

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                     |
|----------------------------|------------------------------------------------------------|
| Core Processor             | S08                                                        |
| Core Size                  | 8-Bit                                                      |
| Speed                      | 40MHz                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                  |
| Peripherals                | LCD, LVD, PWM, WDT                                         |
| Number of I/O              | 37                                                         |
| Program Memory Size        | 64KB (64K x 8)                                             |
| Program Memory Type        | FLASH                                                      |
| EEPROM Size                | -                                                          |
| RAM Size                   | 4K x 8                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                |
| Data Converters            | A/D 8x16b                                                  |
| Oscillator Type            | Internal                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                          |
| Mounting Type              | Surface Mount                                              |
| Package / Case             | 64-LQFP                                                    |
| Supplier Device Package    | 64-LQFP (10x10)                                            |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08lh64clh |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# **Freescale Semiconductor**

Data Sheet Addendum

MC9S08LH64AD Rev. 1, 08/2012

# MC9S08LH64 Data Sheet Addendum

by: Automotive and Industrial Solutions Group

This document describes corrections to the *MC9S08LH64 Series Data Sheet*, order number MC9S08LH64. For convenience, the addenda items are grouped by revision. Please check our website at http://www.freescale.com for the latest updates.

The current available version of the *MC9S08LH64 Series Data Sheet* is Revision 6.

### Table of Contents

| 1 | Addendum for Revision 6 | 2 |
|---|-------------------------|---|
| 2 | Revision History        | 2 |



#### How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.



Freescale<sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.© Freescale Semiconductor, Inc. 2012. All rights reserved.

MC9S08LH64AD Rev. 1 08/2012

## Freescale Semiconductor Data Sheet: Advanced Information

### Document Number: MC9S08LH64 Rev. 6, 4/2012

An Energy Efficient Solution by Freescale

# MC9S08LH64 Series

Covers: MC9S08LH64 and MC9S08LH36

- 8-bit HCS08 Central Processor Unit (CPU)
  - Up to 40 MHz CPU at 3.6 V to 2.1 V across temperature range of -40 °C to 85 °C
  - Up to 20 MHz at 2.1 V to 1.8 V across temperature range of  $-40\ ^\circ C$  to 85  $^\circ C$
  - HC08 instruction set with added BGND instruction
  - Support for up to 32 interrupt/reset sources
- On-Chip Memory
  - Dual array flash read/program/erase over full operating voltage and temperature
  - Random-access memory (RAM)
  - Security circuitry to prevent unauthorized access to RAM and flash contents
- Power-Saving Modes
  - Two low-power stop modes
  - Reduced-power wait mode
  - Low-power run and wait modes allow peripherals to run while voltage regulator is in standby
  - Peripheral clock gating register can disable clocks to unused modules, thereby reducing currents
  - Very low-power external oscillator that can be used in stop2 or stop3 modes to provide accurate clock source to time-of-day (TOD) module
  - 6 μs typical wakeup time from stop3 mode
- Clock Source Options
  - Oscillator (XOSC) Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
  - Internal Clock Source (ICS) Internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation over temperature and voltage; supporting bus frequencies from 1 MHz to 20 MHz
- System Protection
  - Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source or bus clock
  - Low-voltage warning with interrupt
  - Low-voltage detection with reset or interrupt
  - Illegal opcode detection with reset; illegal address detection with reset
  - Flash block protection
  - Development Support
  - Single-wire background debug interface



80-LQFP Case 917A

- Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints in on-chip debug module)
- On-chip in-circuit emulator (ICE) debug module containing three comparators and nine trigger modes
- Peripherals
  - LCD Up to 8×36 or 4×40 LCD driver with internal charge pump and option to provide an internally-regulated LCD reference that can be trimmed for contrast control
  - ADC —16-bit resolution; with a dedicated differential ADC input, and 8 single-ended ADC inputs; up to 2.5 µs conversion time; hardware averaging; calibration registers, automatic compare function; temperature sensor; operation in stop3; fully functional from 3.6 V to 1.8 V
  - IIC Inter-integrated circuit bus module to operate at up to 100 kbps with maximum bus loading; multi-master operation; programmable slave address; interrupt-driven byte-by-byte data transfer; broadcast mode; 10-bit addressing
  - ACMP Analog comparator with selectable interrupt on rising, falling, or either edge of comparator output; compare option to fixed internal reference voltage; outputs can be optionally routed to TPM module; operation in stop3
  - SCIx Two full-duplex non-return to zero (NRZ) modules (SCI1 and SCI2); LIN master extended break generation; LIN slave extended break detection; wakeup on active edge
  - SPI Full-duplex or single-wire bidirectional; double-buffered transmit and receive; master or slave mode; MSB-first or LSB-first shifting
  - TPMx Two 2-channel (TPM1 and TPM2); selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel
  - TOD (Time-of-day) 8-bit, quarter second counter with match register; external clock source for precise time base, time-of-day, calendar, or task scheduling functions
  - VREFx Trimmable via an 8-bit register in 0.5 mV steps; automatically loaded with room temperature value upon reset; can be enabled to operate in stop3 mode; trim register is not available in stop modes
- Input/Output
- Dedicated accurate voltage reference output pin, 1.15 V output (VREFOx); trimmable with 0.5 mV resolution
- Up to 39 GPIOs, two output-only pins
- Hysteresis and configurable pullup device on all input pins; configurable slew rate and drive strength on all output pins Package Options
- 14mm × 14mm 80-pin LQFP, 10 mm × 10 mm 64-pin LQFP



