

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-R5F
Core Size	32-Bit Single-Core
Speed	240MHz
Connectivity	CANbus, CSIO, Ethernet, I ² C, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2.112MB (2.112M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.15V ~ 5.5V
Data Converters	A/D 50x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP Exposed Pad
Supplier Device Package	208-TQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6j324cksmse2000a

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-3: Function Digit Table

Part Number	S6J32X (X = Function Digit)
Function Digit	В
CPU Clock Maximum	160 MHz
Graphics Clock Maximum	160 MHz
Display Output Support	ch.0
Video Capture Support	N/A
Graphic Engine Type	2D
HyperBus Interface	ch.0, 1
Sound System	YES
FPD-Link	N/A
Media System	N/A
Chip Select Output of MFS	N/A
l ² C	MFS ch.16, 17

Notes:

- This table only shows the relation between the optional function and the part numbers. That is, all products are not
 necessarily available for orders. See the order number on the datasheet, and confirm actual availabilities of products.
- The sound system is composed of the sound waveform generator, the sound mixer, the audio DAC, PCM-PWM, and I2S0.
- The media system means both Ethernet AVB and Media LB.
- The CLK_CPU is assigned for CPU clock. The CLK_CD3A0 is assigned for Graphic clock. They are defined at the chapter of Clock Configuration.
- Display Output ch.0 is used for RSDS and FPD-LINK (LVDS) as well as DRGB (Digital RGB). The ch.0 of the product which doesn't support FPD-LINK is used for RSDS and DRGB.
- HyperBus Interface ch.0 for MCU and ch.1 for graphic subsystem cannot be used simultaneously.

4.2.1 TEQFP216

Figure 4-18 LEQ216

Туре	Circuit	Remark
F	Pull-up control	 General-purpose I/O port Output 2 mA, 5 mA, 6 mA or 10 mA selectable
	☐ — Digital output	 - 33 kΩ with pull-up resistor control
		 33 kΩ with pull-down resistor control
	Solution </th <th> CMOS hysteresis input </th>	 CMOS hysteresis input
	$-\pi$	 MediaLB level hysteresis input
	□ Pull-down control	
	CMOS-hys input	
	PSS control	
	└────────────────────────────────────	
	PSS control	
G		- External 1.2 V regulator control
		- Output 2 mA
	 _├── Digital output	
Н	Pull-up control	- General-purpose I/O port
		- Output 1 mA, 2 mA or 5 mA selectable
	□ Digital output	 50 kΩ with pull-up resistor control
		- 50 k Ω with pull-down resistor control
		- CMOS hysteresis input
	Pull-down control	- Automotive hysteresis input
	CMOS-hys input	
	PSS control	
	Automotive input	
	PSS control	
I		 General-purpose I/O port with analog input
		- Output 1 mA, 2 mA or 5 mA selectable
	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	- 50 kΩ with pull-up resistor control
		 50 kΩ with pull-down resistor control
	Sector Secto	 CMOS hysteresis input
		 Automotive hysteresis input
	Pull-down control	
	PSS control	
	Analog input	
1		

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

7.1.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.

(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5 °C and 30 °C. When you open Dry Package that recommends humidity 40% to 70% relative humidity.

(3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.

(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125 °C/24 h

Figure 8-4: Land Pattern and Thermal Via LER208

0.25 mm \leq a \leq 0.30 mm

(Condition: See 8.2. Operation Assurance)

