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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIN DESCRIPTIONS
MNEMONIC PIN NO. TYPE NAME AND FUNCTION

P0.0–P0.7 1, 13, 14,
16–20

I/O Port 0 : Port 0 is an 8-bit I/O port with a user-configurable output type. Port 0 latches are configured in
the quasi-bidirectional mode and have either ones or zeros written to them during reset, as determined
by the PRHI bit in the UCFG1 configuration byte. The operation of port 0 pins as inputs and outputs
depends upon the port configuration selected. Each port pin is configured independently. Refer to the
section on I/O port configuration and the DC Electrical Characteristics for details.

The Keyboard Interrupt feature operates with port 0 pins.

Port 0 also provides various special functions as described below.

1 O P0.0 CMP2 Comparator 2 output.

O PWM3 Pulse Width Modulator 3 output.

20 I P0.1 CIN2B Comparator 2 positive input B.

O PWM0 Pulse Width Modulator 0 output.

19 I P0.2 CIN2A Comparator 2 positive input A.

I BRAKE PWM brake input.

18 I P0.3 CIN1B Comparator 1 positive input B.

I AD0 A/D channel 0 input.

17 I P0.4 CIN1A Comparator 1 positive input A.

I AD1 A/D channel 1 input.

16 I P0.5 CMPREF Comparator reference (negative) input.

I AD2 A/D channel 2 input.

14 O P0.6 CMP1 Comparator 1 output.

I AD3 A/D channel 3 input.

13 I/O P0.7 T1 Timer/counter 1 external count input or overflow output.

P1.0–P1.7 2–4, 8–12 I/O Port 1 : Port 1 is an 8-bit I/O port with a user-configurable output type, except for three pins as noted
below. Port 1 latches are configured in the quasi-bidirectional mode and have either ones or zeros
written to them during reset, as determined by the PRHI bit in the UCFG1 configuration byte. The
operation of the configurable port 1 pins as inputs and outputs depends upon the port configuration
selected. Each of the configurable port pins are programmed independently. Refer to the section on I/O
port configuration and the DC Electrical Characteristics for details.

Port 1 also provides various special functions as described below.

12 O P1.0 TxD Transmitter output for the serial port.

11 I P1.1 RxD Receiver input for the serial port.

10 I/O

I/O

P1.2 T0 Timer/counter 0 external count input or overflow output.

SCL I2C serial clock input/output. When configured as an output, P1.2 is open
drain, in order to conform to I2C specifications.

9 I

I/O

P1.3 INT0 External interrupt 0 input.

SDA I2C serial data input/output. When configured as an output, P1.3 is open
drain, in order to conform to I2C specifications.

8 I P1.4 INT1 External interrupt 1 input.

4 I P1.5 RST External Reset input (if selected via EPROM configuration). A low on this pin
resets the microcontroller, causing I/O ports and peripherals to take on their
default states, and the processor begins execution at address 0. When used
as a port pin, P1.5 is a Schmitt trigger input only.

3 O P1.6 PWM1 Pulse Width Modulator 1 output

2 O P1.7 PWM2 Pulse Width Modulator 2 output
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Analog Comparators
Two analog comparators are provided on the P87LPC768. Input and
output options allow use of the comparators in a number of different
configurations. Comparator operation is such that the output is a
logical one (which may be read in a register and/or routed to a pin)
when the positive input (one of two selectable pins) is greater than
the negative input (selectable from a pin or an internal reference
voltage). Otherwise the output is a zero. Each comparator may be
configured to cause an interrupt when the output value changes.

Comparator Configuration
Each comparator has a control register, CMP1 for comparator 1 and
CMP2 for comparator 2. The control registers are identical and are
shown in Figure 4.

The overall connections to both comparators are shown in Figure 5.
There are eight possible configurations for each comparator, as
determined by the control bits in the corresponding CMPn register:
CPn, CNn, and OEn. These configurations are shown in Figure 6.
The comparators function down to a VDD of 3.0V.

When each comparator is first enabled, the comparator output and
interrupt flag are not guaranteed to be stable for 10 microseconds.
The corresponding comparator interrupt should not be enabled
during that time, and the comparator interrupt flag must be cleared
before the interrupt is enabled in order to prevent an immediate
interrupt service.

BIT SYMBOL FUNCTION

CMPn.7, 6 — Reserved for future use. Should not be set to 1 by user programs.

CMPn.5 CEn Comparator enable. When set by software, the corresponding comparator function is enabled.
Comparator output is stable 10 microseconds after CEn is first set.

CMPn.4 CPn Comparator positive input select. When 0, CINnA is selected as the positive comparator input. When
1, CINnB is selected as the positive comparator input.

CMPn.3 CNn Comparator negative input select. When 0, the comparator reference pin CMPREF is selected as
the negative comparator input. When 1, the internal comparator reference Vref is selected as the
negative comparator input.

CMPn.2 OEn Output enable. When 1, the comparator output is connected to the CMPn pin if the comparator is
enabled (CEn = 1). This output is asynchronous to the CPU clock.

CMPn.1 COn Comparator output, synchronized to the CPU clock to allow reading by software. Cleared when the
comparator is disabled (CEn = 0).

CMPn.0 CMFn Comparator interrupt flag. This bit is set by hardware whenever the comparator output COn changes
state. This bit will cause a hardware interrupt if enabled and of sufficient priority. Cleared by
software and when the comparator is disabled (CEn = 0).