© Freescale Semiconductor, Inc., 2009-2012. All rights reserved.





Figure 2. 64-Pin LQFP





Figure 3. 80-Pin LQFP



|    |    | < Lowest <b>Priority</b> > Highest |       |       |      |      |  |  |
|----|----|------------------------------------|-------|-------|------|------|--|--|
| 80 | 64 | Port Pin                           | Alt 1 | Alt 2 | Alt3 | Alt4 |  |  |
| 1  | 2  | PTE0                               | LCD13 |       |      |      |  |  |
| 2  |    | LCD12                              |       |       |      |      |  |  |
| 3  |    | LCD11                              |       |       |      |      |  |  |
| 4  |    | LCD10                              |       |       |      |      |  |  |
| 5  |    | LCD9                               |       |       |      |      |  |  |
| 6  |    | LCD8                               |       |       |      |      |  |  |
| 7  | 3  | PTD7                               | LCD7  |       |      |      |  |  |
| 8  | 4  | PTD6                               | LCD6  |       |      |      |  |  |



# **3** Electrical Characteristics

### 3.1 Introduction

This section contains electrical and timing specifications for the MC9S08LH64 Series of microcontrollers available at the time of publication.

## 3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

| Р | Those parameters are guaranteed during production testing on each individual device.                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С | Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.                                                                              |
| Т | Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. |
| D | Those parameters are derived mainly from simulations.                                                                                                                                                                  |

### **Table 3. Parameter Classifications**

### NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

## 3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either  $V_{SS}$  or  $V_{DD}$ ) or the programmable pullup resistor associated with the pin is enabled.

**Thermal Characteristics** 

| Rating                                                                                          | Symbol           | Value                         | Unit |
|-------------------------------------------------------------------------------------------------|------------------|-------------------------------|------|
| Supply voltage                                                                                  | V <sub>DD</sub>  | -0.3 to +3.8                  | V    |
| Maximum current into V <sub>DD</sub>                                                            | I <sub>DD</sub>  | 120                           | mA   |
| Digital input voltage                                                                           | V <sub>In</sub>  | –0.3 to V <sub>DD</sub> + 0.3 | V    |
| Instantaneous maximum current<br>Single pin limit (applies to all port pins) <sup>1, 2, 3</sup> | ۱ <sub>D</sub>   | ± 25                          | mA   |
| Storage temperature range                                                                       | T <sub>stg</sub> | –55 to 150                    | °C   |

#### **Table 4. Absolute Maximum Ratings**

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive ( $V_{DD}$ ) and negative ( $V_{SS}$ ) clamp voltages, then use the larger of the two resistance values.

 $^2\,$  All functional non-supply pins, except for PTB2 are internally clamped to V\_{SS} and V\_{DD}

<sup>3</sup> Power supply must maintain regulation within operating V<sub>DD</sub> range during instantaneous and operating maximum current conditions. If positive injection current ( $V_{In} > V_{DD}$ ) is greater than  $I_{DD}$ , the injection current may flow out of  $V_{DD}$  and could result in external power supply going out of regulation. Ensure external  $V_{DD}$  load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

### 3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take  $P_{I/O}$  into account in power calculations, determine the difference between actual pin voltage and  $V_{SS}$  or  $V_{DD}$  and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and  $V_{SS}$  or  $V_{DD}$  will be very small.

| Rating                                    | Symbol                                                       | Value | Unit |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|-------|------|--|--|--|
| Operating temperature range<br>(packaged) | T <sub>A</sub> T <sub>L</sub> to T <sub>H</sub><br>-40 to 85 |       | °C   |  |  |  |
| Maximum junction temperature              | Т <sub>Ј</sub>                                               | 95    | °C   |  |  |  |
| Thermal resistance<br>Single-layer board  |                                                              |       |      |  |  |  |
| 80-pin LQFP                               | θ                                                            | 55    | °C/W |  |  |  |
| 64-pin LQFP                               | ⁰JA                                                          | 73    | 0/11 |  |  |  |
| Thermal resistance<br>Four-layer board    |                                                              |       |      |  |  |  |
| 80-pin LQFP                               | θ                                                            | 42    | °C/W |  |  |  |
| 64-pin LQFP                               | ۷JA                                                          | 54    | 0/11 |  |  |  |

| Table 5. | Thermal | Characte | eristics |
|----------|---------|----------|----------|
|----------|---------|----------|----------|

