E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LCD, LVD, PWM, WDT
Number of I/O	37
Program Memory Size	36КВ (36К × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08lh36clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addendum for Revision 6

1 Addendum for Revision 6

Table 1. MC9S08LH64 Data Sheet Rev 6 Addendum

Location	Description
Section 3.7, "Supply Current Characteristics"/Table 9/Page	In the table, for numbers 3 and 4, change "LPS" to "LPR".
23	

2 Revision History

Table 2 provides a revision history for this document.

Table 2. Revision History Table

Rev. Number	Substantive Changes	Date of Release
1.0	Initial release. Correct errors in the following sections: • Section 3.7, "Supply Current Characteristics"	07/2012

Figure 2. 64-Pin LQFP

		< Lowest Priority> Highest					
80	64	Port Pin	Alt 1	Alt 2	Alt3	Alt4	
9	5	PTD5	LCD5				
10	6	PTD4	LCD4				
11	7	PTD3	LCD3				
12	8	PTD2	LCD2				
13	9	PTD1	LCD1				
14	10	PTD0	LCD0				
15	11	V _{CAP1}					
16	12	V _{CAP2}					
17	13	V _{LL1}					
18	14	V _{LL2}					
19	15	V _{LL3}					
20	16	V _{LCD}					
21	17	PTA6	KBIP6	ADP10	ACMP+		
22	18	PTA7	KBIP7	ADP11	ACMP-		
23	10	V _{SSA}					
24	19	V _{REFL}					
25		DADP0					
26		DADM0					
27		VREF01					
28	20	V _{REFH}					
29	20	V _{DDA}					
30	21	PTB0		EXTAL			
31	22	PTB1		XTAL			
32	23	V _{DD}					
33	24	V _{SS}					
34	25	PTB2	RESET				
	26	VREFO2					
35	27	PTB4	MISO	SDA			
36	28	PTB5	MOSI	SCL			
37	29	PTB6	RxD2	SPSCK			
38	30	PTB7	TxD2	SS			
39	31	PTC0	RxD1				
40	32	PTC1	TxD1				
41	33	PTC2	TPM1CH0				
42	34	PTC3	TPM1CH1				
43	35	PTC4	TPM2CH0				
44	36	PTC5	TPM2CH1				
45	37	PTC6	ACMPO	BKGD	MS		

Table 2. Pin Availability by Package Pin-Count (continued)

			< Lov	vest Priority>	Highest	
80	64	Port Pin	Alt 1	Alt 2	Alt3	Alt4
46	38	PTC7	IRQ	TCLK		
47	39	PTA0	KBIP0		SS	ADP4
48	40	PTA1	KBIP1		SPSCK	ADP5
49	41	PTA2	KBIP2	SDA	MISO	ADP6
50	42	PTA3	KBIP3	SCL	MOSI	ADP7
51	43	PTA4	KBIP4	ADP8	LCD43	
52	44	PTA5	KBIP5	ADP9	LCD42	
53	45	LCD41				
54	46	LCD40				
55	47	LCD39				
56	48	LCD38				
57		LCD37				
58		LCD36				
59		LCD35				
60		LCD34				
61		LCD33				
62		LCD32				
63		LCD31				
64	49	LCD30				
65	50	LCD29				
66	51	LCD28				
67	52	LCD27				
68	53	LCD26				
69	54	LCD25				
70	55	LCD24				
71	56	LCD23				
72	57	LCD22				
73	58	LCD21				
74	59	PTE7	LCD20			
75	60	PTE6	LCD19			
76	61	PTE5	LCD18			
77	62	PTE4	LCD17			
78	63	PTE3	LCD16			
79	64	PTE2	LCD15			
80	1	PTF1	LCD14			

Table 2. Pin Availability by Package Pin-Count (continued)

Thermal Characteristics

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	± 25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 4. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins, except for PTB2 are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit			
Operating temperature range (packaged)	T _A	T _L to T _H 40 to 85	°C			
Maximum junction temperature	Т _Ј	95	°C			
Thermal resistance Single-layer board						
80-pin LQFP	θ	55	°C/W			
64-pin LQFP	⁰JA	73	0/11			
Thermal resistance Four-layer board						
80-pin LQFP	θ	42	°C/W			
64-pin LQFP	۷JA	54	0/11			

Table 5.	Thermal	Characte	eristics
----------	---------	----------	----------

The average chip-junction temperature (T_J) in °C can be obtained from:

