

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2014	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LCD, LVD, PWM, WDT
Number of I/O	39
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08lh64clk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

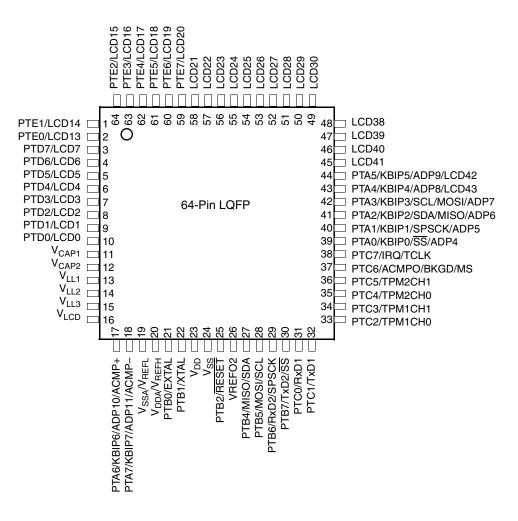


Figure 2. 64-Pin LQFP

			< Low	est Priority >	Highest	
80	64	Port Pin	Alt 1	Alt 2	Alt3	Alt4
9	5	PTD5	LCD5			
10	6	PTD4	LCD4			
11	7	PTD3	LCD3			
12	8	PTD2	LCD2			
13	9	PTD1	LCD1			
14	10	PTD0	LCD0			
15	11	V _{CAP1}				
16	12	V _{CAP2}				
17	13	V _{LL1}				
18	14	V _{LL2}				
19	15	V _{LL3}				
20	16	V _{LCD}				
21	17	PTA6	KBIP6	ADP10	ACMP+	
22	18	PTA7	KBIP7	ADP11	ACMP-	
23	19	V _{SSA}				
24	19	V _{REFL}				
25		DADP0				
26		DADM0				
27		VREFO1				
28	20	V _{REFH}				
29	20	V _{DDA}				
30	21	PTB0		EXTAL		
31	22	PTB1		XTAL		
32	23	V _{DD}				
33	24	V _{SS}				
34	25	PTB2	RESET			
	26	VREFO2				
35	27	PTB4	MISO	SDA		
36	28	PTB5	MOSI	SCL		
37	29	PTB6	RxD2	SPSCK		
38	30	PTB7	TxD2	SS		
39	31	PTC0	RxD1			
40	32	PTC1	TxD1			
41	33	PTC2	TPM1CH0			
42	34	PTC3	TPM1CH1			
43	35	PTC4	TPM2CH0			
44	36	PTC5	TPM2CH1			
45	37	PTC6	ACMPO	BKGD	MS	

Table 2. Pin Availability by Package Pin-Count (continued)

3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08LH64 Series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 3. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Thermal Characteristics

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	± 25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 4. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins, except for PTB2 are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit		
Operating temperature range (packaged)	T _A	T _L to T _H 40 to 85	°C		
Maximum junction temperature	TJ	95	°C		
Thermal resistance Single-layer board					
80-pin LQFP	θ	55	°C/W		
64-pin LQFP	θ_{JA}	73	0/00		
Thermal resistance Four-layer board					
80-pin LQFP	ρ	42	°C/W		
64-pin LQFP	θ_{JA}	54	0/11		

Table 5. Thermal Cha	racteristics
----------------------	--------------

The average chip-junction temperature (T_J) in °C can be obtained from:

ESD Protection and Latch-Up Immunity

1

$$\mathbf{T}_{\mathbf{J}} = \mathbf{T}_{\mathbf{A}} + (\mathbf{P}_{\mathbf{D}} \times \boldsymbol{\theta}_{\mathbf{J}\mathbf{A}})$$
 Eqn.

where:

$$\begin{split} T_A &= \text{Ambient temperature, °C} \\ \theta_{JA} &= \text{Package thermal resistance, junction-to-ambient, °C/W} \\ P_D &= P_{int} + P_{I/O} \\ P_{int} &= I_{DD} \times V_{DD}, \text{Watts} \text{ --- chip internal power} \\ P_{I/O} &= \text{Power dissipation on input and output pins} \text{ --- user determined} \end{split}$$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273 \ ^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273 °C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body Model	Storage capacitance	С	100	pF
Douy Model	Number of pulses per pin	—	3	
Charge Device Model	Series resistance	R1	0	Ω
	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	