The average chip-junction temperature  $(T_J)$  in °C can be obtained from:



**ESD** Protection and Latch-Up Immunity

1

$$\mathbf{T}_{\mathbf{J}} = \mathbf{T}_{\mathbf{A}} + (\mathbf{P}_{\mathbf{D}} \times \boldsymbol{\theta}_{\mathbf{J}\mathbf{A}})$$
 Eqn.

where:

$$\begin{split} T_A &= \text{Ambient temperature, °C} \\ \theta_{JA} &= \text{Package thermal resistance, junction-to-ambient, °C/W} \\ P_D &= P_{int} + P_{I/O} \\ P_{int} &= I_{DD} \times V_{DD}, \text{Watts} \text{ --- chip internal power} \\ P_{I/O} &= \text{Power dissipation on input and output pins} \text{ --- user determined} \end{split}$$

For most applications,  $P_{I/O} \ll P_{int}$  and can be neglected. An approximate relationship between  $P_D$  and  $T_J$  (if  $P_{I/O}$  is neglected) is:

$$P_{D} = K \div (T_{J} + 273 \ ^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273 °C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  $P_D$  (at equilibrium) for a known  $T_A$ . Using this value of K, the values of  $P_D$  and  $T_J$  can be obtained by solving Equation 1 and Equation 2 iteratively for any value of  $T_A$ .

### 3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

| Model               | Description              | Symbol | Value | Unit |
|---------------------|--------------------------|--------|-------|------|
|                     | Series resistance        | R1     | 1500  | Ω    |
| Human<br>Bodv Model | Storage capacitance      | С      | 100   | pF   |
| ,,                  | Number of pulses per pin | —      | 3     |      |
| Charge              | Series resistance        | R1     | 0     | Ω    |
| Device              | Storage capacitance      | С      | 200   | pF   |
| Model               | Number of pulses per pin | —      | 3     |      |

Table 6. ESD and Latch-up Test Conditions



DC Characteristics

| Lateb-up | Minimum input voltage limit | -2.5 | V |
|----------|-----------------------------|------|---|
| Laton-up | Maximum input voltage limit | 7.5  | V |

### Table 6. ESD and Latch-up Test Conditions (continued)

#### Table 7. ESD and Latch-Up Protection Characteristics

| No. | Rating <sup>1</sup>                       | Symbol           | Min   | Max | Unit |
|-----|-------------------------------------------|------------------|-------|-----|------|
| 1   | Human body model (HBM)                    | V <sub>HBM</sub> | ±2000 | —   | V    |
| 2   | Charge device model (CDM)                 | V <sub>CDM</sub> | ±500  | —   | V    |
| 3   | Latch-up current at $T_A = 85 \text{ °C}$ | I <sub>LAT</sub> | ±100  | —   | mA   |

<sup>1</sup> Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

### 3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

| Num | С | Characteristic         |                                                                                | Characteristic                                          |                                                        | Symbol                | Condition | Min | Typ <sup>1</sup> | Max | Unit |
|-----|---|------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-----------------------|-----------|-----|------------------|-----|------|
| 1   |   | Operating Voltage      |                                                                                |                                                         |                                                        | 1.8                   |           | 3.6 | V                |     |      |
|     | С | Outrut high            | PTA[0:3], PTA[6:7],<br>PTB[0:7], PTC[0:7] <sup>2</sup> ,<br>low-drive strength |                                                         | V <sub>DD</sub> >1.8 V<br>I <sub>Load</sub> = -0.6 mA  | V <sub>DD</sub> – 0.5 | _         | _   |                  |     |      |
| 2   | Ρ | voltage                | PTA[0:3], PTA[6:7],<br>PTB[0:7], PTC[0:7] <sup>2</sup>                         | V <sub>OH</sub>                                         | V <sub>DD</sub> > 2.7 V<br>I <sub>Load</sub> = -10 mA  | V <sub>DD</sub> – 0.5 | _         | _   | V                |     |      |
|     | С |                        | high-drive strength                                                            |                                                         | $V_{DD} > 1.8 V$<br>$I_{Load} = -3 mA$                 | V <sub>DD</sub> – 0.5 | _         | _   |                  |     |      |
| С   | С | Output high            | PTA[4:5], PTD[0:7],<br>PTE[0:7],<br>low-drive strength                         |                                                         | $V_{DD}$ > 1.8 V<br>I <sub>Load</sub> = -0.5 mA        | V <sub>DD</sub> – 0.5 |           |     |                  |     |      |
| 3   | Ρ | voltage                | PTA[4:5], PTD[0:7],<br>PTF[0:7]                                                | PTA[4:5], PTD[0:7],<br>PTE[0:7],<br>high-drive strength | V <sub>DD</sub> > 2.7 V<br>I <sub>Load</sub> = -2.5 mA | V <sub>DD</sub> – 0.5 |           |     | V                |     |      |
|     | С |                        | high-drive strength                                                            |                                                         | V <sub>DD</sub> > 1.8 V<br>I <sub>Load</sub> = -1 mA   | V <sub>DD</sub> - 0.5 |           |     |                  |     |      |
| 4   | D | Output high<br>current | Max total I <sub>OH</sub> for all ports                                        | I <sub>OHT</sub>                                        |                                                        | —                     |           | 100 | mA               |     |      |
| 5 1 | С | Outout law             | PTA[0:3], PTA[6:7],<br>PTB[0:7], PTC[0:7],<br>low-drive strength               |                                                         | V <sub>DD</sub> >1.8 V<br>I <sub>Load</sub> = 0.6 mA   | _                     |           | 0.5 |                  |     |      |
|     | Ρ | voltage                | Itage PTA[0:3], PTA[6:7],                                                      | V <sub>OL</sub>                                         | V <sub>DD</sub> > 2.7 V<br>I <sub>Load</sub> = 10 mA   | _                     |           | 0.5 | V                |     |      |
|     | С |                        | high-drive strength                                                            | ,<br>1                                                  | V <sub>DD</sub> > 1.8 V<br>I <sub>Load</sub> = 3 mA    | _                     |           | 0.5 |                  |     |      |

