

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	48 MIPS
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051t621-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.1. C8051T620/1 Block Diagram	. 16
Figure 1.2. C8051T626/7 Block Diagram	
Figure 1.3. C8051T320/2 Block Diagram	
Figure 1.4. C8051T321/3 Block Diagram	
Figure 1.5. Typical Bus-Powered Connections	
Figure 3.1. QFN-32 Pinout Diagram (Top View)	
Figure 3.2. LQFP-32 Pinout Diagram (Top View)	
Figure 3.3. QFN-28 Pinout Diagram (Top View)	. 27
Figure 4.1. LQFP-32 Package Drawing	
Figure 4.2. LQFP-32 Recommended PCB Land Pattern	
Figure 5.1. QFN-32 Package Drawing	
Figure 5.2. QFN-32 Recommended PCB Land Pattern	. 31
Figure 6.1. QFN-28 Package Drawing	. 32
Figure 6.2. QFN-28 Recommended PCB Land Pattern	. 33
Figure 7.1. Normal Mode Digital Supply Current vs. Frequency (MPCE = 1)	. 44
Figure 7.2. Idle Mode Digital Supply Current vs. Frequency (MPCE = 1)	
Figure 8.1. ADC0 Functional Block Diagram	45
Figure 8.2. 10-Bit ADC Track and Conversion Example Timing	. 47
Figure 8.3. ADC0 Equivalent Input Circuits	
Figure 8.4. ADC Window Compare Example: Right-Justified Data	. 54
Figure 8.5. ADC Window Compare Example: Left-Justified Data	. 54
Figure 8.6. ADC0 Multiplexer Block Diagram	
Figure 9.1. Temperature Sensor Transfer Function	57
Figure 9.2. TOFFH and TOFFL Calibration Value Orientation	
Figure 9.3. Temperature Sensor Error with 1-Point Calibration at 0 Celsius	58
Figure 10.1. Voltage Reference Functional Block Diagram	. 59
Figure 11.1. REG0 Configuration: USB Bus-Powered	61
Figure 11.2. REG0 Configuration: USB Self-Powered	62
Figure 11.3. REG0 Configuration: USB Self-Powered, Regulator Disabled	62
Figure 11.4. REG0 Configuration: No USB Connection	63
Figure 12.1. CIP-51 Block Diagram	66
Figure 14.1. Comparator0 Functional Block Diagram	. 77
Figure 14.2. Comparator1 Functional Block Diagram	. 78
Figure 14.3. Comparator Hysteresis Plot	
Figure 14.4. Comparator Input Multiplexer Block Diagram	. 84
Figure 15.1. C8051T620/1 and C8051T320/1/2/3 Memory Map	. 87
Figure 15.2. C8051T626/7 Memory Map	88
Figure 15.3. Program Memory Map	. 89
Figure 15.4. C8051T620/1 and C8051T320/1/2/3 USB FIFO Space and	
XRAM Memory Map with USBFAE Set to 1	92
Figure 15.5. C8051T626/7 USB FIFO Space and XRAM Memory Map	
with USBFAE set to 1	
Figure 20.1. Reset Sources	121

List of Registers

SFR	Definition 8	3.1. A	DC0CF: ADC0 Configuration	49
			DC0H: ADC0 Data Word MSB	
SFR	Definition 8	3.3. A	DC0L: ADC0 Data Word LSB	50
			DC0CN: ADC0 Control	
SFR	Definition 8	3.5. A	DC0GTH: ADC0 Greater-Than Data High Byte	52
			DC0GTL: ADC0 Greater-Than Data Low Byte	
			DC0LTH: ADC0 Less-Than Data High Byte	
			DC0LTL: ADC0 Less-Than Data Low Byte	
			MX0P: AMUX0 Positive Channel Select	
SFR	Definition 1	0.1.	REF0CN: Reference Control	60
SFR	Definition 1	1.1.	REG01CN: Voltage Regulator Control	65
			DPL: Data Pointer Low Byte	
			DPH: Data Pointer High Byte	
			SP: Stack Pointer	
SFR	Definition 1	2.4.	ACC: Accumulator	74
			B: B Register	
SFR	Definition 1	2.6.	PSW: Program Status Word	75
			PFE0CN: Prefetch Engine Control	
			CPT0CN: Comparator0 Control	
SFR	Definition 1	4.2.	CPT0MD: Comparator0 Mode Selection	81
SFR	Definition 1	4.3.	CPT1CN: Comparator1 Control	82
SFR	Definition 1	4.4.	CPT1MD: Comparator1 Mode Selection	83
SFR	Definition 1	4.5.	CPT0MX: Comparator0 MUX Selection	85
SFR	Definition 1	4.6.	CPT1MX: Comparator1 MUX Selection	86
			EMI0CN: External Memory Interface Control	
SFR	Definition 1	5.2.	EMI0CF: External Memory Configuration	94
SFR	Definition 1	7.1.	IE: Interrupt Enable 1	04
			IP: Interrupt Priority 1	
			EIE1: Extended Interrupt Enable 1 1	
			EIP1: Extended Interrupt Priority 1 1	
			EIE2: Extended Interrupt Enable 2 1	
			EIP2: Extended Interrupt Priority 2 1	
			IT01CF: INT0/INT1 ConfigurationO 1	
			PSCTL: Program Store R/W Control 1	
			MEMKEY: EPROM Memory Lock and Key 1	
			IAPCN: In-Application Programming Control 1	
SFR	Definition 1	9.1.	PCON: Power Control 1	20
			VDM0CN: VDD Monitor Control 1	
			RSTSRC: Reset Source 1	
			CLKSEL: Clock Select 1	
			OSCICL: Internal H-F Oscillator Calibration 1	
			OSCICN: Internal H-F Oscillator Control 1	
SFR	Definition 2	21.4.	CLKMUL: Clock Multiplier Control 1	32