Table 6. ESD and Latch-up Test Conditions

Latch-up	Minimum input voltage limit	-2.5	V
	Maximum input voltage limit	7.5	V

Table 6. ESD and Latch-up Test Conditions (continued)

Table 7. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Charge device model (CDM)	V _{CDM}	±500	_	V
3	Latch-up current at T _A = 85 °C	I _{LAT}	±100	—	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

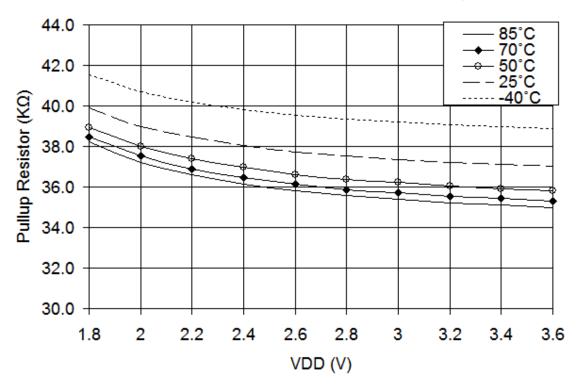
3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Cł	naracteristic	Symbol	Condition	Min	Typ ¹	Max	Unit				
1		Operating Voltage		Operating Voltage				1.8		3.6	V		
	С	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² , low-drive strength voltage PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² ,	PTB[0:7], PTC[0:7] ² ,		V _{DD} >1.8 V I _{Load} = -0.6 mA	V _{DD} – 0.5	_	_					
2	Ρ		V _{OH}	V _{DD} > 2.7 V I _{Load} = -10 mA	V _{DD} – 0.5	_	_	V					
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = –3 mA	V _{DD} – 0.5		_					
	с	Outenthist	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		V _{DD} > 1.8 V I _{Load} = -0.5 mA	V _{DD} – 0.5	_	_					
3	Ρ	Output high — voltage	PTA[4:5], PTD[0:7], PTE[0:7],	V _{OH}	V _{DD} > 2.7 V I _{Load} = -2.5 mA	V _{DD} – 0.5	_	_	V				
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = -1 mA	V _{DD} – 0.5							
4	D	Output high current	Max total I _{OH} for all ports	I _{OHT}		—		100	mA				
	с		с	С	с	Outerut levu	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7], low-drive strength		V _{DD} >1.8 V I _{Load} = 0.6 mA	_	—	0.5	
5	Ρ	Output low — voltage	W V _{OL} V _{OL} PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7],		$V_{DD} > 2.7 V$ $I_{Load} = 10 mA$		_	0.5	V				
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = 3 mA	—	_	0.5					

Table 8. DC Characteristics

Num	С		Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit	
	С	Outrast	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		V _{DD} > 1.8 V I _{Load} = 0.5 mA	_	_	0.5		
6	Ρ	Output low voltage	PTA[4:5], PTD[0:7], PTE[0:7],	V _{OL}	V _{DD} > 2.7 V I _{Load} = 3 mA	_	_	0.5	V	
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = 1 mA	_	_	0.5		
7	D	Output low current	Max total I _{OL} for all ports	I _{OLT}			_	100	mA	
8	Ρ	Input high	all digital inputs	V _{IH}	$V_{DD} > 2.7 V$	$0.70 \text{ x V}_{\text{DD}}$		—		
-	С	voltage		- 10	V _{DD} > 1.8 V	$0.85 \times V_{DD}$	_	—	v	
9	Ρ	Input low	all digital inputs	V _{IL}	$V_{DD} > 2.7 V$		_	0.35 x V _{DD}	-	
-	С	voltage		- IL	V_{DD} > 1.8 V			$0.30 \times V_{DD}$		
10	С	Input hysteresis	all digital inputs	V_{hys}		0.06 x V _{DD}	—	—	mV	
			all input only pins except for		$V_{In} = V_{DD}$	—	0.025	1	μA	
11	Р	Input leakage current	LCD only pins (LCD 8-12, 21-41)	li _{in} i	ll _{in} l	$V_{In} = V_{SS}$	_	0.025	1	μA
			LCD only pins (LCD 8-12,		$V_{In} = V_{DD}$	_	100	150	μA	
			21-41)		$V_{In} = V_{SS}$	_	0.025	1	μA	
12	Ρ	Hi-Z (off-state) leakage current	all input/output (per pin)	lI _{OZ} I	$V_{ln} = V_{DD} \text{ or } V_{SS}$		0.025	1	μΑ	
13	Ρ	Total leakage current ³	Total leakage current for all pins	ll _{InT} l	$V_{ln} = V_{DD} \text{ or } V_{SS}$	_	_	3	μA	
14	Ρ	Pullup, Pulldown resistors	all non-LCD pins when enabled	R _{PU,} R _{PD}		17.5	_	52.5	kΩ	
15	Ρ	Pullup, Pulldown resistors	LCD/GPIO pins when enabled	R _{PU,} R _{PD}		35	_	77	kΩ	
		DC injection	Single pin limit			-0.2		0.2	mA	
16	D	current ^{4, 5,}	Total MCU limit, includes sum of all stressed pins	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-5		5	mA	
17	С	Input Capac	itance, all pins	C _{In}				8	pF	
18	С	RAM retention	on voltage	V _{RAM}		_	0.6	1.0	V	
19	С	POR re-arm	voltage ⁷	V _{POR}		0.9	1.4	2.0	V	
20	D	POR re-arm	time	t _{POR}		10	_	—	μS	
21	Ρ	Low-voltage	detection threshold	V _{LVD}	V _{DD} falling V _{DD} rising	1.80 1.88	1.84 1.92	1.88 1.96	V	