Latch-un	Minimum input voltage limit		-2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions (continued)

Table 7. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	—	V
2	Charge device model (CDM)	V _{CDM}	±500	—	V
3	Latch-up current at $T_A = 85 \text{ °C}$	I _{LAT}	±100	—	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	C	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
1		Operating Voltage				1.8		3.6	V
	С	Outrut high	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² , low-drive strength		V _{DD} >1.8 V I _{Load} = -0.6 mA	V _{DD} – 0.5	_	_	
2	Ρ	voltage	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ²	V _{OH}	V _{DD} > 2.7 V I _{Load} = -10 mA	V _{DD} – 0.5	_	_	V
	С		high-drive strength		$V_{DD} > 1.8 V$ $I_{Load} = -3 mA$	V _{DD} – 0.5	_	_	
	С	Output high	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		V_{DD} > 1.8 V I _{Load} = -0.5 mA	V _{DD} – 0.5			
3	Ρ	voltage	PTA[4:5], PTD[0:7],	V _{OH}	V _{DD} > 2.7 V I _{Load} = -2.5 mA	V _{DD} – 0.5			V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = -1 mA	V _{DD} - 0.5			
4	D	Output high current	Max total I _{OH} for all ports	I _{OHT}		_		100	mA
С	С	Output law	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7], low-drive strength		V _{DD} >1.8 V I _{Load} = 0.6 mA	_		0.5	
5	Ρ	voltage	voltage PTA[0:3], PTA[6:7],	V _{OL}	V _{DD} > 2.7 V I _{Load} = 10 mA	_		0.5	V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = 3 mA	_		0.5	

Table 8. DC Characteristics

Figure 7. Typical High-Side (Source) Characteristics (Non LCD Pins)— Low Drive (PTxDSn = 0)

Figure 8. Typical High-Side (Source) Characteristics(Non LCD Pins) — High Drive (PTxDSn = 1)

Figure 10. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

Figure 12. Typical High-Side (Source) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

Internal Clock Source (ICS) Characteristics

Figure 14. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

Figure 15. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.9 Internal Clock Source (ICS) Characteristics

Num	С	Char	acteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Average internal reference frequency — untrimmed		f _{int_ut}	25	32.7	41.66	kHz
2	Ρ	Average internal reference	requency — user-trimmed	f _{int_t}	31.25	_	39.06	kHz
3	Ρ	Average internal reference	requency — factory-trimmed	f _{int_t}	_	32.7	_	kHz
4	Т	Internal reference start-up time		t _{IRST}	_	60	100	μS
5	Ρ	DCO output frequency range — untrimmedLow range (DFR = 00)fdco_utMid range (DFR = 01)Fdco_ut	12.8	16.8	21.33	MHz		
5	С		Mid range (DFR = 01)	'aco_ut	25.6	33.6	42.67	
6	Ρ	DCO output frequency	Low range (DFR = 00)	f.	16	_	20	MЦz
0	Ρ	range — trimmed	Mid range (DFR = 01)	'dco_t	32	_	40	
7	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
8	С	Resolution of trimmed DCO voltage and temperature (no	output frequency at fixed ot using FTRIM)	$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}

Tabla 1	1 ICC Eres	ulanau Char	ificationa /Ta	mmereture	Denee -	10 to 05	OC Amplant)
rable r	Z. ICS Fred	iuency spec	incations (re	mberature	Rande = -	-40 10 00	
							• • • • • • • • • • • • • • • • • • • •

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
9	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	-	+0.5 -1.0	±2	%f _{dco}
10	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 °C to 70 °C	Δf_{dco_t}	-	±0.5	±1	%f _{dco}
11	С	FLL acquisition time ²	t _{Acquire}		_	1	ms
12	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ³	C _{Jitter}		0.02	0.2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85 °C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Deviation of DCO Output from Trimmed Frequency

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

Figure 18. IRQ/KBIPx Timing

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 14. TPM Input Timing

Figure 19. Timer External Clock

Figure 20. Timer Input Capture Pulse

NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1. Not defined but normally MSB of character just received.