				Value		Value		
Parameter	Symbol	Pin Name	Conditions	Value Max Unit Mi Typ Max Unit -5 -5 +5 μ A -5 +10 μ A 25 50 100 $K\Omega$ 25 50 100 $K\Omega$ 40 100 200 $K\Omega$ 17 33 66 $K\Omega$ 25 50 100 $K\Omega$ 25 50 100 $K\Omega$ 40 100 200 $K\Omega$ 25 50 100 $K\Omega$ 40 100 200 $K\Omega$ 17 33 66 $K\Omega$ 25 50 100 $K\Omega$ 40 100 200 $K\Omega$ 17 33 66 $K\Omega$ 25 50 100 $K\Omega$ 26 50 100 $K\Omega$ 27 55 15 pF	Remarks			
Input leakage current	l _{IL}	P2_16, 17, 19, 22, 24 to 31, P3_00 to 31, P4_00 to 12, P4_25 to 31, P5_00 to 20, P6_02 to 31	Vcc5=Vcc53=DVcc= AVcc=5.5 V Vss < VI < Vcc	-5	-	+5	μΑ	5-V pins 5-V/3-V pins
		P0_00 to 31, P1_00 to 09, P5_21, 22, 27 to 31, P6_00, 01	V _{CC} 3=3.6 V V _{SS} < VI < V _{CC3}	- 10	-	+10	μA	3-V pins
	R _{UP1}	RSTX, NMIX	-	25	50	100	kΩ	
	Rup2	P2_16, 17, 19, 22, 24 to 31, P3_00 to 31, P4_00 to 12, P4_25 to 31, P5_00 to 20, P6_02 to 31	Pull-up resistor Selected Vcc53 = 4.5 V to 5.5 V	25	50	100	kΩ	5-V pins 5-V/3-V pins
Pull-up resistor		P4_25 to 31, P5_00 to 20	Pull-up resistor Selected Vcc53 = 3.0 V to 3.6 V	40	100	200	kΩ	5-V/3-V pins
	Rups	P0_00 to 31, P1_00 to 09, P5_21, 22, 27 to 31, P6_00, 01	Pull-up resistor selected	17	33	66	kΩ	3-V pins
	R _{UP4}	JTAG_TDI, JTAG_TMS, JTAG_TCK	-	25	50	100	kΩ	
	R _{down1}	P2_16, 17, 19, 22, 24 to 31, P3_00 to 31, P4_00 to 12, P4_25 to 31,P5_00 to 20, P6_02 to 31	Pull-down resistor Selected Vcc53 = 4.5 V to 5.5 V	25	50	100	kΩ	5-V pins 5-V/3-V pins
Pull-down resistor		P4_25 to 31,P5_00 to 20	Pull-down resistor Selected Vcc53 = 3.0 V to 3.6 V	40	100	200	kΩ	5-V/3-V pins
	R _{down2}	P0_00 to 31, P1_00 to 09, P5_21, 22, 27 to 31, P6_00, 01	Pull-down resistor selected	17	33	66	kΩ	3-V pins
	Rdown3	JTAG_NTRST	-	25	50	100	kΩ	
Input capacitance	CIN1	P0_00 to 31, P1_00 to 09, P2_16, 17, 19, 22, 24 to 31, P3_00 to 20, P4_25 to 31, P5_00 to 20, P5_21 22, 27 to 31, P6_00 to 08, 17 to 26	-	-	5	15	pF	
	CIN2	P3_21 to 31, P4_00 to 12, P6_09 to 16	_	-	15	45	pF	When using SMC

8.3.2.3 PSS Stop Mode Shutdown

This characteristic is specified for the series with the function digits 3, 4, 5, 6, 7, 8, 9, K, L, M, and N.

(Condition: See 8.2. Operation Assurance)

Symbol Pin		Conditions	Va	lue	Unit		Remark
Cymbol	Name	Conditions	Тур	Max	onic	14(0)	Kemark
		PD1=ON, PD4_0=ON, PD4_1=ON	65	270	μA	25	-
I _{CCH5}	V _{cc} 5	PD1=ON, PD4_0 or PD4_1=ON	60	245	μA	25	-
		PD1=ON	55	220	μA	25	-

■This characteristic is specified for the series with the function digits B.

(Condition: See 8.2. Operation Assurance)

Symbol Pin		Conditions	Va	ue	Unit	TA (°C)	Remark
Cymbol	Name	Conditions	Тур	Max	onic	14(0)	Remark
		PD1=ON, PD4_0=ON, PD4_1=ON	65	315	μA	25	-
Іссн5	Vcc5	PD1=ON, PD4_0 or PD4_1=ON	60	290	μA	25	-
		PD1=ON	55	265	μA	25	-

Notes:

⁻ The values will be evaluated after engineering samples release.