CMFn

SU01152

COnOEnCNnCPnCEn——

01234567

CMPn Reset Value: 00h

Not Bit Addressable

Address: ACh for CMP1, ADh for CMP2

Figure 4.  Comparator Control Registers (CMP1 and CMP2)
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SU01153
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Figure 5.  Comparator Input and Output Connections
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Figure 6.  Comparator Configurations
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CNSW0: Counter Shadow register 0
Addr: 0D1H

Reset Value: FFH

7 6 5 4 3 2 1 0

CNSW7 CNSW6 CNSW5 CNSW4 CNSW3 CNSW2 CNSW1 CNSW0

CNSW1: Counter Shadow register 1
Addr: 0D2H

Reset Value: FFH

7 6 5 4 3 2 1 0

Unused Unused Unused Unused Unused Unused CNSW9 CNSW8

The word “Shadow” in the above refers to the fact that writes are not
into the register that controls the counter; rather they are into a
holding register.  As described below the transfer of data from this

holding register, into the register which contains the actual reload
value, is controlled by the user’s program.

INTERNAL BUS

10 BIT SHADOW
REGISTER

10 BIT COUNTER
REGISTER

10 BIT SHADOW
REGISTER

10 BIT COMPARE
REGISTER

10 BIT SHADOW
REGISTER

10 BIT COMPARE
REGISTER

10 BIT SHADOW
REGISTER

10 BIT COMPARE
REGISTER

10 BIT SHADOW
REGISTER

10 BIT COMPARE
REGISTER

10 BIT COUNTER

A>B A>B A>B A>B

RUN XFER

BRAKE

BKCH BKPS BPEN BKEN

BRAKE CONTROL LOGIC

2:1 MUX

PWM3I

PWM3B

PWM3

2:1 MUX

PWM2I

PWM2B

PWM2

2:1 MUX

PWM1I

PWM1B

PWM1

2:1 MUX

PWM0I

PWM0B

PWM0

A B A B A B A B

SU01364

Figure 8.  PWM Block Diagram
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• Poll PWMCON0 to find that Transfer Bit PWMCON0.6 is “0”.
When “0”:

• Write CNSW.(0:1) and CPSW.(0:4) for desired pulse widths and
counter reload values

• Set PWMCON0 to Run and Transfer

Note that if a narrow pulse on the Brake Pin causes brake to be
asserted, it may not be possible to go through the above code
before the end of the pulse.  In this case, in addition to the code
shown, an external latch on the Brake Pin may be required to
ensure that there is a smooth transition in going from brake to run.

The details for PWMCON1 are shown in the following table.

PWMCON1: PWM Control register 1

Addr: 0DBH

Reset Value: 00H

BIT SYMBOL FUNCTION

PWMCON1.7 BKCH See table below

PWMCON1.6 BKPS 0= ”Brake” is asserted if P0.2(Brake Pin) is low.

1= ”Brake” is asserted if P0.2(Brake Pin) is high.

PWMCON1.5 BPEN See table below.

PWMCON1.4 BKEN 0= ”Brake” is never asserted.

1= ”Brake” is enabled per table below.

PWMCON1.3 PWM3B 0= PWM3 is low, when Brake is asserted.

1= PWM3 is high, when Brake is asserted.

PWMCON1.2 PWM2B 0= PWM2 is low, when Brake is asserted.

1= PWM2 is high, when Brake is asserted.

PWMCON1.1 PWM1B 0= PWM1 is low, when Brake is asserted.

1= PWM1 is high, when Brake is asserted.

PWMCON1.0 PWM0B 0= PWM0 is low, when Brake is asserted.

1= PWM0 is high, when Brake is asserted.

7 6 5 4 3 2 1 0

BKCH BKPS BPEN BKEN PWM3B PWM2B PWM1B PWM0B

SU01388

BPEN
0
0
1
1

BKCH
0
1
0
1

BRAKE CONDITION
Always On, (Software Brake)
On when PWM not running (Brake Pin has no effect)
On when Brake Pin asserted (PWM run has no effect)
Not Allowed
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I2C Serial Interface
The I2C bus uses two wires (SDA and SCL) to transfer information
between devices connected to the bus. The main features of the
bus are:

• Bidirectional data transfer between masters and slaves.

• Serial addressing of slaves (no added wiring).

• Acknowledgment after each transferred byte.

• Multimaster bus.

• Arbitration between simultaneously transmitting masters without
corruption of serial data on bus.

The I2C subsystem includes hardware to simplify the software required
to drive the I2C bus. The hardware is a single bit interface which in
addition to including the necessary arbitration and framing error
checks, includes clock stretching and a bus timeout timer. The
interface is synchronized to software either through polled loops
or interrupts.

Refer to the application note AN422, entitled “Using the 8XC751
Microcontroller as an I2C Bus Master” for additional discussion of
the 8xC76x I2C interface and sample driver routines.

The P87LPC768 I2C implementation duplicates that of the 87C751
and 87C752 except for the following details:

• The interrupt vector addresses for both the I2C interrupt and the
Timer I interrupt.

• The I2C SFR addresses (I2CON, !2CFG, I2DAT).

• The location of the I2C interrupt enable bit and the name of the
SFR it is located within (EI2 is Bit 0 in IEN1).

• The location of the Timer I interrupt enable bit and the name of the
SFR it is located within (ETI is Bit 7 in IEN1).

• The I2C and Timer I interrupts have a settable priority.

Timer I is used to both control the timing of the I2C bus and also to
detect a “bus locked” condition, by causing an interrupt when
nothing happens on the I2C bus for an inordinately long period of
time while a transmission is in progress. If this interrupt occurs, the
program has the opportunity to attempt to correct the fault and
resume I2C operation.

Six time spans are important in I2C operation and are insured by timer I:

• The MINIMUM HIGH time for SCL when this device is the master.

• The MINIMUM LOW time for SCL when this device is a master.
This is not very important for a single-bit hardware interface like
this one, because the SCL low time is stretched until the software
responds to the I2C flags. The software response time normally
meets or exceeds the MIN LO time. In cases where the software
responds within MIN HI + MIN LO) time, timer I will ensure that
the minimum time is met.

• The MINIMUM SCL HIGH TO SDA HIGH time in a stop condition.

• The MINIMUM SDA HIGH TO SDA LOW time between I2C stop
and start conditions (4.7ms, see I2C specification).