Table 8. DC Characteristics (continued)

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
22	Ρ	Low-voltage warning threshold	V _{LVW}	V _{DD} falling V _{DD} rising		2.14	2.2	V
23	Р	Low-voltage inhibit reset/recover hysteresis	V _{hys}		_	80	_	mV
24	Ρ	Bandgap Voltage Reference ⁸	V _{BG}		1.15	1.17	1.18	V

¹ Typical values are measured at 25 °C. Characterized, not tested

- ² All I/O pins except for LCD pins in Open Drain mode.
- ³ Total leakage current is the sum value for all GPIO pins. This leakage current is not distributed evenly across all pins but characterization data shows that individual pin leakage current maximums are less than 250 nA.
- 4 All functional non-supply pins, except for PTB2 are internally clamped to V_{SS} and V_{DD}.
- ⁵ Input current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁶ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁷ POR will occur below the minimum voltage.
- ⁸ Factory trimmed at V_{DD} = 3.0 V, Temp = 25 °C

PULLUP RESISTOR TYPICALS - Non LCD pins

Figure 4. Non LCD pins I/O Pullup Typical Resistor Values

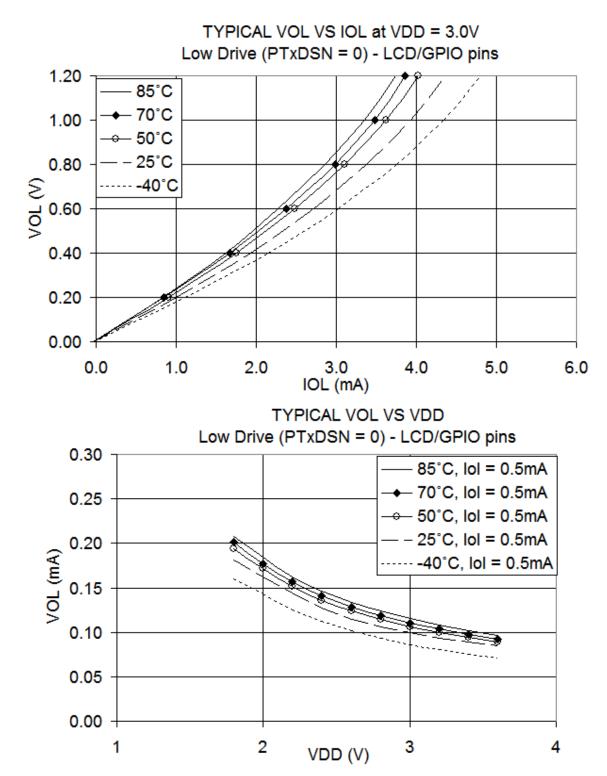


Figure 9. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins)— Low Drive (PTxDSn = 0)