The values have been standardized with regulator standby mode (RMSEL=1).

- The configurable minimum frequency of PLLn and SSCGn output is 400 MHz.
- "Unused" means a clock source which doesn't have any supply destinations. Configure it as disable with performing at the lower clock frequency than the described maximum.

8.4.6 Multi-Function Serial

8.4.6.1 UART (Asynchronous Serial Interface) Timing (SMR: MD2-0=0b000, 0b001)

(1) External Clock Selected (BGR: EXT=1)

(Condition: See 8.2. Operation Assurance)

Baramotor	Symbol	Din Namo	Conditions	Valu	Value		Pomarke
Farameter	Symbol	Fill Name	Conditions	Min	Max	Unit	Remarks
Serial clock "L" pulse width	t _{sLsн}	SCK0 to SCK4, SCK8 to SCK12		tclk_lcpna ^{*1} +10	-	ns	
		SCK16 to SCK17		t _{с∟к_сом} +10	-	ns	
Serial clock	tshsL	SCK0 to SCK4, SCK8 to SCK12	(CL = 50 pF, I _{OL} =-2 mA, I _{OH} =2 mA), (CL=20 pF,	t _{clk_lcpna} *1 +10	-	ns	
		SCK16 to SCK17	Ì _{OL} =-1 mA, I _{OH} =1 mA)	tclк_сомр +10	-	ns	
SCK falling time	t⊢	SCK0 to		-	5	ns	
SCK rising time	tR	SCK4, SCK8 to SCK12, SCK16 to SCK17		-	5	ns	

*1: n=0:ch.0 to ch.4, n=1:ch.8 to ch.12

(2) Normal Synchronous Transfer (SCR: SPI=0) and Mark Level "L" of Serial Clock Output (SMR: SCINV=1)

(Condition: See 8.2. Operation Assurance)

Paramotor	Symbol	Pin Namo	Conditions	Value		Unit	Remarks
Falameter	Symbol	Fin Name	conditions	Min	Max	Onit	Itemarks
Sorial clock		SCK0 to SCK4,		3tclk_lcPnA ^{*1}	-		
Serial Clock	tscyc	SCK8 to SCK12		3t _{CLK_LCPnA} *2	-	ns	
cycle time		SCK16 to SCK17		3tclk_comp	-		
		SCK0 to SCK4,		0	30		
		SCK8 to SCK12		0			
$SCK \uparrow \to SOT$	4	SOT0 to SOT4,		0	20*3	20	
delav time	ISHOVI	SOT8 to SOT12		0	20	ns	
		SCK16 to SCK17	Montor	0	45		
		SOT16 to SOT17	Modo	0	15		
		SCK0 to SCK4,		26.5	-	ns	
Valid SIN → SCK ↓		SCK8 to SCK12,	(CL-20 pr,		-		
		SIN0 to SIN4,	$I_{OL} = 5 \text{ mA}$	20 ^{*3}			
	UVSLI	SIN8 to SIN12,	10H-5 MA)			ns	
		SCK16 to SCK17		20			
		SIN16 to SIN17		20	-		
		SCK0 to SCK4,					
		SCK8 to SCK12,					
$SCK\downarrow \rightarrow Valid\;SIN$	to nu	SCK16 to SCK17		0		20	
hold time	LSLIXI	SOT0 to SOT4,		0	-	ns	
		SOT8 to SOT12,					
		SOT16 to SOT17					
Carial clock		SCK0 to SCK4,	Slavo	2tclk_lcPnA ^{*1}	-		
"H" pulse width	t _{SHSL}	SCK8 to SCK12	Mode	2tclk_lcPnA ^{*2}	-	ns	
		SCK16 to SCK17	(CL=20 pF,	2tclk_comp	-		
		SCK0 to SCK4,	Ì _{OL} =-5 mA,	2tcLK_LCPnA ^{*1}	-		
Serial clock	t _{SLSH}	SCK8 to SCK12	Iон=5 mA)	2tcLK_LCPnA ^{*2}	-	ns	
		SCK16 to SCK17		2tclk_comp	-	1	