• The MINIMUM SDA LOW TO SCL LOW time in a start condition.

• The MAXIMUM SCL CHANGE time while an I2C frame is in
progress. A frame is in progress between a start condition and the
following stop condition. This time span serves to detect a lack of
software response on this device as well as external I2C

problems. SCL “stuck low” indicates a faulty master or slave. SCL
“stuck high” may mean a faulty device, or that noise induced onto
the I2C bus caused all masters to withdraw from I2C arbitration.

The first five of these times are 4.7 ms (see I2C specification) and
are covered by the low order three bits of timer I. Timer I is clocked
by the P87LPC768 CPU clock. Timer I can be pre-loaded with one
of four values to optimize timing for different oscillator frequencies.
At lower frequencies, software response time is increased and will
degrade maximum performance of the I2C bus. See special function
register I2CFG description for prescale values (CT0, CT1).

The MAXIMUM SCL CHANGE time is important, but its exact span
is not critical. The complete 10 bits of timer I are used to count out
the maximum time. When I2C operation is enabled, this counter is
cleared by transitions on the SCL pin. The timer does not run
between I2C frames (i.e., whenever reset or stop occurred more
recently than the last start). When this counter is running, it will carry
out after 1020 to 1023 machine cycles have elapsed since a change
on SCL. A carry out causes a hardware reset of the I2C interface
and generates an interrupt if the Timer I interrupt is enabled. In
cases where the bus hang-up is due to a lack of software response
by this device, the reset releases SCL and allows I2C operation
among other devices to continue.

Timer I is enabled to run, and will reset the I2C interface upon
overflow, if the TIRUN bit in the I2CFG register is set. The Timer I
interrupt may be enabled via the ETI bit in IEN1, and its priority set
by the PTIH and PTI bits in the Ip1H and IP1 registers respectively.

I2C Interrupts
If I2C interrupts are enabled (EA and EI2 are both set to 1), an I2C
interrupt will occur whenever the ATN flag is set by a start, stop,
arbitration loss, or data ready condition (refer to the description of ATN
following). In practice, it is not efficient to operate the I2C interface in
this fashion because the I2C interrupt service routine would somehow
have to distinguish between hundreds of possible conditions. Also,
since I2C can operate at a fairly high rate, the software may execute
faster if the code simply waits for the I2C interface.

Typically, the I2C interrupt should only be used to indicate a start
condition at an idle slave device, or a stop condition at an idle master
device (if it is waiting to use the I2C bus). This is accomplished by
enabling the I2C interrupt only during the aforementioned conditions.

Reading I2CON
RDAT The data from SDA is captured into “Receive DATa”

whenever a rising edge occurs on SCL. RDAT is also
available (with seven low-order zeros) in the I2DAT
register. The difference between reading it here and
there is that reading I2DAT clears DRDY, allowing the
I2C to proceed on to another bit. Typically, the first
seven bits of a received byte are read from
I2DAT, while the 8th is read here. Then I2DAT can be
written to send the Acknowledge bit and clear DRDY.

ATN “ATteNtion” is 1 when one or more of DRDY, ARL, STR, or
STP is 1. Thus, ATN comprises a single bit that can be
tested to release the I2C service routine from a “wait loop.”

DRDY “Data ReaDY” (and thus ATN) is set when a rising edge
occurs on SCL, except at idle slave. DRDY is cleared
by writing CDR = 1, or by writing or reading the I2DAT
register. The following low period on SCL is stretched
until the program responds by clearing DRDY.
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BIT SYMBOL FUNCTION

I2CON.7 RDAT Read: the most recently received data bit.

      “ CXA Write: clears the transmit active flag.

I2CON.6 ATN Read: ATN = 1 if any of the flags DRDY, ARL, STR, or STP = 1.

      “ IDLE Write: in the I2C slave mode, writing a 1 to this bit causes the I2C hardware to ignore the bus until it
is needed again.

I2CON.5 DRDY Read: Data Ready flag, set when there is a rising edge on SCL.

      “ CDR Write: writing a 1 to this bit clears the DRDY flag.

I2CON.4 ARL Read: Arbitration Loss flag, set when arbitration is lost while in the transmit mode.

      “ CARL Write: writing a 1 to this bit clears the CARL flag.

I2CON.3 STR Read: Start flag, set when a start condition is detected at a master or non-idle slave.

      “ CSTR Write: writing a 1 to this bit clears the STR flag.

I2CON.2 STP Read: Stop flag, set when a stop condition is detected at a master or non-idle slave.

      “ CSTP Write: writing a 1 to this bit clears the STP flag.

I2CON.1 MASTER Read: indicates whether this device is currently as bus master.

      “ XSTR Write: writing a 1 to this bit causes a repeated start condition to be generated.

I2CON.0 — Read: undefined.

      “ XSTP Write: writing a 1 to this bit causes a stop condition to be generated.

—

SU01155

MASTERSTPSTRARLDRDYATNRDAT

01234567

I2CON Reset Value: 81h

Bit Addressable1

Address: D8h

XSTPXSTRCSTPCSTRCARLCDRIDLECXA

READ

WRITE

Figure 9.  I 2C Control Register (I2CON)

BIT SYMBOL FUNCTION

I2DAT.7 RDAT Read: the most recently received data bit, captured from SDA at every rising edge of SCL. Reading
I2DAT also clears DRDY and the Transmit Active state.

      “ XDAT Write: sets the data for the next transmitted bit. Writing I2DAT also clears DRDY and sets the
Transmit Active state.

I2DAT.6–0 – Unused.