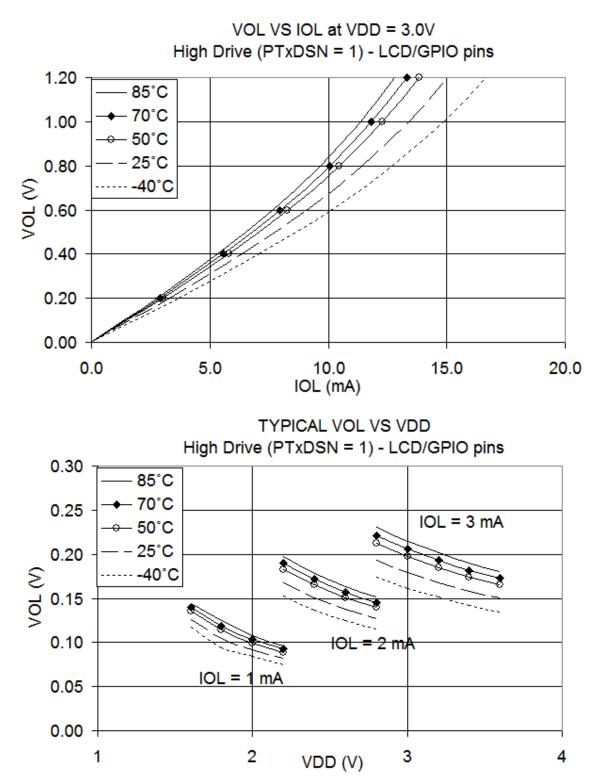


Figure 10. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

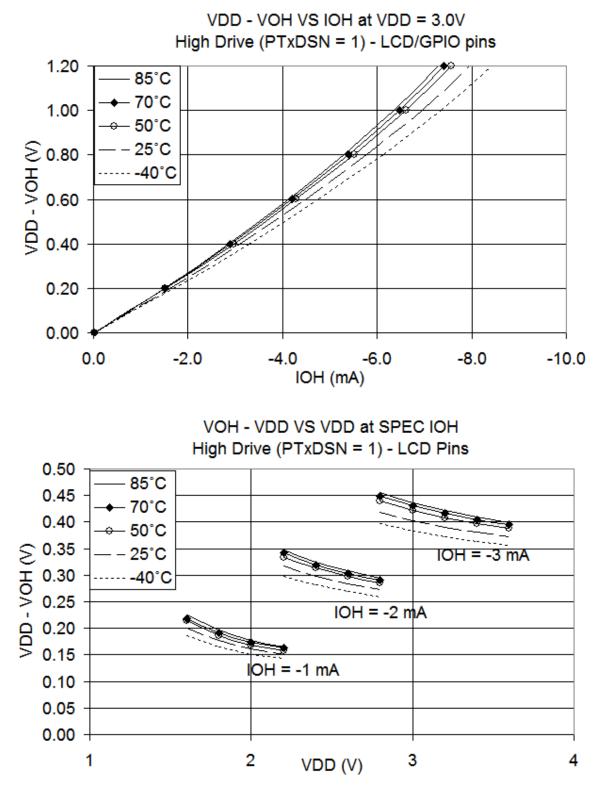


Figure 12. Typical High-Side (Source) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

3.8 External Oscillator (XOSCVLP) Characteristics

See Figure 14 and Figure 15 for crystal or resonator circuits.

Table 11. XOSCVLP and ICS Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂	See Note ² See Note ³			
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, high gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		— 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		 100 0 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	^t CSTL ^t CSTH	 	600 400 5 15	 	ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0	_	20 20	MHz MHz

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² Load capacitors ($C_{1,}C_{2}$), feedback resistor (R_{F}) and series resistor (R_{S}) are incorporated internally when RANGE=HGO=0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

Internal Clock Source (ICS) Characteristics

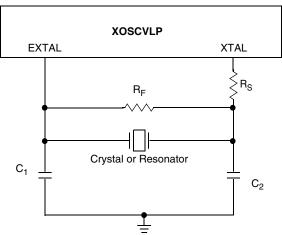
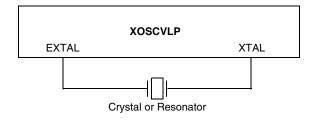



Figure 14. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

Figure 15. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.9 Internal Clock Source (ICS) Characteristics