(8) Mark Level "L" of Serial Clock Output (SMR: SCINV=1) and Mark Level "L" of Serial Chip Select (SCSCR: CSLVL=0)

Paramotor	Symbol Conditions		Val	ue	Unit	Pomarke
Farameter	Symbol	Conditions	Min	Мах	Unit	Itemarks
SCS $\uparrow \rightarrow$ SCK \uparrow setup time	t _{cssi}	Master mode	-20 ^{*1}	-	ns	
$SCK \downarrow \rightarrow SCS \downarrow hold time$	t _{сsнi}	(CL = 20 pF I _{OL} =-5 mA,	0*2	-	ns	
SCS deselect time	tcsdi	loн=5 mA)	-20+5tcp*3	-	ns	
SCK ↑ →SCS ↑ clock change time	tscc	Round Function Master mode (CL = 20 pF Io∟=-5 mA, Ioн=5 mA)	3tcp+0	3tcp+20	ns	

(Condition: See 8.2. Operation Assurance)

*1) SCSTR1.CSSU=0. t_{CSSI} can be configured.

*2) SCSTR0.CSHD=0. t_{CSHI} can be configured.

*3) SCSTR3/2.CSDS=0. t_{CSDI} can be configured.

tcp is bus clock. Ch0-4 is CLK_LCP0A. Ch8-12 is CLK_LCP1A. Ch16-17 is CLK_COMP.

8.4.10.5 LVDL2

				Value			Guaranteed	
Parameter	Pin Name	Conditions	Min	Тур	Мах	Unit	MCU Operation Range	Remarks
Supply Voltage Range	Vcc12	-	1.1	-	1.3	V	-	-
Detection Voltage	V _{CC} 12	LVDL2V=00	0.72	0.77	0.82	V		
Release Voltage	V _{cc} 12	(Default)	0.795	0.845	0.895	V		
Detection Voltage	V _{CC} 12		0.82	0.87	0.92	V		
Release Voltage	V _{cc} 12		0.895	0.945	0.995	V	No	*1
Detection Voltage	V _{cc} 12		0.92	0.97	1.02	V	INO	
Release Voltage	Vcc12		0.995	1.045	1.095	V		
Detection Voltage	Vcc12		1.02	1.07	1.12	V		
Release Voltage	V _{cc} 12		1.095	1.145	1.195	V		
Detection Time	-	-	-	-	30	μs	-	*2

(Condition: See 8.2. Operation Assurance)

Notes:

*1: This LVD cannot be used to reliably generate a reset before voltage dips below minimum guaranteed MCU operation voltage, as these detection levels are below the minimum guaranteed MCU operation voltage (1.1 V).

 *2: After the brown-out event where the voltage level dips below the detection threshold for less than this time, the detection may occur or be canceled.

8.4.15 DDR-HSSPI

DDR-HSSPI AC characteristics are specified with the specific reference voltage of VIL, VIH, VOL, VOH = 0.5 Vcc3 as mentioned in Section 8.4.3, regardless of automotive input-level configuration, CMOS Schmitt, and TTL.

8.4.15.1 DDR-HSSPI Interface Timing (SDR Mode)

(Condition: See 8.2. Operation Assurance)

Baramatar	Symbol	Din Nomo	Conditions	Val	ue	Unit	Pomarke
Farameter	Symbol	Pin Name	Conditions	Min	Max	Unit	Remarks
				10	-		
HSSPI clock cycle	t _{cyc}	G_SCLK0 M_SCLK0		20	-	ns	when Quad Page Program
G_SCLK↑ -> delayed sample clock↑	t spcnt	-		0	31.5	ns	
GSDATA -> G_SCLK↑ Input setup time	t _{isdata}	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3		*1	-	ns	
G_SCLK↑ -> GSDATA Input hold time	t _{ihdata}	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3	(CL = 20 pF,	*1	-	ns	
G_SCLK↑ -> GSDATA Output delay time	t _{oddata}	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3	I _{OH} =10 mA),	-	tcyc/2 + 2	ns	
G_SCLK↑ -> GSDATA Output hold time	t _{ohdata}	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3		tcyc/2 - 3	-	ns	
GSSEL↓ -> G_SCLK Output delay time	todsel	G_SSEL0, 1 M_SSEL0, 1		- 12.00+(SS 2CD+0.5)*t cyc	-	ns	
G_SCLK↑ -> GSSEL Output hold time	t _{ohsel}	G_SSEL0, 1 M_SSEL0, 1		tcyc - 2	-	ns	