### Table 8. DC Characteristics





Figure 9. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins)— Low Drive (PTxDSn = 0)



**DC Characteristics** 



Figure 10. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)





Figure 11. Typical High-Side (Source) Characteristics (LCD/GPIO Pins)— Low Drive (PTxDSn = 0)





# 3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

| Num | с | Parameter                                                                                                  | Symbol                   | Bus<br>Freq     | V <sub>DD</sub><br>(V) | Typ <sup>1</sup> | Мах  | Unit | Temp<br>(°C) |
|-----|---|------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|------------------------|------------------|------|------|--------------|
|     | Т |                                                                                                            |                          | 20 MHz          |                        | 13.75            | 17.9 |      |              |
| 1   | Т | Run supply current<br>FEI mode, all modules on                                                             | RI <sub>DD</sub>         | 8 MHz           | 3                      | 7                |      | mA   | -40 to 85    |
|     | Т |                                                                                                            |                          | 1 MHz           |                        | 2                |      |      |              |
|     | Т | Bun supply current                                                                                         |                          | 20 MHz          |                        | 8.9              |      |      |              |
| 2   | Т | FEI mode, all modules off                                                                                  | RI <sub>DD</sub>         | 8 MHz           | 3                      | 5.5              |      | mA   | -40 to 85    |
|     | Т |                                                                                                            |                          | 1 MHz           |                        | 0.9              |      |      |              |
| 0   | Т | Run supply current<br>LPS=0, all modules off<br>Run supply current<br>LPS=1, all modules off, running from | Ы                        | 32 kHz<br>FBILP | 2                      | 185              |      |      | 40 to 95     |
| 3   | Т |                                                                                                            | NDD                      | 16 kHz<br>FBELP |                        | 115              | _    | μΑ   | 40 10 85     |
|     | - | Run supply current<br>LPS=1, all modules off, running from<br>Flash                                        |                          |                 |                        | 21.0             | _    |      | 0 to 70      |
| 4   | I |                                                                                                            | DI                       | 16 kHz          | 2                      | 21.9             | _    | μΑ   | -40 to 85    |
| 4   | Т | Run supply current<br>LPS=1, all modules off, running from<br>RAM                                          | <b>K</b> I <sub>DD</sub> | FBELP           | 5                      | 7.3              |      |      | 0 to 70      |
|     |   |                                                                                                            |                          |                 |                        |                  | _    |      | -40 to 85    |
|     | Т | Wait mode supply current<br>FEI mode, all modules off                                                      |                          | 20 MHz          | 3                      | 4.57             | 6    | mA   |              |
| 5   | Т |                                                                                                            | WI <sub>DD</sub>         | 8 MHz           |                        | 2                |      |      | -40 to 85    |
|     | Т |                                                                                                            |                          | 1 MHz           |                        | 0.73             |      |      |              |
|     | Ρ | Stop2 mode supply current                                                                                  |                          |                 |                        | 0.4              | 1.3  |      | -40 to 25    |
|     | С |                                                                                                            |                          |                 | 3                      | 4                | 6    |      | 70           |
| 6   | Ρ |                                                                                                            | S2I                      | n/a             |                        | 8.5              | 13   | Δ    | 85           |
| Ū   | С | ]                                                                                                          | DD                       | 174             |                        | 0.35             | 1.0  | μι   | -40 to 25    |
|     | С |                                                                                                            |                          |                 | 2                      | 3.9              | 5    |      | 70           |
|     | С |                                                                                                            |                          |                 |                        | 7.7              | 10   |      | 85           |
|     | Ρ | Stop3 mode supply current                                                                                  |                          |                 |                        | 0.65             | 1.8  |      | -40 to 25    |
|     | С | NO CIOCKS active                                                                                           |                          |                 | 3                      | 5.7              | 8.0  |      | 70           |
| 7   | Ρ |                                                                                                            | S3I                      | n/a             |                        | 12.2             | 20   | μA   | 85           |
|     | С |                                                                                                            | - J.DD                   |                 |                        | 0.6              | 1.5  |      | -40 to 25    |
|     | С |                                                                                                            |                          |                 | 2                      | 5                | 6.8  |      | 70           |
|     | С |                                                                                                            |                          |                 |                        | 11.5             | 14   |      | 85           |