1. Not defined but normally LSB of character just received

Figure 24. SPI Slave Timing (CPHA = 1)

Num	Characteris tic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
9		16 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz				0.5 1 2		External to MCU
10	Analog Source	13/12 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz	R _{AS}		—	1 2 5	kΩ	
11	Resistance	11/10 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz				2 5 10		Assumes ADLSMP=0
12		9/8 bit modes f _{ADCK} > 8MHz f _{ADCK} < 8MHz				5 10		
13	ADC Conversion Clock Freq.	ADLPC = 0, ADHSC = 1		1.0	_	8		
14		ADLPC = 0, ADHSC = 0	f _{ADCK}	1.0	_	5	MHz	
15		ADLPC = 1, ADHSC = 0		1.0		2.5		

Table 17.	16-bit	ADC C	perating	Conditions
-----------	--------	-------	----------	------------

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Table 18. 16-bit ADC Characteristics full operating range($V_{REFH} = V_{DDA} > 1.8$, $V_{REFL} = V_{SSA}$, $F_{ADCK} \le 8MHz$)

Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Supply Current	ADLPC = 1, ADHSC = 0			—	215	_		
	ADLPC = 0, ADHSC = 0	т	T I _{DDA}	—	470		μA	ADLSMP = 0 ADCO = 1
	ADLPC=0, ADHSC=1			—	610			
Supply Current	Stop, Reset, Module Off	С	I _{DDA}	—	0.01		μA	
ADC	ADLPC = 1, ADHSC = 0		f _{ADACK}	—	2.4			
Asynchronous Clock Source	ADLPC = 0, ADHSC = 0	Р		—	5.2		MHz	t _{ADACK} = 1/f _{ADACK}
	ADLPC = 0, ADHSC = 1			—	6.2	_		
Sample Time	See reference manual for sample times							
Conversion Time	See reference manual for conversion times							

Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Full-Scale Error	16-bit differential mode 16-bit single-ended mode	Т	E _{FS}		+10/0 +14/0	+42/-2 +46/-2	LSB ²	$V_{ADIN} = V_{DDA}$
	13-bit differential mode 12-bit single-ended mode	Т			±1.0 ±1.0	±3.5 ±3.5		
	11-bit differential mode 10-bit single-ended mode	Т			±0.4 ±0.4	±1.5 ±1.5		
	9-bit differential mode 8-bit single-ended mode	Т			±0.2 ±0.2	±0.5 ±0.5		
Quantization	16-bit modes	D	EQ		-1 to 0		LSB ²	
Error	≤13-bit modes					±0.5		
Effective Number of Bits	16-bit differential mode Avg = 32 Avg = 16 Avg = 8 Avg = 4 Avg = 1	С	ENOB	12.8 12.7 12.6 12.5 11.9	14.2 13.8 13.6 13.3 12.5	 	Bits	F _{in} = F _{sample} /100
	16-bit single-ended mode Avg = 32 Avg = 16 Avg = 8 Avg = 4 Avg = 1	D			13.2 12.8 12.6 12.3 11.5			
Signal to Noise plus Distortion	See ENOB		SINAD	SINAD =	= 6.02 · ENG	<i>DB</i> + 1. 76	dB	
Total Harmonic Distortion	16-bit differential mode Avg = 32	С	THD	_	-91.5	-74.3	dB	F _{in} = F _{sample} /100
	16-bit single-ended mode Avg = 32	D		_	-85.5	_		
Spurious Free Dynamic	16-bit differential mode Avg = 32	С	SFDR	75.0	92.2		dB	F _{in} = F _{sample} /100
Range	16-bit single-ended mode Avg = 32	D		_	86.2	_		
Input Leakage Error	all modes	D	E _{IL}		I _{In} * R _{AS}		mV	I _{In} = leakage current (refer to DC characteristics)
Temp Sensor	-40 °C– 25 °C	С	m	_	1.646		mV/°C	
Siohe	25 °C– 125 °C			_	1.769	_		
Temp Sensor Voltage	25 °C	С	V _{TEMP25}	_	701.2	_	mV	

Table 18. 16-bit ADC Characteristics full operating range($V_{REFH} = V_{DDA} > 1.8$, $V_{REFL} = V_{SSA}$, $F_{ADCK} \le 8MHz$)

- $^1\,$ All accuracy numbers assume the ADC is calibrated with $V_{\text{REFH}} \! = \! V_{\text{DDA}}$
- ² Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK}=2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- ³ 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^N$

Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Total Unadjusted	16-bit differential mode 16-bit single-ended mode	Т	TUE		±16 ±20	+24/-24 +32/-20	LSB ³	32x Hardware Averaging (AVGE = %1 AVGS = %11)
Error	13-bit differential mode 12-bit single-ended mode	Т			±1.5 ±1.75	±2.0 ±2.5		
	11-bit differential mode 10-bit single-ended mode	Т			±0.7 ±0.8	±1.0 ±1.25		
	9-bit differential mode 8-bit single-ended mode	Т			±0.5 ±0.5	±1.0 ±1.0		
Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	Т	DNL		±2.5 ±2.5	±3 ±3	LSB ²	
	13-bit differential mode 12-bit single-ended mode	Т	-		±0.7 ±0.7	±1 ±1	LSB ²	
	11-bit differential mode 10-bit single-ended mode	Т			±0.5 ±0.5	±0.75 ±0.75		
	9-bit differential mode 8-bit single-ended mode	Т			±0.2 ±0.2	±0.5 ±0.5		
Integral Non-Linearity	16-bit differential mode 16-bit single-ended mode	Т	INL		±6.0 ±10.0	±12.0 ±16.0		
	13-bit differential mode 12-bit single-ended mode	Т			±1.0 ±1.0	±2.0 ±2.0		
	11-bit differential mode 10-bit single-ended mode	Т			±0.5 ±0.5	±1.0 ±1.0		
	9-bit differential mode 8-bit single-ended mode	Т			±0.3 ±0.3	±0.5 ±0.5		
Zero-Scale Error	16-bit differential mode 16-bit single-ended mode	Т	E _{ZS}		±4.0 ±4.0	+16/0 +16/-8	LSB ²	$V_{ADIN} = V_{SSA}$
	13-bit differential mode 12-bit single-ended mode	Т			±0.7 ±0.7	±2.0 ±2.0		
	11-bit differential mode 10-bit single-ended mode	Т		_	±0.4 ±0.4	±1.0 ±1.0		
	9-bit differential mode 8-bit single-ended mode	Т		—	±0.2 ±0.2	±0.5 ±0.5		

Table 19. 16-bit ADC Characteristics($V_{REFH} = V_{DDA} \ge 2.7V$, $V_{REFL} = V_{SSA}$, $F_{ADCK} \le 4MHz$, ADHSC=1)

VREF Specifications

- ² Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- ³ 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^N$

3.13 VREF Specifications

Table 20. VREF Electrical Specifications

Num	Characteristic	Symbol	Min	Max	Unit
1	Supply voltage	V _{DD}	1.80	3.60	V
2	Operating temperature range	T _{op}	-40	105	С
3	Maximum Load		—	10	mA
	Opera	tion across Tempe	rature		
4	V Room Temp	V Room Temp	1.135	1.165	V
5	Untrimmed –40 °C	Untrimmed –40 °C	–2 to –6 from Volt	l Room Temp age	mV
6	Trimmed –40 °C	Trimmed –40 °C	± 1 from Room	n Temp Voltage	mV
7	Untrimmed 0 °C	Untrimmed 0 °C	+1 to –2 from Volt	I Room Temp age	mV
	Trimmed 0 °C	Trimmed 0 °C	± 0.5 from Room	m Temp Voltage	mV
8	Untrimmed 50 °C	Untrimmed 50 °C	+1 to –2 from Room Temp Voltage		mV
9	Trimmed 50 °C	Trimmed 50 °C	± 0.5 from Room	mV	
10	Untrimmed 85 °C	Untrimmed 85 °C	0 to –4 from Room Temp Voltage		mV
11	Trimmed 85 °C	Trimmed 85 °C	± 0.5 from Room Temp Voltage		mV
12	Untrimmed 125 °C	Untrimmed 125 °C	–2 to –6 from Room Temp Voltage		mV
13	Trimmed 125 °C	Trimmed 125 °C	± 1 from Room	n Temp Voltage	mV
14	Load Bandwidth	—	—	_	-
15	Load Regulation Mode = 10 at 1mA load	Mode = 10	20	100	μV/mA
16	Line Regulation (Power Supply	DC	± 0.1 from Room	m Temp Voltage	mV
10	Rejection)	AC	-6	50	dB
	F	Power Consumptio	n		
17	Powered down Current (Stop Mode, VREFEN = 0, VRSTEN = 0)	I	_	.100	μΑ
18	Bandgap only (Mode[1:0] 00)	I	—	75	μA
19	Low-Power buffer (Mode[1:0] 01)	I	_	125	μΑ
20	Tight-Regulation buffer (Mode[1:0] 10)	I		1.1	mA
21	Reserved (Mode[1:0] 11)			_	