Notes:

- SS2CD [1:0] should be configured as 01, 10, or 11.

- For *1, the delay of the delay sample clock can be configured (DLP function).

8.4.15.2 DDR-HSSPI Interface Timing (DDR Mode)

(Condition: See 8.2. Operation Assurance)

Paramotor	Symbol	Pin Namo	Conditions	Conditions Value		Unit	Pomarke
Farameter	Symbol	Fill Name	Conditions	Min	Max	Unit	Remarks
HSSPI clock cycle	t _{cyc}	G_SCLK0 M_SCLK0		12.5	-	ns	
G_SCLK↑↓ -> delayed sample clock↑	t _{spcnt}	-		0	31.5	ns	
GSDATA -> G_SCLK↑↓ Input setup time	t _{isdata}	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3		*1	-	ns	
G_SCLK↑↓ -> GSDATA Input hold time	tihdata	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3	(CL = 20	*1	-	ns	
G_SCLK↑↓ -> GSDATA Output delay time	toddata	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3	рF, I _{OL} =-10 mA, I _{OH} =10 mA),	-	tcyc/4 + 1.5	ns	
G_SCLK↑↓ -> GSDATA Output hold time	tohdata	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3		Tcyc/4 - 1.0	-	ns	
GSSEL↓ -> G_SCLK Output delay time	t _{odsel}	G_SSEL0, 1 M_SSEL0, 1		- 15.75+(SS 2CD+0.5)*t cyc	-	ns	
G_SCLK↑ -> GSSEL Output hold time	t _{ohsel}	G_SSEL0, 1 M_SSEL0, 1		0.75*tcyc - 2.0	-	ns	

Notes:

- SS2CD [1:0] should be configured as 01, 10, or 11.

- For *1, the delay of the delay sample clock can be configured (DLP function).

8.4.16 HyperBus

HyperBus AC characteristics are specified with the specific reference voltage of VIL, VIH, VOL, VOH = 0.5Vcc3 as 8.4.3 regardless of input level configuration automotive, CMOS Schmitt, and TTL.

8.4.16.1 HyperBus Write Timing (HyperFlash)

Value Parameter Symbol **Pin Name** Conditions Unit Remarks Min Max G CK 12.5 ns (A) Hyper Bus clock cycle tсксус MCK 10 ns (B) tсксус -CS↑↓ -> CK↑ G CS# 1,2 (A) _ ns 3.25 tcss M CS# 1,2 Chip Select setup time (B) (CL = 20 tсксус -2.0 ns pF, G DQ7-0 DQ -> CK↑↓ tis 1.25 ns _ IoL=-10 mA, M DQ7-0 Setup time Іон=10 mA). CK↑↓ -> DQ G DQ7-0 tн 1.25 ns M DQ7-0 Hold time CK⊥ -> CS↑ G CS# 1,2 tckcyc/2 t_{CSH} ns M CS# 1,2 Chip select hold time

Notes:

- (A): The value will be targeted by the product series with revision digit A.

- (B): The value will be targeted by the product series with after revision digit B.

- Hyper Bus clock cycle is always (1/F_{CLK_CD1})*4.

