however, it does not affect the relationship of SCLK and XTAL. The low EMI mode will reduce the drive of the oscillator (OSC). The default value is 1.


Note: 4 *MHz* is the maximum external clock frequency when running in the low EMI oscillator mode.

Stop-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 31). All bits are Write Only except bit 7 which is a Read Only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power-on cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the Stop Mode Recovery Source. The SMR is located in Bank F of the Expanded Register File at address 0BH.

>

>

* Default setting after RESET

** Default setting after RESET and STOP-Mode Recovery

Figure 31. Stop Mode Recovery Register (Write-Only Except Bit D7, Which Is Read-Only)

SCLK/TCLK Divide-by-16 Select (D0). This bit of the SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).

External Clock Divide-by-Two (D1). This bit can eliminate the oscillator divide-by-two circuitry. When this bit is 0, the System Clock (SCLK) and Timer Clock (TCLK) are equal to the external clock frequency divided by two. The SCLK/TCLK is equal to the external clock frequency when this bit is set (D1=1). Using this bit together with D7 of PCON further helps lower EMI (that is, D7 (PCON) = 0, D1 (SMR) = 1). The default setting is zero.

Stop Mode Recovery Source (D2, D3, and D4). These three bits of the SMR register specify the wake up source of the Stop Mode Recovery (Figure 32). Table 22 shows the SMR source selected with the setting of D2 to D4. P33-P31 cannot be used to wake up

Zilog[®] ₆₄

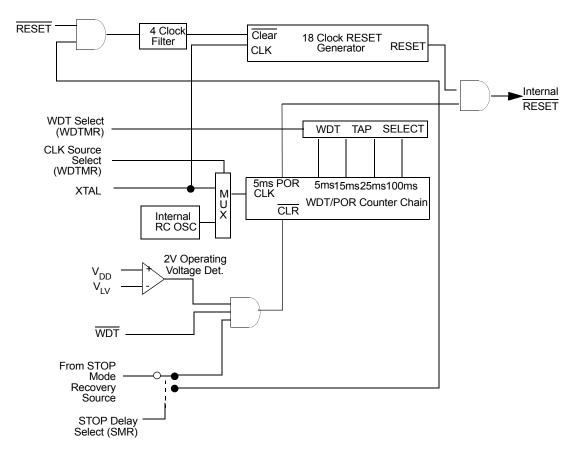
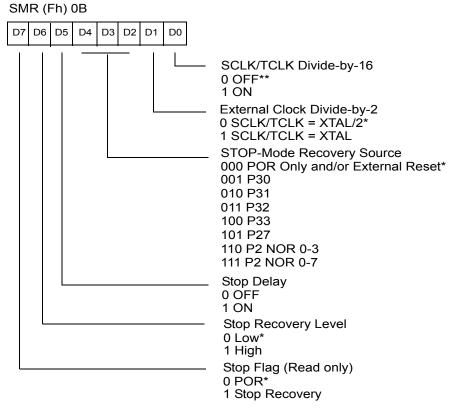



Figure 34. Resets and WDT

Auto Reset Voltage. An on-board Voltage Comparator checks that V_{CC} is at the required level to ensure correct operation of the device. Reset is globally driven if V_{CC} is below VLV (Figure 35).

Zilog ₆₇

Note: Note used in conjunction with SMR2 Source

* Default setting after RESET

** Default setting after RESET and STOP-Mode Recovery

Figure 37. Stop Mode Recovery Register (Write Only Except Bit D7, Which is Read Only)

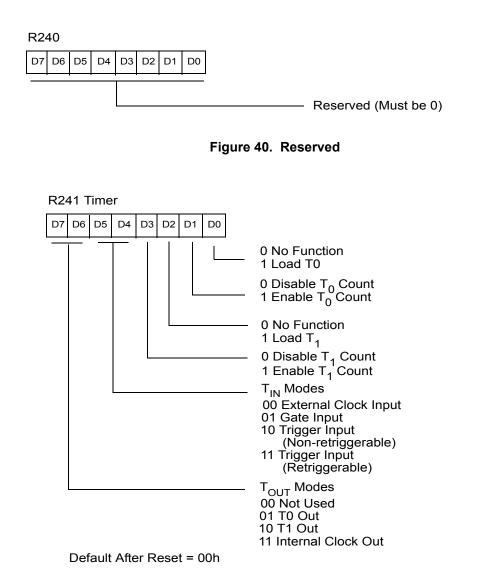
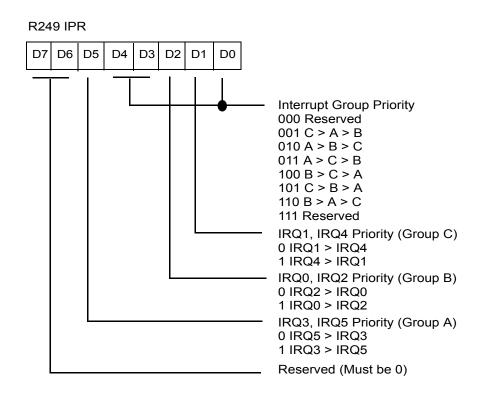



Figure 41. Timer Mode Register (F1_h: Read/Write)

Zilog[®] ₇₄

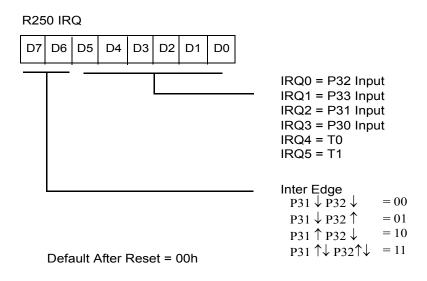
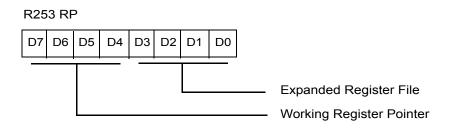
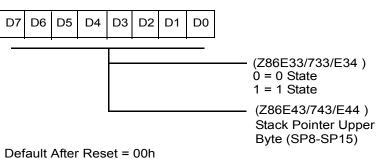
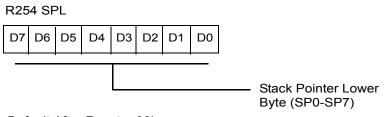
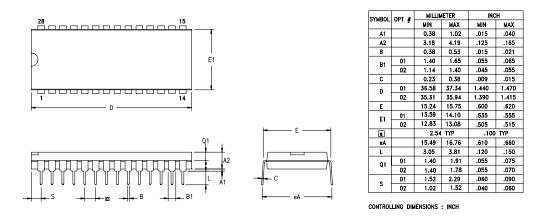



Figure 50. Interrupt Request Register (FA_h: Read/Write)



Default After Reset = 00h


Figure 53. Register Pointer (FD_h: Read/Write)



Default After Reset = 00h

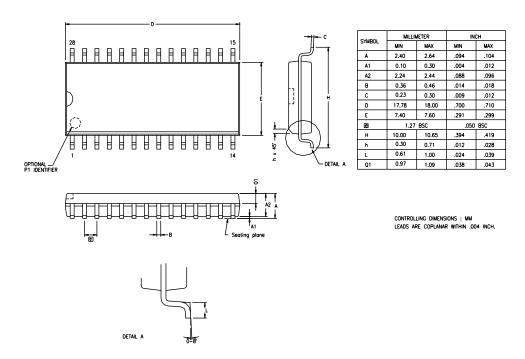


Figure 59. 28-Pin SOIC Package Diagram