Num	С	Chara	acteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Average internal reference f	requency — untrimmed	f _{int_ut}	25	32.7	41.66	kHz
2	Ρ	Average internal reference f	f _{int_t}	31.25	_	39.06	kHz	
3	Ρ	Average internal reference f	f _{int_t}	_	32.7	—	kHz	
4	Т	Internal reference start-up ti	t _{IRST}		60	100	μs	
5	Ρ	P DCO output frequency Low range (DFR =		f	12.8	16.8	21.33	MHz
5	С	range — untrimmed	Mid range (DFR = 01)	f _{dco_ut}	25.6	33.6	42.67	
6	Ρ	DCO output frequency	Low range (DFR = 00)	f.	16	_	20	MHz
0	Ρ	range — trimmed	Mid range (DFR = 01)	f _{dco_t}	32	_	40	
7	С	Resolution of trimmed DCO voltage and temperature (us	$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}	
8	С	Resolution of trimmed DCO voltage and temperature (no		$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}

Table 12 ICS Frequency Specifications (Temperature Range = -40 to 85 °C Ambient)
Table 12. ICS Frequency Specifications (T = 100000000000000000000000000000000000

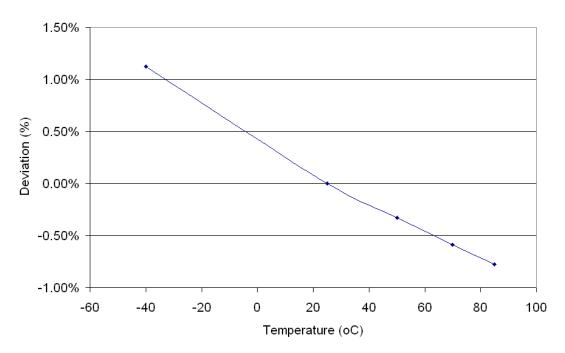
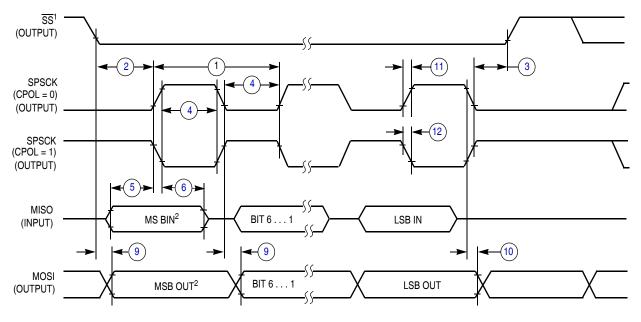

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
9	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+0.5 -1.0	±2	%f _{dco}
10	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 °C to 70 °C	Δf_{dco_t}		±0.5	±1	%f _{dco}
11	С	FLL acquisition time ²	t _{Acquire}	_	_	1	ms
12	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ³	C _{Jitter}		0.02	0.2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85 °C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

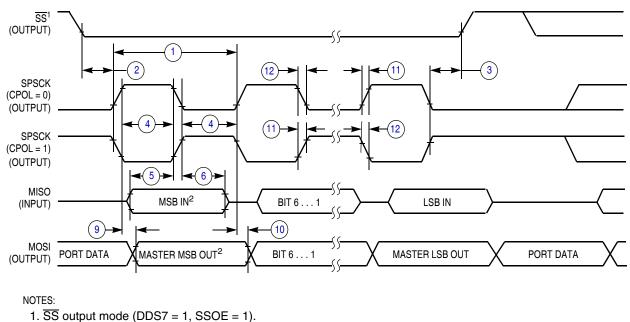
² This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.


Deviation of DCO Output from Trimmed Frequency

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.



NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

3.11 Analog Comparator (ACMP) Electricals

Table 16. Analog Comparator Electrical Specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V _{DD}	1.8	_	3.6	V
Р	Supply current (active)	I _{DDAC}	—	20	35	μA
D	Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
Р	Analog input offset voltage	V _{AIO}		20	40	mV
С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Р	Analog input leakage current	I _{ALKG}	—	_	1.0	μA
С	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μs

3.12 ADC Characteristics

Num	Characteris tic	Conditions	Symb	Min	Typ ¹	Мах	Unit	Comment
1	Supply	Absolute	V _{DDA}	1.8	—	3.6	V	
2	voltage	Delta to $V_{DD} (V_{DD} - V_{DDA})^2$	ΔV_{DDA}	-100	0	100	mV	
3	Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV_{SSA}	-100	0	100	mV	
4	Ref Voltage High		V _{REFH}	1.15	V _{DDA}	V _{DDA}	V	
5	Ref Voltage Low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
6	Input Voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
7	Input Capacitance	16-bit modes 8/10/12-bit modes	C _{ADIN}	_	8 4	10 5	pF	
8	Input Resistance		R _{ADIN}	_	2	5	kΩ	