—

SU01156

——————RDAT

01234567

I2DAT Reset Value: xxh

Not Bit Addressable

Address: D9h

———————XDAT

READ

WRITE

Figure 10.  I 2C Data Register (I2DAT)

Checking ATN and DRDY
When a program detects ATN = 1, it should next check DRDY. If
DRDY = 1, then if it receives the last bit, it should capture the data
from RDAT (in I2DAT or I2CON). Next, if the next bit is to be sent, it
should be written to I2DAT. One way or another, it should clear
DRDY and then return to monitoring ATN. Note that if any of ARL,

STR, or STP is set, clearing DRDY will not release SCL to high, so
that the I2C will not go on to the next bit. If a program detects
ATN = 1, and DRDY = 0, it should go on to examine ARL, STR,
and STP.
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ARL “Arbitration Loss” is 1 when transmit Active was set, but
this device lost arbitration to another transmitter.
Transmit Active is cleared when ARL is 1. There are
four separate cases in which ARL is set.

1. If the program sent a 1 or repeated start, but another
device sent a 0, or a stop, so that SDA is 0 at the rising
edge of SCL. (If the other device sent a stop, the setting
of ARL will be followed shortly by STP being set.)

2. If the program sent a 1, but another device sent a
repeated start, and it drove SDA low before SCL
could be driven low. (This type of ARL is always
accompanied by STR = 1.)

3. In master mode, if the program sent a repeated start,
but another device sent a 1, and it drove SCL low
before this device could drive SDA low.

4. In master mode, if the program sent stop, but it could
not be sent because another device sent a 0.

STR “STaRt” is set to a 1 when an I2C start condition is
detected at a non-idle slave or at a master. (STR is not
set when an idle slave becomes active due to a start
bit; the slave has nothing useful to do until the rising
edge of SCL sets DRDY.)

STP “SToP” is set to 1 when an I2C stop condition is
detected at a non-idle slave or at a master. (STP is not
set for a stop condition at an idle slave.)

MASTER “MASTER” is 1 if this device is currently a master on
the I2C. MASTER is set when MASTRQ is 1 and the
bus is not busy (i.e., if a start bit hasn’t been
received since reset or a “Timer I” time-out, or if a stop
has been received since the last start). MASTER is
cleared when ARL is set, or after the software writes
MASTRQ = 0 and then XSTP = 1.

Writing I2CON
Typically, for each bit in an I2C message, a service routine waits for
ATN = 1. Based on DRDY, ARL, STR, and STP, and on the current
bit position in the message, it may then write I2CON with one or
more of the following bits, or it may read or write the I2DAT register.

CXA Writing a 1 to “Clear Xmit Active” clears the Transmit
Active state. (Reading the I2DAT register also does this.)

Regarding Transmit Active
Transmit Active is set by writing the I2DAT register, or by writing
I2CON with XSTR = 1 or XSTP = 1. The I2C interface will only drive
the SDA line low when Transmit Active is set, and the ARL bit will
only be set to 1 when Transmit Active is set. Transmit Active is
cleared by reading the I2DAT register, or by writing I2CON with CXA
= 1. Transmit Active is automatically cleared when ARL is 1.

IDLE Writing 1 to “IDLE” causes a slave’s I2C hardware to
ignore the I2C until the next start condition (but if
MASTRQ is 1, then a stop condition will cause this
device to become a master).

CDR Writing a 1 to “Clear Data Ready” clears DRDY.
(Reading or writing the I2DAT register also does this.)

CARL Writing a 1 to “Clear Arbitration Loss” clears the ARL bit.

CSTR Writing a 1 to “Clear STaRt” clears the STR bit.

CSTP Writing a 1 to “Clear SToP” clears the STP bit. Note that
if one or more of DRDY, ARL, STR, or STP is 1, the low
time of SCL is stretched until the service routine
responds by clearing them.

XSTR Writing 1s to “Xmit repeated STaRt” and CDR tells the
I2C hardware to send a repeated start condition. This
should only be at a master. Note that XSTR need not
and should not be used to send an “initial”
(non-repeated) start; it is sent automatically by the I2C
hardware. Writing XSTR = 1 includes the effect of
writing I2DAT with XDAT = 1; it sets Transmit Active
and releases SDA to high during the SCL low time.
After SCL goes high, the I2C hardware waits for the
suitable minimum time and then drives SDA low to
make the start condition.

XSTP Writing 1s to “Xmit SToP” and CDR tells the I2C
hardware to send a stop condition. This should only be
done at a master. If there are no more messages to
initiate, the service routine should clear the MASTRQ
bit in I2CFG to 0 before writing XSTP with 1. Writing
XSTP = 1 includes the effect of writing I2DAT with
XDAT = 0; it sets Transmit Active and drives SDA low
during the SCL low time. After SCL goes high, the I2C
hardware waits for the suitable minimum time and then
releases SDA to high to make the stop condition.
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Table 2.  Interaction of TIRUN with SLAVEN, MASTRQ, and MASTER
SLAVEN,
MASTRQ,
MASTER

TIRUN OPERATING MODE

All 0 0 The I2C interface is disabled. Timer I is cleared and does not run. This is the state assumed after a reset. If an I2C
application wants to ignore the I2C at certain times, it should write SLAVEN, MASTRQ, and TIRUN all to zero.

All 0 1 The I2C interface is disabled.

Any or all 1 0 The I2C interface is enabled. The 3 low-order bits of Timer I run for min-time generation, but the hi-order bits do
not, so that there is no checking for I2C being “hung.” This configuration can be used for very slow I2C operation.

Any or all 1 1 The I2C interface is enabled. Timer I runs during frames on the I2C, and is cleared by transitions on SCL, and by
Start and Stop conditions. This is the normal state for I2C operation.

Table 3.  CT1, CT0 Values

CT1, CT0 Min Time Count
(Machine Cycles)

CPU Clock Max
(for 100 kHz I 2C)

Timeout Period
(Machine Cycles)

1 0 7 8.4 MHz 1023

0 1 6 7.2 MHz 1022

0 0 5 6.0 MHz 1021

1 1 4 4.8 MHz 1020

Interrupts
The P87LPC768 uses a four priority level interrupt structure. This
allows great flexibility in controlling the handling of the P87LPC768’s
many interrupt sources. The P87LPC768 supports up to 13 interrupt
sources.