Figure 3.2. LQFP-32 Pinout Diagram (Top View)

5. QFN-32 Package Specifications

Figure 5.1. QFN-32 Package Drawing

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.80	0.90	1.00	E2	3.20	3.30	3.40
A1	0.00	0.02	0.05	L	0.30	0.40	0.50
b	0.18	0.25	0.30	L1	0.00		0.15
D	5.00 BSC.			aaa		0.15	
D2	3.20	3.30	3.40	bbb		0.10	
е	0.50 BSC.			ddd		0.05	
E	5.00 BSC.			eee		0.08	

Table 5.1. QFN-32 Package Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- **3.** This drawing conforms to the JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

SFR Definition 8.1. ADC0CF: ADC0 Configuration

Bit	7	6	5	4	3	2	1	0
Name			AD0SC[4:0]	AD0LJST	AD08BE	AMP0GN0		
Туре			R/W		R/W	R/W	R/W	
Reset	1	1	1	1	1	0	0	1

SFR Address = 0xBC

Bit	Name	Function
7:3	AD0SC[4:0]	ADC0 SAR Conversion Clock Period Bits.
		SAR Conversion clock is derived from system clock by the following equation, where <i>AD0SC</i> refers to the 5-bit value held in bits AD0SC4–0. SAR Conversion clock requirements are given in the ADC specification table.
		$AD0SC = \frac{SYSCLK}{CLK_{SAR}} - 1$
		Note: If the Memory Power Controller is enabled (MPCE = '1'), AD0SC must be set to at least "00001" for proper ADC operation.
2	AD0LJST	ADC0 Left Justify Select.
		0: Data in ADC0H:ADC0L registers are right-justified.
		1: Data in ADC0H:ADC0L registers are left-justified.
		Note: The AD0LJST bit is only valid for 10-bit mode (AD08BE = 0).
1	AD08BE	8-Bit Mode Enable.
		0: ADC operates in 10-bit mode (normal).
		1: ADC operates in 8-bit mode.
		Note: When AD08BE is set to 1, the AD0LJST bit is ignored.
0	AMP0GN0	ADC Gain Control Bit.
		0: Gain = 0.5
		1: Gain = 1

12.2. CIP-51 Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should always be written to the value indicated in the SFR description. Future product versions may use these bits to implement new features in which case the reset value of the bit will be the indicated value, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 12.1. DPL: Data Pointer Low Byte

Bit	7	6	5	4	3	2	1	0
Nam	e	DPL[7:0]						
Туре	9	R/W						
Rese	et 0	0	0	0	0	0	0	0
SFR A	ddress = 0x8	32						
Bit	Name		Function					
7:0	DPL[7:0]	Data Pointer Low.						
		The DPL reg	jister is the l	ow byte of th	ne 16-bit DPT	ſR.		

SFR Definition 12.2. DPH: Data Pointer High Byte

Bit	1	6	5	4	3	2	1	0
Name	DPH[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

 Bit
 Name
 Function

 7:0
 DPH[7:0]
 Data Pointer High. The DPH register is the high byte of the 16-bit DPTR.