(Condition: See 8.2. Operation Assurance)

8.4.18.2 MediaLB Output Timing

(Condition: See 8.2. Operation Assurance)

Baramatar	Symbol	Din Nama	Conditions	Valu	Unit	Remarks	
Farameter Synt		Pin Name	Conditions	Min	Max		Unit
MLBCLK cycle	t _{mckc}	MLBCLK		40	-	ns	
MLBSIG, MLBDAT	t _{mcfdz}	t _{mcfdz} MLBSIG MLBDAT	(CL = 20 pF, I _{OL} =-6 mA,	26.5	-	ns	tmaka - tdaut
output stop							there toout
MLBSIG, MLBDAT	t	MLBSIG	Iон=6 mA),	0	13.5	ne	
output delay	ldout	MLBDAT		0	15.5	115	

Note:

_

CLK_HAPP1B0(internal) frequency > MLBCLK(external) frequency

8.6 Audio DAC

8.6.1 Electrical Characteristics

(Condition: See 8.2. Operation Assurance)

Devenueter	Cumphiel	Pin Name	Conditions *1		Value			1114	Dementer
Parameter	Symbol				Min Typ		Max	Unit	Remarks
system clock frequency	F _{CLKDA0}	-	-		2.048	-	18.43 2	MHz	
sampling clock	fs	-	-		8	-	48	kHz	
Analog output load resistance *2	R∟	DAC_L		-	20	-	-	kΩ	
Analog output load capacitance *2	CL	DAC_R	-		-	-	100	pF	
capacitance	-	C_L C_R	-		5	10	20	μF	
Analog output single-end output range (±full scale)	-	DAC_L DAC_R	RL=20 kΩ CL=100 pF		-	0.673 AVCC3_DA C	-	V_{P-P}	
Analog output voltage (zero)	-	_	-		-	0.5 AVCC3_DA C	-	V	
THD+N *3	-	-	signal frequency: 1 kHz LPF(fc: 20 kHz)		-	-82	-72	dB	
SNR *3	-	-	signal frequency:		85	89	-	dB	
Dynamic range *3	-	-	1 kHz LPF(fc: 20 kHz)— – A-weighting filter		83	86	-	dB	
Out-of-Band Energy	-	-	20 kHz to 64 fs		-	-	-33	dB	
Channel Separation	-	-	-		-	80	-	dB	
Output impedance	-	-	-		150	200	250	Ω	
	-		digital	noise 50 Hz	-	-35	-	dB	
		-	input:	noise 1 kHz	-	-50	-	dB	
PSRR			zero	noise 20kHz	-	-40	-	dB	
			digital i	nput :full scale sine	-	-13	-	dB	
Supply current normal operation	-	AVCC3 _DAC	-		-	2.2	3.2	mA	
Supply current power-down	-	AVCC3 _DAC	-		-	-	100	μA	
Startup Time *4	-	-	DAE↑		-	650 ^{*5}	-	ms	

Notes:

- *1: All parameters specified fs=44.1 kHz, system clock 256 fs and 16-bit data, RL-20 k Ω , CL=100 pF, unless otherwise noted.

- *2: Refer to bellow note on R_L load connection.

- *3: These values do not include the noise caused by the analog power supply. (Refer to 7. Use examples)

- *4: 10μ F is connected to C_L, C_R.

- *5: Startup time (Figure 8-8)

S6J3200 Series

Summary	Error Page	Error	Correct Page	Correct	ID
Case Temperature issue	64, 65	Operating temperature TA: -40(min), +105(max)	80, 81	Operating temperature TA: -40(min), +105(max) TC: -40(min), +144(max) Notes: - Both rating of TA and TC should simultaneously be satisfied as maximum operation temperature. - The following condition should be satisfied in order to facilitate heat dissipation. 1. 4 or more layers PCB should be used. 2. The area of PCB should be 114.3 mm x 76.2 mm or more, and the thickness should be 1.6 mm or more. (JEDEC standard) 3. 1 layer of middle layers at least should be used for dedicated layer to radiate heat with residual copper rate 90% or more. The layer can be used for system ground. 4. 35~50% of the die stage area which is exposed at back surface of package should be soldered to a part of 1st layer. 5. The part of 1st layer should be connected to the dedicated heat radiation layer with more than 10 thermal via holes.	#283
Main clock frequency	15	Main and sub oscillator is available. – A wide range of 3.6 - 4MHz is available for main oscillator	17	Main and sub oscillator is available. – A wide range of 3.6 - 16MHz is available for main oscillator	#311
Revision description	11	-	12	(Inside Figure 2-1: Option and Part Number) C: Support MCAN 3.0.1. D: Support MCAN 3.2.	#313
CPU Clock Maximum	11	200MHz (CPU Clock of function digit A, B, C, and D)	13	160MHz (CPU Clock of function digit A, B, C, and D)	#314
Maximum gap between package and board	24	-	39	Note:- Same size is specified for MIN, NOM, MAX, then it should be regarded as maximum size.	#315