Each interrupt source can be individually enabled or disabled by
setting or clearing a bit in registers IEN0 or IEN1. The IEN0
register also contains a global disable bit, EA, which disables all
interrupts at once.

Each interrupt source can be individually programmed to one of four
priority levels by setting or clearing bits in the IP0, IP0H, IP1, and
IP1H registers. An interrupt service routine in progress can be

interrupted by a higher priority interrupt, but not by another interrupt
of the same or lower priority. The highest priority interrupt service
cannot be interrupted by any other interrupt source. So, if two
requests of different priority levels are received simultaneously, the
request of higher priority level is serviced.

If requests of the same priority level are received simultaneously, an
internal polling sequence determines which request is serviced. This
is called the arbitration ranking. Note that the arbitration ranking is
only used to resolve simultaneous requests of the same priority level.

Table 3 summarizes the interrupt sources, flag bits, vector
addresses, enable bits, priority bits, arbitration ranking, and whether
each interrupt may wake up the CPU from Power Down mode.

Table 4.  Summary of Interrupts

Description Interrupt
Flag Bit(s)

Vector
Address

Interrupt
Enable Bit(s)

Interrupt
Priority

Arbitration
Ranking

Power Down
Wakeup

External Interrupt 0 IE0 0003h EX0 (IEN0.0) IP0H.0, IP0.0 1 (highest) Yes

Timer 0 Interrupt TF0 000Bh ET0 (IEN0.1) IP0H.1, IP0.1 4 No

External Interrupt 1 IE1 0013h EX1 (IEN0.2) IP0H.2, IP0.2 7 Yes

Timer 1 Interrupt TF1 001Bh ET1 (IEN0.3) IP0H.3, IP0.3 10 No

Serial Port Tx and Rx TI & RI 0023h ES (IEN0.4) IP0H.4, IP0.4 12 No

Brownout Detect BOF 002Bh EBO (IEN0.5) IP0H.5, IP0.5 2 Yes

I2C Interrupt ATN 0033h EI2 (IEN1.0) IP1H.0, IP1.0 5 No

KBI Interrupt KBF 003Bh EKB (IEN1.1) IP1H.1, IP1.1 8 Yes

Comparator 2 interrupt CMF2 0043h EC2 (IEN1.2) IP1H.2, IP1.2 11 Yes

Watchdog Timer WDOVF 0053h EWD (IEN0.6) IP0H.6, IP0.6 3 Yes

A/D Converter ADCI 005Bh EAD (IEN1.4) IP1H.4, IP1.4 6 Yes

Comparator 1 interrupt CMF1 0063h EC1 (IEN1.5) IP1H.5, IP1.5 9 Yes

Timer 1 interrupt – 0073h ETI (IEN 1.7) Ip1H.7, IP1.7 13 (lowest) No
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I/O Ports
The P87LPC768 has 3 I/O ports, port 0, port 1, and port 2. The
exact number of I/O pins available depend upon the oscillator and
reset options chosen. At least 15 pins of the P87LPC768 may be
used as I/Os when a two-pin external oscillator and an external
reset circuit are used. Up to 18 pins may be available if fully on-chip
oscillator and reset configurations are chosen.

All but three I/O port pins on the P87LPC768 may be software
configured to one of four types on a bit-by-bit basis, as shown in
Table 4. These are: quasi-bidirectional (standard 80C51 port
outputs), push-pull, open drain, and input only. Two configuration
registers for each port choose the output type for each port pin.

Table 5.  Port Output Configuration Settings
PxM1.y PxM2.y Port Output Mode

0 0 Quasi-bidirectional

0 1 Push-Pull

1 0 Input Only (High Impedance)

1 1 Open Drain

Quasi-Bidirectional Output Configuration
The default port output configuration for standard P87LPC768 I/O
ports is the quasi-bidirectional output that is common on the 80C51
and most of its derivatives. This output type can be used as both an

input and output without the need to reconfigure the port. This is
possible because when the port outputs a logic high, it is weakly
driven, allowing an external device to pull the pin low. When the pin
is pulled low, it is driven strongly and able to sink a fairly large
current. These features are somewhat similar to an open drain
output except that there are three pull-up transistors in the
quasi-bidirectional output that serve different purposes.

One of these pull-ups, called the “very weak” pull-up, is turned on
whenever the port latch for the pin contains a logic 1. The very weak
pull-up sources a very small current that will pull the pin high if it is
left floating.

A second pull-up, called the “weak” pull-up, is turned on when the
port latch for the pin contains a logic 1 and the pin itself is also at a
logic 1 level. This pull-up provides the primary source current for a
quasi-bidirectional pin that is outputting a 1. If a pin that has a logic 1
on it is pulled low by an external device, the weak pull-up turns off,
and only the very weak pull-up remains on. In order to pull the pin
low under these conditions, the external device has to sink enough
current to overpower the weak pull-up and take the voltage on the
port pin below its input threshold.

The third pull-up is referred to as the “strong” pull-up. This pull-up is
used to speed up low-to-high transitions on a quasi-bidirectional port
pin when the port latch changes from a logic 0 to a logic 1. When this
occurs, the strong pull-up turns on for a brief time, two CPU clocks, in
order to pull the port pin high quickly. Then it turns off again.

The quasi-bidirectional port configuration is shown in Figure 13.

SU01159
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Figure 13.  Quasi-Bidirectional Output
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BIT SYMBOL FUNCTION

P2M1.7 P2S When P2S = 1, this bit enables Schmitt trigger inputs on Port 2.

P2M1.6 P1S When P1S = 1, this bit enables Schmitt trigger inputs on Port 1.

P2M1.5 P0S When P0S = 1, this bit enables Schmitt trigger inputs on Port 0.