Table 9. Supply Current Characteristics

<sup>1</sup> Typical values are measured at 25 °C. Characterized, not tested



**Supply Current Characteristics** 

| Num   | <b>^</b> | Parameter Condition   |                                                                                                                                                     |     | Unite |     |      |       |
|-------|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|-------|
| Nulli |          | Parameter             | Condition                                                                                                                                           | -40 | 25    | 70  | 85   | Units |
| 1     | Т        | LPO                   |                                                                                                                                                     | 100 | 100   | 150 | 175  | nA    |
| 2     | Т        | EREFSTEN              | RANGE = HGO = 0                                                                                                                                     | 750 | 750   | 800 | 850  | nA    |
| 3     | Т        | IREFSTEN <sup>1</sup> |                                                                                                                                                     | 63  | 70    | 77  | 81   | μA    |
| 4     | Т        | TOD                   | Does not include clock source current                                                                                                               | 50  | 50    | 75  | 100  | nA    |
| 5     | Т        | LVD <sup>1</sup>      | LVDSE = 1                                                                                                                                           | 110 | 110   | 112 | 115  | μA    |
| 6     | Т        | ACMP <sup>1</sup>     | Not using the bandgap (BGBE = 0)                                                                                                                    | 12  | 12    | 20  | 23   | μA    |
| 7     | Т        | ADC <sup>1</sup>      | ADLPC = ADLSMP = 1<br>Not using the bandgap (BGBE = 0)                                                                                              | 95  | 95    | 101 | 120  | μA    |
| 8     | т        | LCD                   | VIREG enabled for Contrast control, 1/8<br>Duty cycle, 8x24 configuration for<br>driving 192 segments, 32 Hz frame rate,<br>No LCD glass connected. | 1   | 1     | 6   | 13   | μΑ    |
| 9     | т        | LCD                   | LCD configured for 1/8 duty cycle, 8x24<br>configuration for driving 192 segments,<br>32 Hz frame rate, no LCD glass<br>connected.                  | 0.2 | 0.24  | 0.5 | 0.65 | μA    |

#### Table 10. Stop Mode Adders

Not available in stop2 mode.

1



#### Typical Run IDD for FBE and FEI (ADC and ACMP off, All other modules enabled)

Figure 13. Typical Run  $I_{DD}$  for FBE and FEI,  $I_{DD}$  vs.  $V_{DD}$  (ACMP and ADC off, All Other Modules Enabled)



Internal Clock Source (ICS) Characteristics



Figure 14. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain



### Figure 15. Typical Crystal or Resonator Circuit: Low Range/Low Power

# 3.9 Internal Clock Source (ICS) Characteristics

| Num | С | Char                                                  | Symbol                           | Min                 | Typ <sup>1</sup> | Max  | Unit              |     |
|-----|---|-------------------------------------------------------|----------------------------------|---------------------|------------------|------|-------------------|-----|
| 1   | С | Average internal reference                            | frequency — untrimmed            | f <sub>int_ut</sub> | 25               | 32.7 | 41.66             | kHz |
| 2   | Ρ | Average internal reference                            | frequency — user-trimmed         | f <sub>int_t</sub>  | 31.25            | _    | 39.06             | kHz |
| 3   | Ρ | Average internal reference                            | frequency — factory-trimmed      | f <sub>int_t</sub>  | _                | 32.7 | _                 | kHz |
| 4   | Т | Internal reference start-up t                         | t <sub>IRST</sub>                | _                   | 60               | 100  | μS                |     |
| 5   | Ρ | DCO output frequency                                  | Low range (DFR = 00)             | f                   | 12.8             | 16.8 | 21.33             | MHz |
| 5   | С | range — untrimmed                                     | — untrimmed Mid range (DFR = 01) | 'dco_ut             | 25.6             | 33.6 | 42.67             |     |
| 6   | Ρ | DCO output frequency                                  | Low range (DFR = 00)             | f.                  | 16               | _    | 20                | MЦz |
| 0   | Ρ | range — trimmed                                       | Mid range (DFR = 01)             | 'dco_t              | 32               | _    | 40                |     |
| 7   | С | Resolution of trimmed DCO voltage and temperature (us | $\Delta f_{dco\_res\_t}$         | _                   | ±0.1             | ±0.2 | %f <sub>dco</sub> |     |
| 8   | С | Resolution of trimmed DCO voltage and temperature (no | $\Delta f_{dco\_res\_t}$         | _                   | ±0.2             | ±0.4 | %f <sub>dco</sub> |     |