Table 17. 16-bit ADC Operating Conditions

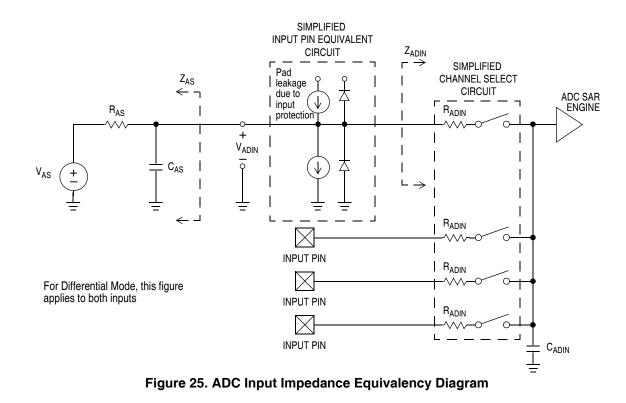


Table 18. 16-bit ADC Characteristics full operating range($V_{REFH} = V_{DDA} > 1.8$, $V_{REFL} = V_{SSA}$, $F_{ADCK} \le 8MHz$)

Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Supply Current	ADLPC = 1, ADHSC = 0			_	215	_		
	ADLPC = 0, ADHSC = 0	Т	I _{DDA}		470		μA	ADLSMP = 0 ADCO = 1
	ADLPC=0, ADHSC=1			_	610	-		
Supply Current	Stop, Reset, Module Off	С	I _{DDA}	—	0.01	-	μA	
ADC	ADLPC = 1, ADHSC = 0		f _{ADACK}	—	2.4		MHz	
Asynchronous Clock Source	ADLPC = 0, ADHSC = 0	Р		_	5.2	_		t _{ADACK} =
	ADLPC = 0, ADHSC = 1				6.2	_		1/f _{ADACK}
Sample Time	See reference manual for sa	ample	times				•	
Conversion Time	See reference manual for co	onversi	on times					

	···			• ••=•••	22.0			
Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Total Unadjusted	16-bit differential mode 16-bit single-ended mode	Т	TUE	_	±16 ±20	+48/-40 +56/-28	LSB ³	32x Hardware
Error	13-bit differential mode 12-bit single-ended mode	Т		_	±1.5 ±1.75	±3.0 ±3.5		Averaging (AVGE = %1 AVGS = %11)
	11-bit differential mode 10-bit single-ended mode	Т		_	±0.7 ±0.8	±1.5 ±1.5		
	9-bit differential mode 8-bit single-ended mode	Т			±0.5 ±0.5	±1.0 ±1.0		
Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	Т	DNL		±2.5 ±2.5	+5/-3 +5/-3	LSB ²	
	13-bit differential mode 12-bit single-ended mode	Т			±0.7 ±0.7	±1 ±1		
	11-bit differential mode 10-bit single-ended mode	Т			±0.5 ±0.5	±0.75 ±0.75		
	9-bit differential mode 8-bit single-ended mode	Т			±0.2 ±0.2	±0.5 ±0.5		
Integral Non-Linearity	16-bit differential mode 16-bit single-ended mode	Т	INL		±6.0 ±10.0	±16.0 ±20.0	LSB ²	
	13-bit differential mode 12-bit single-ended mode	Т			±1.0 ±1.0	±2.5 ±2.5		
	11-bit differential mode 10-bit single-ended mode	Т			±0.5 ±0.5	±1.0 ±1.0		
	9-bit differential mode 8-bit single-ended mode	Т			±0.3 ±0.3	±0.5 ±0.5		
Zero-Scale Error	16-bit differential mode 16-bit single-ended mode	Т	E _{ZS}		±4.0 ±4.0	+32/-24 +24/-16	LSB ²	$V_{ADIN} = V_{SSA}$
	13-bit differential mode 12-bit single-ended mode	Т			±0.7 ±0.7	±2.5 ±2.0		
	11-bit differential mode 10-bit single-ended mode	Т			±0.4 ±0.4	±1.0 ±1.0		
	9-bit differential mode 8-bit single-ended mode	Т		—	±0.2 ±0.2	±0.5 ±0.5		