Figure 15.2. C8051T626/7 Memory Map

15.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051T620/1/6/7 & C8051T320/1/2/3 implements up to 65535 bytes of this program memory space as in-system byte-programmable EPROM. Refer to Table 2.1 on page 21 or Figure 15.1 for additional details on program memory size. Figure 15.3 shows the program memory maps for C8051T620/1/6/7 & C8051T320/1/2/3 devices.

equal to twice the SYSCLK (USBCLK \geq 2 x SYSCLK). When this bit is set, the USB FIFO space is mapped into XRAM space at addresses 0x0400 to 0x07FF. The normal on-chip XRAM at the same addresses cannot be accessed when the USBFAE bit is set to 1.

Important Note: The USB clock must be active when accessing FIFO space.

Figure 15.4. C8051T620/1 and C8051T320/1/2/3 USB FIFO Space and XRAM Memory Map with USBFAE Set to 1

17.3. INTO and INT1 External Interrupt Sources

The INTO and INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INTO Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "28.1. Timer 0 and Timer 1" on page 248) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

INT0 and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 17.7). Note that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register PnSKIP (see Section "22.3. Priority Crossbar Decoder" on page 142 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external interrupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

20. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overrightarrow{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source. Program execution begins at location 0x0000.

Figure 20.1. Reset Sources

SFR Definition 22.4. P0MASK: Port 0 Mask Register

Bit	7	6	5	4	3	2	1	0
Name		POMASK[7:0]						
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xAE

Bit	Name	Function
7:0	P0MASK[7:0]	Port 0 Mask Value.
		Selects P0 pins to be compared to the corresponding bits in P0MAT. 0: P0.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P0.n pin logic value is compared to P0MAT.n.

SFR Definition 22.5. P0MAT: Port 0 Match Register

Bit	7	6	5	4	3	2	1	0
Name	P0MAT[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0x84

Bit	Name	Function
7:0	P0MAT[7:0]	Port 0 Match Value.
		Match comparison value used on Port 0 for bits in P0MASK which are set to 1. 0: P0.n pin logic value is compared with logic LOW. 1: P0.n pin logic value is compared with logic HIGH.

USB Register Definition 23.21. EINCSRH: USB0 IN Endpoint Control High

Bit	7	6	5	4	3	2	1	0
Name	DBIEN	ISO	DIRSEL		FCDT	SPLIT		
Туре	R/W	R/W	R/W	R	R/W	R/W	R	R
Reset	0	0	0	0	0	0	0	0

USB Register Address = 0x12

Bit	Name	Function
7	DBIEN	IN Endpoint Double-buffer Enable.
		0: Double-buffering disabled for the selected IN endpoint.
		1: Double-buffering enabled for the selected IN endpoint.
6	ISO	Isochronous Transfer Enable.
		This bit enables/disables isochronous transfers on the current endpoint.
		0: Endpoint configured for bulk/interrupt transfers.
		1: Endpoint configured for isochronous transfers.
5	DIRSEL	Endpoint Direction Select.
		This bit is valid only when the selected FIFO is not split (SPLIT = 0).
		0: Endpoint direction selected as OUT.
		1: Endpoint direction selected as IN.
4	Unused	Read = 0b. Write = don't care.
3	FCDT	Force Data Toggle Bit.
		0: Endpoint data toggle switches only when an ACK is received following a data packet transmission.
		1: Endpoint data toggle forced to switch after every data packet is transmitted, regard- less of ACK reception.
2	SPLIT	FIFO Split Enable.
		When SPLIT = 1, the selected endpoint FIFO is split. The upper half of the selected FIFO is used by the IN endpoint; the lower half of the selected FIFO is used by the OUT endpoint.
1:0	Unused	Read = 00b. Write = don't care.

23.13. Controlling Endpoints1-3 OUT

Endpoints1-3 OUT are managed via USB registers EOUTCSRL and EOUTCSRH. All OUT endpoints can be used for Interrupt, Bulk, or Isochronous transfers. Isochronous (ISO) mode is enabled by writing 1 to the ISO bit in register EOUTCSRH. Bulk and Interrupt transfers are handled identically by hardware.

An Endpoint1-3 OUT interrupt may be generated by the following:

- 1. Hardware sets the OPRDY bit (EINCSRL.0) to 1.
- 2. Hardware generates a STALL condition.

24.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. Note that the position of the ACK interrupt when operating as a receiver depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled. As a transmitter, interrupts occur **after** the ACK, regardless of whether hardware ACK generation is enabled or not.

24.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 24.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

24.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0-DAT is written while an active Master Receiver. Figure 24.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.