|                         | 0                  | <b>T</b>              |                       |
|-------------------------|--------------------|-----------------------|-----------------------|
| Table 12. ICS Frequency | y Specifications ( | Temperature Range = - | -40 to 85 °C Ambient) |



ADC Characteristics

| Num | Characteris<br>tic               | Conditions                                                                                                 | Symb              | Min | Typ <sup>1</sup> | Max           | Unit | Comment             |
|-----|----------------------------------|------------------------------------------------------------------------------------------------------------|-------------------|-----|------------------|---------------|------|---------------------|
| 9   |                                  | 16 bit modes<br>f <sub>ADCK</sub> > 8MHz<br>4MHz < f <sub>ADCK</sub> < 8MHz<br>f <sub>ADCK</sub> < 4MHz    |                   |     |                  | 0.5<br>1<br>2 |      |                     |
| 10  | Analog<br>Source                 | 13/12 bit modes<br>f <sub>ADCK</sub> > 8MHz<br>4MHz < f <sub>ADCK</sub> < 8MHz<br>f <sub>ADCK</sub> < 4MHz | R <sub>AS</sub>   |     | —                | 1<br>2<br>5   | kΩ   | External to<br>MCU  |
| 11  | Resistance                       | 11/10 bit modes<br>f <sub>ADCK</sub> > 8MHz<br>4MHz < f <sub>ADCK</sub> < 8MHz<br>f <sub>ADCK</sub> < 4MHz |                   |     |                  | 2<br>5<br>10  |      | Assumes<br>ADLSMP=0 |
| 12  |                                  | 9/8 bit modes<br>f <sub>ADCK</sub> > 8MHz<br>f <sub>ADCK</sub> < 8MHz                                      |                   |     |                  | 5<br>10       |      |                     |
| 13  |                                  | ADLPC = 0, ADHSC = 1                                                                                       |                   | 1.0 | _                | 8             |      |                     |
| 14  | ADC<br>Conversion<br>Clock Freq. | ADLPC = 0, ADHSC = 0                                                                                       | f <sub>ADCK</sub> | 1.0 | _                | 5             | MHz  |                     |
| 15  |                                  | ADLPC = 1, ADHSC = 0                                                                                       |                   | 1.0 |                  | 2.5           |      |                     |

| Table 17. | 16-bit | ADC C | perating | Conditions |
|-----------|--------|-------|----------|------------|
|-----------|--------|-------|----------|------------|

<sup>1</sup> Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25 °C, f<sub>ADCK</sub> = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

<sup>2</sup> DC potential difference.





Table 18. 16-bit ADC Characteristics full operating range( $V_{REFH} = V_{DDA} > 1.8$ ,  $V_{REFL} = V_{SSA}$ ,  $F_{ADCK} \le 8MHz$ )

| Characteristic               | Conditions <sup>1</sup>                   | С | Symb               | Min | Typ <sup>2</sup> | Max | Unit | Comment                                      |
|------------------------------|-------------------------------------------|---|--------------------|-----|------------------|-----|------|----------------------------------------------|
| Supply Current               | ADLPC = 1, ADHSC = 0                      |   |                    | —   | 215              | _   |      |                                              |
|                              | ADLPC = 0, ADHSC = 0                      | т | I <sub>DDA</sub>   | —   | 470              |     | μA   | ADLSMP = 0<br>ADCO = 1                       |
|                              | ADLPC=0, ADHSC=1                          |   |                    | —   | 610              |     |      |                                              |
| Supply Current               | Stop, Reset, Module Off                   | С | I <sub>DDA</sub>   | —   | 0.01             |     | μA   |                                              |
| ADC                          | ADLPC = 1, ADHSC = 0                      |   | f <sub>ADACK</sub> | —   | 2.4              |     |      |                                              |
| Asynchronous<br>Clock Source | ADLPC = 0, ADHSC = 0                      | Р |                    | —   | 5.2              |     | MHz  | t <sub>ADACK</sub> =<br>1/f <sub>ADACK</sub> |
|                              | ADLPC = 0, ADHSC = 1                      |   |                    | —   | 6.2              | _   |      |                                              |
| Sample Time                  | See reference manual for sample times     |   |                    |     |                  |     |      |                                              |
| Conversion<br>Time           | See reference manual for conversion times |   |                    |     |                  |     |      |                                              |