Table 18. 16-bit ADC Characteristics full operating range($V_{REFH} = V_{DDA} > 1.8$, $V_{REFL} = V_{SSA}$, $F_{ADCK} \le 8MHz$)

		1			1			
Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Full-Scale Error	16-bit differential mode 16-bit single-ended mode	Т	E _{FS}	_	+10/0 +14/0	+42/-2 +46/-2	LSB ²	$V_{ADIN} = V_{DDA}$
	13-bit differential mode 12-bit single-ended mode	Т		_	±1.0 ±1.0	±3.5 ±3.5		
	11-bit differential mode 10-bit single-ended mode	Т			±0.4 ±0.4	±1.5 ±1.5		
	9-bit differential mode 8-bit single-ended mode	Т		_	±0.2 ±0.2	±0.5 ±0.5		
Quantization	16-bit modes	D	EQ	—	-1 to 0	—	LSB ²	
Error	≤13-bit modes			_	—	±0.5		
Effective Number of Bits	16-bit differential mode Avg = 32 Avg = 16 Avg = 8 Avg = 4 Avg = 1	С	ENOB	12.8 12.7 12.6 12.5 11.9	14.2 13.8 13.6 13.3 12.5	 	Bits	F _{in} = F _{sample} /100
	16-bit single-ended mode Avg = 32 Avg = 16 Avg = 8 Avg = 4 Avg = 1	D			13.2 12.8 12.6 12.3 11.5			
Signal to Noise plus Distortion	See ENOB		SINAD	SINAD =	= 6.02 · ENG	<i>0B</i> + 1.76	dB	
Total Harmonic Distortion	16-bit differential mode Avg = 32	С	THD		-91.5	-74.3	dB	F _{in} = F _{sample} /100
	16-bit single-ended mode Avg = 32	D		_	-85.5	_		
Spurious Free Dynamic Range	16-bit differential mode Avg = 32	С	SFDR	75.0	92.2	_	dB	F _{in} = F _{sample} /100
nange	16-bit single-ended mode Avg = 32	D		_	86.2	_		
Input Leakage Error	all modes	D	E _{IL}		I _{In} * R _{AS}		mV	I _{In} = leakage current (refer to DC characteristics)
Temp Sensor	-40 °C– 25 °C	С	m	—	1.646	—	mV/°C	
Slope	25 °C– 125 °C	1			1.769	_		
Temp Sensor Voltage	25 °C	С	V _{TEMP25}	—	701.2	—	mV	

Table 18. 16-bit ADC Characteristics full operating range($V_{REFH} = V_{DDA} > 1.8$, $V_{REFL} = V_{SSA}$, $F_{ADCK} \le 8MHz$)

LCD Specifications 3.14

#	С	Characteristic	Symbol	Min	Тур	Max	Unit
1	D	LCD Supply Voltage	V _{LCD}	0.9	1.5	1.8	V
2	D	LCD Frame Frequency	f _{Frame}	28	30	58	Hz
3	D	LCD Charge Pump Capacitance	C _{LCD}	_	100	100	nF
4	D	LCD Bypass Capacitance	C _{BYLCD}	_	100	100	nF
5	D	LCD Glass Capacitance	C _{glass}	_	2000	8000	pF
6	D	HRefSel = 0	V	0.89	1.00	1.15	v
7	D	V _{IREG} HRefSel = 1	V _{IREG}	1.49	1.67	1.85 ¹	v
8	D	V _{IREG} TRIM Resolution	Δ_{RTRIM}	1.5	_	_	% V _{IREG}
9	D	V _{IREG} Ripple HRefSel = 0	—	_	_	0.1	V
10		HRefSel = 1	—	—	—	0.15	v
11	D	V _{LCD} Buffered Adder ²	I _{Buff}	_	1		μA

 $\frac{1}{V_{IREG}} Max can not exceed V_{DD} - 0.15 V$ $\frac{2}{VSUPPLY} = 10, BYPASS = 0$

3.15 **Flash Specifications**

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section of the reference manual.

#	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	1.8	_	3.6	V
2	D	Supply voltage for read operation	V _{Read}	1.8	_	3.6	V
3	D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
4	D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	_	6.67	μs
5	Р	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
6	Р	Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
7	Р	Page erase time ²	t _{Page}	4000			t _{Fcyc}
8	Р	Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
9	D	Byte program current ³	R _{IDDBP}	—	4	—	mA

Table 22. Flash Characteristics

The frequency of this clock is controlled by a software setting. 1