P2M1.4 ENCLK When ENCLK is set and the P87LPC768 is configured to use the on-chip RC oscillator, a clock
output is enabled on the X2 pin (P2.0). Refer to the Oscillator section for details.

P2M1.3 ENT1 When set, the P.7 pin is toggled whenever Timer 1 overflows. The output frequency is therefore
one half of the Timer 1 overflow rate. Refer to the Timer/Counters section for details.

P2M1.2 ENT0 When set, the P1.2 pin is toggled whenever Timer 0 overflows. The output frequency is therefore
one half of the Timer 0 overflow rate. Refer to the Timer/Counterssection for details.

P2M1.1, P2M1.0 — These bits, along with the matching bits in the P2M2 register, control the output configuration of
P2.1 and P2.0 respectively, as shown in Table 4.

(P2M1.0)

SU01636

(P2M1.1)ENT0ENT1ENCLKP0SP1SP2S

01234567

P2M1 Reset Value: 00h

Not Bit Addressable

Address: A4h

Figure 16.  Port 2 Mode Register 1 (P2M1)

Keyboard Interrupt (KBI)
The Keyboard Interrupt function is intended primarily to allow a
single interrupt to be generated when any key is pressed on a
keyboard or keypad connected to specific pins of the P87LPC768,
as shown in Figure 17. This interrupt may be used to wake up the
CPU from Idle or Power Down modes. This feature is particularly
useful in handheld, battery powered systems that need to carefully
manage power consumption yet also need to be convenient to use.

The P87LPC768 allows any or all pins of port 0 to be enabled to
cause this interrupt. Port pins are enabled by the setting of bits in

the KBI register, as shown in Figure 18. The Keyboard Interrupt Flag
(KBF) in the AUXR1 register is set when any enabled pin is pulled
low while the KBI interrupt function is active. An interrupt will
generated if it has been enabled. Note that the KBF bit must be
cleared by software.

Due to human time scales and the mechanical delay associated with
keyswitch closures, the KBI feature will typically allow the interrupt
service routine to poll port 0 in order to determine which key was
pressed, even if the processor has to wake up from Power Down
mode. Refer to the section on Power Reduction Modes for details.
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Figure 21.  Block Diagram of Oscillator Control

CPU Clock Modification: CLKR and DIVM
For backward compatibility, the CLKR configuration bit allows
setting the P87LPC768 instruction and peripheral timing to match
standard 80C51 timing by dividing the CPU clock by two. Default
timing for the P87LPC768 is 6 CPU clocks per machine cycle while
standard 80C51 timing is 12 clocks per machine cycle. This
division also applies to peripheral timing, allowing 80C51 code that
is oscillator frequency and/or timer rate dependent. The CLKR bit
is located in the EPROM configuration register UCFG1, described
under EPROM Characteristics

In addition to this, the CPU clock may be divided down from the
oscillator rate by a programmable divider, under program control.
This function is controlled by the DIVM register. If the DIVM register
is set to zero (the default value), the CPU will be clocked by either
the unmodified oscillator rate, or that rate divided by two, as
determined by the previously described CLKR function.

When the DIVM register is set to some value N (between 1 and 255),
the CPU clock is divided by 2 * (N + 1). Clock division values from 4
through 512 are thus possible. This feature makes it possible to
temporarily run the CPU at a lower rate, reducing power consumption,
in a manner similar to Idle mode. By dividing the clock, the CPU can
retain the ability to respond to events other than those that can cause
interrupts (i.e. events that allow exiting the Idle mode) by executing its
normal program at a lower rate. This can allow bypassing the
oscillator startup time in cases where Power Down mode would
otherwise be used. The value of DIVM may be changed by the
program at any time without interrupting code execution.

Power Monitoring Functions
The P87LPC768 incorporates power monitoring functions designed
to prevent incorrect operation during initial power up and power loss
or reduction during operation. This is accomplished with two
hardware functions: Power-On Detect and Brownout Detect.

Brownout Detection
The Brownout Detect function allows preventing the processor from
failing in an unpredictable manner if the power supply voltage drops
below a certain level. The default operation is for a brownout
detection to cause a processor reset, however it may alternatively
be configured to generate an interrupt by setting the BOI bit in the
AUXR1 register (AUXR1.5).

The P87LPC768 allows selection of two Brownout levels: 2.5 V or
3.8 V. When VDD drops below the selected voltage, the brownout
detector triggers and remains active until VDD is returns to a level
above the Brownout Detect voltage. When Brownout Detect causes
a processor reset, that reset remains active as long as VDD remains
below the Brownout Detect voltage. When Brownout Detect
generates an interrupt, that interrupt occurs once as VDD crosses
from above to below the Brownout Detect voltage. For the interrupt
to be processed, the interrupt system and the BOI interrupt must
both be enabled (via the EA and EBO bits in IEN0).

When Brownout Detect is activated, the BOF flag in the PCON
register is set so that the cause of processor reset may be determined
by software. This flag will remain set until cleared by software.
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Mode 0
Putting either Timer into Mode 0 makes it look like an 8048 Timer,
which is an 8-bit Counter with a divide-by-32 prescaler. Figure 27
shows Mode 0 operation.

In this mode, the Timer register is configured as a 13-bit register. As
the count rolls over from all 1s to all 0s, it sets the Timer interrupt
flag TFn. The count input is enabled to the Timer when TRn = 1 and
either GATE = 0 or INTn = 1. (Setting GATE = 1 allows the Timer to
be controlled by external input INTn, to facilitate pulse width

measurements). TRn is a control bit in the Special Function Register
TCON (Figure 26). The GATE bit is in the TMOD register.

The 13-bit register consists of all 8 bits of THn and the lower 5 bits
of TLn. The upper 3 bits of TLn are indeterminate and should be
ignored. Setting the run flag (TRn) does not clear the registers.