Summary	Error Page	Error	Correct Page	Correct	ID
Delete Ethernet restriction for product	22	Direct Memory Access Interface, MAC Filtering Block -VLAN tag, IEEE 1588 and IEEE 802.1AS Support, MAC PFC Priority Based Pause Frame Support, and 802.1Qav Support – Credit Based Shaping	21	(Delete)	#516
Improvement of description for Pin Assignment	23	Alphabets with pin numbers are signs specify I/O circuit type.	22	The characters next to the pin number in the pin assignment drawing specify the I/O circuit type. (figure added)	#535
Regarding "red" character in Pin Assignment	23-38	The pins which are described in "red" character are not supported, and will be enhanced with next revision products.	23-35	The pins which are described in "red" character are not supported product with revision A and C.	#524
Note for Input voltage and Max clamp current	76	Maximum clamp current:*A (Remarks) Total maximum clamp current:*A (Remarks)	75	Maximum clamp current:*12, *A (Remarks) Total maximum clamp current:*12, *A (Remarks)	#503
TYPO in Absolute Maximum Rating	76	Input voltage:VI2:VCC5+0.3(Max) ,,, Input voltage:VIE:VCC5+0.3(Max)	75	Input voltage:VI2:DVCC+0.3(Max) ,,, Input voltage:VIE:VCC53+0.3(Max)	#518
Note for Input voltage and Max clamp current	78	-	77	*12: VI or VO should never exceed the specified ratings. However, if the maximum current to/from an input is limited by a suitable external resistor, the ICLAMP rating supersedes the VI rating.	#470
Power supply sequence	80	Power supply sequence is recommended as VCC5 -> [DVCC or AVCC5 or VCC3 or AVCC3] -> VCC12 -> [AVCC3_LVDS_PLL or VCC3_LVDS_TX]	79	Power supply sequence is recommended as VCC5 -> [DVCC or AVCC5 or VCC3 or AVCC3] -> VCC12 -> [AVCC3_LVDS_PLL or VCC3_LVDS_TX]. Note that power supplies inside "[]" can be turned on in arbitrary order.	#474
VIH/VIL characteristics for I/O of DVCC	85, 86	-	84, 85	(Added the "*1" for note of some characteristics and the description)	#439
DS 8.3.1 Port Function Characteristics	86	VIL10(Max) 0.3xVcc5	85	VIL10(Max) 0.3xVcc3	#453
VOH characteristic for I/O of MediaLB	87	VOH16:VCC3-0.5(Min)	86	VOH16:2.0(Min)	#441

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

PSoC® Solutions

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm	PSoC 1 PSoC 3 PSoC 4 PSoC 5LP PSoC 6 MCU				
Automotive	cypress.com/automotive	Cypress Developer Community				
Clocks & Buffers	cypress.com/clocks	Community Projects Videos Blogs Training Components				
Interface	cypress.com/interface	Technical Support				
Internet of Things	cypress.com/iot	WE CONTRACT OF THE CONTRACT.				
Memory	cypress.com/memory					
Microcontrollers	cypress.com/mcu					
PSoC	cypress.com/psoc					
Power Management ICs	cypress.com/pmic					
Touch Sensing	cypress.com/touch					
USB Controllers	cypress.com/usb					
Wireless Connectivity	cypress.com/wireless					

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

© Cypress Semiconductor Corporation, 2015-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other sont as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABLITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not li

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.