Figure 24.6. Typical Master Read Sequence

25.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 25.6. UART Multi-Processor Mode Interconnect Diagram

26.2. Data Format

UART1 has a number of available options for data formatting. Data transfers begin with a start bit (logic low), followed by the data bits (sent LSB-first), a parity or extra bit (if selected), and end with one or two stop bits (logic high). The data length is variable between 5 and 8 bits. A parity bit can be appended to the data, and automatically generated and detected by hardware for even, odd, mark, or space parity. The stop bit length is selectable between short (1 bit time) and long (1.5 or 2 bit times), and a multi-processor communication mode is available for implementing networked UART buses. All of the data formatting options can be configured using the SMOD1 register, shown in SFR Definition . Figure 26.2 shows the timing for a UART1 transaction without parity or an extra bit enabled. Figure 26.3 shows the timing for a UART1 transaction when the extra bit enabled (XBE1 = 1). Note that the extra bit feature is not available when parity is enabled, and the second stop bit is only an option for data lengths of 6, 7, or 8 bits.

Figure 26.2. UART1 Timing Without Parity or Extra Bit

Figure 26.3. UART1 Timing With Parity

Figure 26.4. UART1 Timing With Extra Bit

Figure 27.7. Slave Mode Data/Clock Timing (CKPHA = 1)

27.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

SFR Definition 28.8. TMR2CN: Timer 2 Control

Bit	7	6	5	4	3	2	1	0
Name	TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2		T2XCLK
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC8; Bit-Addressable

Bit	Name	Function
7	TF2H	Timer 2 High Byte Overflow Flag.
		Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF2L	Timer 2 Low Byte Overflow Flag.
		Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.
5	TF2LEN	Timer 2 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.
4	TF2CEN	Timer 2 Low-Frequency Oscillator Capture Enable.
		When set to 1, this bit enables Timer 2 Low-Frequency Oscillator Capture Mode. If TF2CEN is set and Timer 2 interrupts are enabled, an interrupt will be generated on a falling edge of the low-frequency oscillator output, and the current 16-bit timer value in TMR2H:TMR2L will be copied to TMR2RLH:TMR2RLL.
3	T2SPLIT	Timer 2 Split Mode Enable.
		When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload. 0: Timer 2 operates in 16-bit auto-reload mode. 1: Timer 2 operates as two 8-bit auto-reload timers.
2	TR2	Timer 2 Run Control.
		Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in split mode.
1	Unused	Read = 0b; Write = Don't Care
0	T2XCLK	Timer 2 External Clock Select.
		This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 2 clock is the system clock divided by 12. 1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).

SFR Definition 29.2. PCA0MD: PCA Mode

Bit	7	6	5	4	3	2	1	0
Name	CIDL	WDTE	WDLCK		CPS2	CPS1	CPS0	ECF
Туре	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	1	0	0	0	0	0	0

SFR Address = 0xD9

Bit	Name	Function				
7	CIDL	 PCA Counter/Timer Idle Control. Specifies PCA behavior when CPU is in Idle Mode. 0: PCA continues to function normally while the system controller is in Idle Mode. 1: PCA operation is suspended while the system controller is in Idle Mode. 				
6	WDTE	Watchdog Timer Enable. If this bit is set, PCA Module 4 is used as the watchdog timer. 0: Watchdog Timer disabled. 1: PCA Module 4 enabled as Watchdog Timer.				
5	WDLCK	 Watchdog Timer Lock. This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog Timer may not be disabled until the next system reset. 0: Watchdog Timer Enable unlocked. 1: Watchdog Timer Enable locked. 				
4	Unused	Read = 0b, Write = Don't care.				
3:1	CPS[2:0]	PCA Counter/Timer Pulse Select. These bits select the timebase source for the PCA counter 000: System clock divided by 12 001: System clock divided by 4 010: Timer 0 overflow 011: High-to-low transitions on ECI (max rate = system clock divided by 4) 100: System clock 101: External clock divided by 8 (synchronized with the system clock) 11x: Reserved				
0	ECF	 PCA Counter/Timer Overflow Interrupt Enable. This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt. 0: Disable the CF interrupt. 1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set. 				
Note:	ote: When the WDTE bit is set to 1, the other bits in the PCA0MD register cannot be modified. To change the contents of the PCA0MD register, the Watchdog Timer must first be disabled.					

30.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and EPROM programming functions may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (normally RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application when performing debug functions. These external resistors are not necessary for production boards. A typical isolation configuration is shown in Figure 30.1.

Figure 30.1. Typical C2 Pin Sharing

The configuration in Figure 30.1 assumes the following:

1. The user input (b) cannot change state while the target device is halted.

2. The \overline{RST} pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