Mode 0 operation is the same for Timer 0 and Timer 1. See
Figure 27. There are two different GATE bits, one for Timer 1
(TMOD.7) and one for Timer 0 (TMOD.3).

BIT SYMBOL FUNCTION

TCON.7 TF1 Timer 1 overflow flag. Set by hardware on Timer/Counter overflow. Cleared by hardware when the
interrupt is processed, or by software.

TCON.6 TR1 Timer 1 Run control bit. Set/cleared by software to turn Timer/Counter 1 on/off.

TCON.5 TF0 Timer 0 overflow flag. Set by hardware on Timer/Counter overflow. Cleared by hardware when the
processor vectors to the interrupt routine, or by software.

TCON.4 TR0 Timer 0 Run control bit. Set/cleared by software to turn Timer/Counter 0 on/off.

TCON.3 IE1 Interrupt 1 Edge flag. Set by hardware when external interrupt 1 edge is detected. Cleared by
hardware when the interrupt is processed, or by software.

TCON.2 IT1 Interrupt 1 Type control bit. Set/cleared by software to specify falling edge/low level triggered
external interrupts.

TCON.1 IE0 Interrupt 0 Edge flag. Set by hardware when external interrupt 0 edge is detected. Cleared by
hardware when the interrupt is processed, or by software.

TCON.0 IT0 Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level triggered
external interrupts.

IT0

SU01172

IE0IT1IE1TR0TF0TR1TF1

01234567

TCON Reset Value: 00h

Bit Addressable

Address: 88h

Figure 26.  Timer/Counter Control Register (TCON)
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Figure 27.  Timer/Counter 0 or 1 in Mode 0 (13-Bit Counter)
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Baud Rates
The baud rate in Mode 0 is fixed: Mode 0 Baud Rate = CPU clock/6.
The baud rate in Mode 2 depends on the value of bit SMOD1 in
Special Function Register PCON. If SMOD1 = 0 (which is the value
on reset), the baud rate is 1/32 of the CPU clock frequency. If
SMOD1 = 1, the baud rate is 1/16 of the CPU clock frequency.

Mode 2 Baud Rate �

1 � SMOD1
32

� CPU clock frequency

Using Timer 1 to Generate Baud Rates
When Timer 1 is used as the baud rate generator, the baud rates in
Modes 1 and 3 are determined by the Timer 1 overflow rate and the
value of SMOD1. The Timer 1 interrupt should be disabled in this

application. The Timer itself can be configured for either “timer” or
“counter” operation, and in any of its 3 running modes. In the most
typical applications, it is configured for “timer” operation, in the
auto-reload mode (high nibble of TMOD = 0010b). In that case the
baud rate is given by the formula:

Mode 1, 3 Baud Rate �

CPU clock frequency�
192 (or 96 if SMOD1 � 1)

256 � (TH1)

Tables 6 and 7 list various commonly used baud rates and how they
can be obtained using Timer 1 as the baud rate generator.

Table 10.  Baud Rates, Timer Values, and CPU Clock Frequencies for SMOD1 = 0

Timer Co nt
Baud Rate

Timer  Count
2400 4800 9600 19.2k 38.4k 57.6k

–1 0.4608 0.9216 * 1.8432 * 3.6864 * 7.3728 * 11.0592

–2 0.9216 1.8432 * 3.6864 * 7.3728 * 14.7456

–3 1.3824 2.7648 5.5296 * 11.0592 – –

–4 * 1.8432 * 3.6864 * 7.3728 * 14.7456 – –

–5 2.3040 4.6080 9.2160 * 18.4320 – –

–6 2.7648 5.5296 * 11.0592 – – –

–7 3.2256 6.4512 12.9024 – – –

–8 * 3.6864 * 7.3728 * 14.7456 – – –

–9 4.1472 8.2944 16.5888 – – –

–10 4.6080 9.2160 * 18.4320 – – –
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Table 11.  Baud Rates, Timer Values, and CPU Clock Frequencies for SMOD1 = 1

Timer Co nt
Baud Rate

Timer  Count
2400 4800 9600 19.2k 38.4k 57.6k 115.2k

–1 0.2304 0.4608 0.9216 * 1.8432 * 3.6864 5.5296 * 11.0592

–2 0.4608 0.9216 * 1.8432 * 3.6864 * 7.3728 * 11.0592 –

–3 0.6912 1.3824 2.7648 5.5296 * 11.0592 16.5888 –

–4 0.9216 * 1.8432 * 3.6864 * 7.3728 * 14.7456 – –

–5 1.1520 2.3040 4.6080 9.2160 * 18.4320 – –

–6 1.3824 2.7648 5.5296 * 11.0592 – – –

–7 1.6128 3.2256 6.4512 12.9024 – – –

–8 * 1.8432 * 3.6864 * 7.3728 * 14.7456 – – –

–9 2.0736 4.1472 8.2944 16.5888 – – –

–10 2.3040 4.6080 9.2160 * 18.4320 – – –

–11 2.5344 5.0688 10.1376 – – – –

–12 2.7648 5.5296 * 11.0592 – – – –

–13 2.9952 5.9904 11.9808 – – – –

–14 3.2256 6.4512 12.9024 – – – –

–15 3.4560 6.9120 13.8240 – – – –

–16 * 3.6864 * 7.3728 * 14.7456 – – – –

–17 3.9168 7.8336 15.6672 – – – –

–18 4.1472 8.2944 16.5888 – – – –

–19 4.3776 8.7552 17.5104 – – – –

–20 4.6080 9.2160 * 18.4320 – – – –

–21 4.8384 9.6768 19.3536 – – – –

NOTES TO TABLES 10 AND 11:
1. Tables 6 and 7 apply to UART modes 1 and 3 (variable rate modes), and show CPU clock rates in MHz for standard baud rates from 2400 to

115.2k baud.
2. Table 6 shows timer settings and CPU clock rates with the SMOD1 bit in the PCON register = 0 (the default after reset), while Table 7

reflects the SMOD1 bit = 1.
3. The tables show all potential CPU clock frequencies up to 20 MHz that may be used for baud rates from 9600 baud to 115.2k baud. Other

CPU clock frequencies that would give only lower baud rates are not shown.
4. Table entries marked with an asterisk (*) indicate standard crystal and ceramic resonator frequencies that may be obtained from many

sources without special ordering.
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Figure 36.  Block Diagram of the Watchdog Timer

BIT SYMBOL FUNCTION

WDCON.7, 6 — Reserved for future use. Should not be set to 1 by user programs.