### ADC Characteristics

| Characteristic                | Conditions <sup>1</sup>                              | С | Symb            | Min | Typ <sup>2</sup> | Max                | Unit             | Comment                   |
|-------------------------------|------------------------------------------------------|---|-----------------|-----|------------------|--------------------|------------------|---------------------------|
| Total<br>Unadjusted           | 16-bit differential mode<br>16-bit single-ended mode | Т | TUE             | _   | ±16<br>±20       | +48/-40<br>+56/-28 | LSB <sup>3</sup> | 32x<br>Hardware           |
| Error                         | 13-bit differential mode<br>12-bit single-ended mode | Т |                 |     | ±1.5<br>±1.75    | ±3.0<br>±3.5       |                  | (AVGE = %1<br>AVGS = %11) |
|                               | 11-bit differential mode<br>10-bit single-ended mode | Т |                 |     | ±0.7<br>±0.8     | ±1.5<br>±1.5       |                  |                           |
|                               | 9-bit differential mode<br>8-bit single-ended mode   | Т |                 |     | ±0.5<br>±0.5     | ±1.0<br>±1.0       |                  |                           |
| Differential<br>Non-Linearity | 16-bit differential mode<br>16-bit single-ended mode | Т | DNL             | _   | ±2.5<br>±2.5     | +5/-3<br>+5/-3     | LSB <sup>2</sup> |                           |
|                               | 13-bit differential mode<br>12-bit single-ended mode | Т |                 | _   | ±0.7<br>±0.7     | ±1<br>±1           |                  |                           |
|                               | 11-bit differential mode<br>10-bit single-ended mode | Т |                 | _   | ±0.5<br>±0.5     | ±0.75<br>±0.75     |                  |                           |
|                               | 9-bit differential mode<br>8-bit single-ended mode   | Т |                 | _   | ±0.2<br>±0.2     | ±0.5<br>±0.5       |                  |                           |
| Integral<br>Non-Linearity     | 16-bit differential mode<br>16-bit single-ended mode | Т | INL             | _   | ±6.0<br>±10.0    | ±16.0<br>±20.0     | LSB <sup>2</sup> |                           |
|                               | 13-bit differential mode<br>12-bit single-ended mode | Т |                 | _   | ±1.0<br>±1.0     | ±2.5<br>±2.5       |                  |                           |
|                               | 11-bit differential mode<br>10-bit single-ended mode | Т |                 | _   | ±0.5<br>±0.5     | ±1.0<br>±1.0       |                  |                           |
|                               | 9-bit differential mode<br>8-bit single-ended mode   | Т |                 | _   | ±0.3<br>±0.3     | ±0.5<br>±0.5       |                  |                           |
| Zero-Scale<br>Error           | 16-bit differential mode<br>16-bit single-ended mode | Т | E <sub>ZS</sub> | _   | ±4.0<br>±4.0     | +32/-24<br>+24/-16 | LSB <sup>2</sup> | $V_{ADIN} = V_{SSA}$      |
|                               | 13-bit differential mode<br>12-bit single-ended mode | Т |                 | _   | ±0.7<br>±0.7     | ±2.5<br>±2.0       |                  |                           |
|                               | 11-bit differential mode<br>10-bit single-ended mode | Т |                 | _   | ±0.4<br>±0.4     | ±1.0<br>±1.0       |                  |                           |
|                               | 9-bit differential mode<br>8-bit single-ended mode   | Т |                 | _   | ±0.2<br>±0.2     | ±0.5<br>±0.5       |                  |                           |

### Table 18. 16-bit ADC Characteristics full operating range( $V_{REFH} = V_{DDA} > 1.8$ , $V_{REFL} = V_{SSA}$ , $F_{ADCK} \le 8MHz$ )