WDCON.5 WDOVF Watchdog timer overflow flag. Set when a watchdog reset or timer overflow occurs. Cleared when
the watchdog is fed.

WDCON.4 WDRUN Watchdog run control. The watchdog timer is started when WDRUN = 1 and stopped when
WDRUN = 0. This bit is forced to 1 (watchdog running) if the WDTE configuration bit = 1.

WDCON.3 WDCLK Watchdog clock select. The watchdog timer is clocked by CPU clock/6 when WDCLK = 1 and by
the watchdog RC oscillator when WDCLK = 0. This bit is forced to 0 (using the watchdog RC
oscillator) if the WDTE configuration bit = 1.

WDCON.2–0 WDS2–0 Watchdog rate select.

WDS2–0 Timeout Clocks Minimum Time Nominal Time Maximum Time

0 0 0 8,192 10 ms 16 ms 23 ms

0 0 1 16,384 20 ms 32 ms 45 ms

0 1 0 32,768 41 ms 65 ms 90 ms

0 1 1 65,536 82 ms 131 ms 180 ms

1 0 0 131,072 165 ms 262 ms 360 ms

1 0 1 262,144 330 ms 524 ms 719 ms

1 1 0 524,288 660 ms 1.05 sec 1.44 sec

1 1 1 1,048,576 1.3 sec 2.1 sec 2.9 sec

WDS0

SU01183

WDS1WDS2WDCLKWDRUNWDOVF——

01234567

WDCON Reset Value: � 30h for a watchdog reset.

� 10h for other rest sources if the watchdog is enabled via the WDTE configuration bit.

� 00h for other reset sources if the watchdog is disabled via the WDTE configuration bit.

Not Bit Addressable

Address: A7h

Figure 37.  Watchdog Timer Control Register (WDCON)
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Additional Features
The AUXR1 register contains several special purpose control bits that
relate to several chip features. AUXR1 is described in Figure 38.

Software Reset
The SRST bit in AUXR1 allows software the opportunity to reset the
processor completely, as if an external reset or watchdog reset had
occurred. If a value is written to AUXR1 that contains a 1 at bit
position 3, all SFRs will be initialized and execution will resume at
program address 0000. Care should be taken when writing to
AUXR1 to avoid accidental software resets.

Dual Data Pointers
The dual Data Pointer (DPTR) adds to the ways in which the
processor can specify the address used with certain instructions.
The DPS bit in the AUXR1 register selects one of the two Data
Pointers. The DPTR that is not currently selected is not accessible
to software unless the DPS bit is toggled.

Specific instructions affected by the Data Pointer selection are:

• INC DPTR Increments the Data Pointer by 1.

• JMP @A+DPTR Jump indirect relative to DPTR value.

• MOV DPTR, #data16 Load the Data Pointer with a 16-bit
constant.

• MOVC A, @A+DPTR Move code byte relative to DPTR to the
accumulator.

• MOVX A, @DPTR Move data byte the accumulator to data
memory relative to DPTR.

• MOVX @DPTR, A Move data byte from data memory
relative to DPTR to the accumulator.

Also, any instruction that reads or manipulates the DPH and DPL
registers (the upper and lower bytes of the current DPTR) will be
affected by the setting of DPS. The MOVX instructions have limited
application for the P87LPC768 since the part does not have an
external data bus. However, they may be used to access EPROM
configuration information (see EPROM Characteristics section).

Bit 2 of AUXR1 is permanently wired as a logic 0. This is so that the
DPS bit may be toggled (thereby switching Data Pointers) simply by
incrementing the AUXR1 register, without the possibility of
inadvertently altering other bits in the register.

BIT SYMBOL FUNCTION

AUXR1.7 KBF Keyboard Interrupt Flag. Set when any pin of port 0 that is enabled for the Keyboard Interrupt
function goes low. Must be cleared by software.

AUXR1.6 BOD Brown Out Disable. When set, turns off brownout detection and saves power. See Power
Monitoring Functions section for details.

AUXR1.5 BOI Brown Out Interrupt. When set, prevents brownout detection from causing a chip reset and allows
the brownout detect function to be used as an interrupt. See the Power Monitoring Functions
section for details.

AUXR1.4 LPEP Low Power EPROM control bit. Allows power savings in low voltage systems. Set by software. Can
only be cleared by power-on or brownout reset. See the Power Reduction Modes section for
details.

AUXR1.3 SRST Software Reset. When set by software, resets the P87LPC768 as if a hardware reset occurred.

AUXR1.2 — This bit contains a hard-wired 0. Allows toggling of the DPS bit by incrementing AUXR1, without
interfering with other bits in the register.

AUXR1.1 — Reserved for future use. Should not be set to 1 by user programs.

AUXR1.0 DPS Data Pointer Select. Chooses one of two Data Pointers for use by the program. See text for details.

DPS

SU01637

—0SRSTLPEPBOIBODKBF

01234567

AUXR1 Reset Value: 00h

Not Bit Addressable

Address: A2h

Figure 38.  AUXR1 Register
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DIP20: plastic dual in-line package; 20 leads (300 mil) SOT146-1
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SO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1
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REVISION HISTORY

Date CPCN Description

2002 Mar 12 9397 750 09558 – Added revision history

– Updated Reset section

2001 Aug 06 9397 750 08661 Previous release