#### **ADC Characteristics**

| Characteristic                  | Conditions <sup>1</sup>                                                 | С | Symb                | Min                                  | Typ <sup>2</sup>                     | Max            | Unit             | Comment                                                                  |
|---------------------------------|-------------------------------------------------------------------------|---|---------------------|--------------------------------------|--------------------------------------|----------------|------------------|--------------------------------------------------------------------------|
| Full-Scale<br>Error             | 16-bit differential mode<br>16-bit single-ended mode                    | Т | E <sub>FS</sub>     |                                      | +8/0<br>+12/0                        | +24/0<br>+24/0 | LSB <sup>2</sup> | $V_{ADIN} = V_{DDA}$                                                     |
|                                 | 13-bit differential mode<br>12-bit single-ended mode                    | Т |                     |                                      | ±0.7<br>±0.7                         | ±2.0<br>±2.5   |                  |                                                                          |
|                                 | 11-bit differential mode<br>10-bit single-ended mode                    | Т |                     |                                      | ±0.4<br>±0.4                         | ±1.0<br>±1.0   |                  |                                                                          |
|                                 | 9-bit differential mode<br>8-bit single-ended mode                      | Т |                     |                                      | ±0.2<br>±0.2                         | ±0.5<br>±0.5   |                  |                                                                          |
| Quantization                    | 16 bit modes                                                            | D | EQ                  | _                                    | -1 to 0                              | _              | LSB <sup>2</sup> |                                                                          |
| Error                           | ≤13 bit modes                                                           | Ī |                     | _                                    | —                                    | ±0.5           |                  |                                                                          |
| Effective<br>Number of Bits     | 16 bit differential mode<br>Avg=32<br>Avg=16<br>Avg=8<br>Avg=4<br>Avg=1 | С | ENOB                | 14.3<br>13.8<br>13.4<br>13.1<br>12.4 | 14.5<br>14.0<br>13.7<br>13.4<br>12.6 | <br>           | Bits             | F <sub>in</sub> =<br>F <sub>sample</sub> /100                            |
|                                 | 16 bit single-ended mode<br>Avg=32<br>Avg=16<br>Avg=8<br>Avg=4<br>Avg=1 |   |                     | TBD<br>TBD<br>TBD<br>TBD<br>TBD      | 13.5<br>13.0<br>12.7<br>12.4<br>11.6 |                |                  |                                                                          |
| Signal to Noise plus Distortion | See ENOB                                                                |   | SINAD               | SINAD =                              | 6.02 *ENC                            | OB +1.76       | dB               |                                                                          |
| Total Harmonic<br>Distortion    | 16 bit differential mode<br>Avg=32                                      | С | THD                 |                                      | -95.8                                | -90.4          | dB               | F <sub>in</sub> =<br>F <sub>sample</sub> /100                            |
|                                 | 16 bit single-ended mode<br>Avg=32                                      | D |                     | _                                    | _                                    | _              |                  |                                                                          |
| Spurious Free<br>Dynamic        | 16 bit differential mode<br>Avg=32                                      | С | SFDR                | 91.0                                 | 96.5                                 | _              | dB               | F <sub>in</sub> =<br>F <sub>sample</sub> /100                            |
| Range                           | 16 bit single-ended mode<br>Avg=32                                      | D |                     | _                                    | _                                    | _              |                  |                                                                          |
| Input Leakage<br>Error          | all modes                                                               | D | E <sub>IL</sub>     | I <sub>In</sub> * R <sub>AS</sub>    |                                      |                | mV               | I <sub>In</sub> = leakage<br>current<br>(refer to DC<br>characteristics) |
| Temp Sensor                     | -40 °C– 25 °C                                                           | D | m                   |                                      | 1.646                                |                | mV/°C            |                                                                          |
| ыоре                            | 25 °C– 125 °C                                                           |   |                     | _                                    | 1.769                                | _              |                  |                                                                          |
| Temp Sensor<br>Voltage          | 25 °C                                                                   | D | V <sub>TEMP25</sub> | —                                    | 701.2                                | —              | mV               |                                                                          |

 $^1$  All accuracy numbers assume the ADC is calibrated with  $V_{\text{REFH}} = V_{\text{DDA}}$ 



#### **EMC Performance**

- <sup>2</sup> These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.
- <sup>3</sup> The program and erase currents are additional to the standard run  $I_{DD}$ . These values are measured at room temperatures with  $V_{DD} = 3.0 \text{ V}$ , bus frequency = 4.0 MHz.

## 3.16 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 available on www.freescale.com for advice and guidance specifically targeted at optimizing EMC performance.

### 3.16.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

# 4 Ordering Information

This appendix contains ordering information for the device numbering system.

| Dovice Number <sup>1</sup> | Men   | nory | Available Packages <sup>2</sup> |  |  |
|----------------------------|-------|------|---------------------------------|--|--|
| Device Number              | Flash | RAM  | Available Fackages              |  |  |
|                            | 64 KB | 4000 | 80-pin LQFP                     |  |  |
| WIC9306LI 104              | 64 KB | 4000 | 64-pin LQFP                     |  |  |
|                            | 36 KB | 4000 | 80-pin LQFP                     |  |  |
| WIC3500LI 150              | 36 KB | 4000 | 64-pin LQFP                     |  |  |

### Table 23. Device Numbering System

<sup>1</sup> See Table 1 for a complete description of modules included on each device.

<sup>2</sup> See Table 24 for package information.

# 4.1 Device Numbering System

Example of the device numbering system: