

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-R5F
Core Size	32-Bit Single-Core
Speed	240MHz
Connectivity	CANbus, CSIO, Ethernet, I ² C, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2.112MB (2.112M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.15V ~ 5.5V
Data Converters	A/D 50x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP Exposed Pad
Supplier Device Package	208-TQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6j32baksese2000a

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-4: Function Digit Table

Part Number	S6J32X (X = Function Digit)								
Function Digit	к	L	M	N					
CPU Clock Maximum	240 MHz	240 MHz	240 MHz	240 MHz					
Graphics Clock Maximum	200 MHz	200 MHz	200 MHz	200 MHz					
Display Output Support	ch.0, 1	ch.0, 1	ch.0, 1	ch.0, 1					
Video Capture Support	1 unit	1 unit 1 unit		1 unit					
Graphic Engine Type	2D, 3D	2D, 3D	2D, 3D	2D, 3D					
HyperBus Interface	ch.0, 1	ch.0, 1	ch.0, 1, 2	ch.0, 1					
Sound System	N/A	YES	YES	N/A					
FPD-Link	YES	YES	YES	N/A					
Media System	YES	YES	YES	YES					
Chip Select Output of MFS	YES	YES	YES	YES					
l ² C	MFS ch.4, 10, 12, 16, 17	MFS ch.4, 10, 12, 16, 17	MFS ch.4, 10, 12, 16, 17	MFS ch.4, 10, 12, 16, 17					

Notes:

This table only shows the relation between the optional function and the part numbers. That is, all products are not
necessarily available for orders. See the order number on the datasheet, and confirm actual availabilities of products.

- The sound system is composed of the sound waveform generator, the sound mixer, the audio DAC, PCM-PWM, and I2S0.
- The media system means both Ethernet AVB and Media LB.
- The CLK_CPU is assigned for CPU clock. The CLK_CD3A0 is assigned for Graphic clock. They are defined at the chapter of Clock Configuration.
- Display Output ch.0 is used for RSDS and FPD-LINK (LVDS) as well as DRGB (Digital RGB). The ch.0 of the product which doesn't support FPD-LINK is used for RSDS and DRGB.
- Display Output ch.1 is used for FPD-LINK (LVDS) and DRGB (Digital RGB). The ch.1 of the product which doesn't support FPD-LINK is used for DRGB only.
- HyperBus Interface ch.0 for MCU and ch.1 for graphic subsystem cannot be used simultaneously.

3. Product Description

3.1 Overview

This section explains the product features of the S6J3200 series. The description of this section should precede the duplicated description on platform manual.

3.2 Product Description

Table 3-1: Product Features

Feature	Description
Technology	55-nm CMOS technology with embedded flash Fully automotive qualified according to ISO/TS 16949 and AEC-Q100
Functional Safety	The product series has some functional safety features suited for ASIL-B application.
Peripherals	See function list.
Power Domain (PD)	See the platform manual and the STATE TRANSITION chapter in detail. The product series supports the power-off control of PD2 (including PD3 and 5), PD4_0, PD4_1, and PD6.
	The power domain resets of PD3 and PD5 included in PD2 are not supported in the product series, and "0" is always read from the reset factor flags of them. This series does not support partial wakeup for PD6
	See the platform manual in detail
	- Standard 5-pin JTAG interface
Debug and Trace	- 4k Word Embedded Trace Buffer
	4-bit trace support for TEOEP package
	Full trace (dedicated 16-bit port) with special bond-out package is planned.
	See the platform manual in detail.
	Main and sub oscillator is available.
System Control	 A wide range of 3.6 - 16 MHz is available for main oscillator
5	- 32 KHz is available for sub oscillator
	Sub clock is enable/disable by register settings
	See the platform manual in detail.
Clock	CLK_CLKO (Clock Output Function) is not supported.
	Main Oscillation Stabilization Wait Time (at 4 MHz):8.19 ms (Initial value)
	See the platform manual in detail.
Emboddod CP oscillation	Stabilization time is as followings.
Embedded CR Oscillation	- 0.35 ms to 0.8 ms for 4 MHz (Fast clock)
	- 0.43 ms to 1.28 ms for 100 kHz (Slow clock)
	See the platform manual in detail.
Clock Supervisor	This product series does not support the clock supervisor output port. (Related register and
	internal circuit is implemented.)
	See the platform manual in detail.
	Following resets are not mounted on this device or not supported.
Reset	 INITX: INITX is issued by simultaneous assert of RSTX and MODE, but this product series does not support INITX.
	- SRSTX (and nSRST pin)
	The product series does not support EX5VRST and writing EX5VRSTCNT bits in SYSC0_SPECFGR has no effect.
	See the platform manual in detail.
	Hardware watchdog function stops during PSS mode. In the related register of HWDG_CFG, the
Hardware Watchdog	bit ALLOWSTOPCLK is always read as 1 (HWDG_CFG.ALLOWSTOPCLK=1).
	The product series does not support Watchdog Counter Monitor Output port. (Related register and internal circuit is implemented.)

3.2.1 Ethernet

The following functions are not supported.

Functions	Remark
External FIFO Interface	
Additional Low Latency TX FIFO Interface for DMA configurations	
MAC Transmit Block - half-duplex - collision - back_pressure	
MAC Filtering Block - external address match - Wakeup On Lan	
Energy Efficient Ethernet support	
LPI Operation in Cadence IP	
PHY Interface - GMII - SGMII - TBI	
10/100/1000 Operation - 1000 M	
SGMII Operation	
Jumbo Frames	
Physical Control Sub-Layer	

4. Package and Pin Assignment

4.1 Pin Assignment

The characters next to the pin number in the pin assignment drawing specify the I/O circuit type.

Figure 4-1: Pin Number and I/O Circuit Type

Function Digit	TEQFP-216	TEQFP-208	TEQFP-256
S6J328, S6J329, S6J32M	Figure 4-2	Figure 4-9	Figure 4-17
S6J327	Figure 4-3	Figure 4-10	-
S6J326, S6J32L	Figure 4-4	Figure 4-11	-
S6J325, S6J32N	Figure 4-5	Figure 4-12	-
S6J324	Figure 4-6	Figure 4-13	-
S6J323	Figure 4-7	Figure 4-14	-
S6J32K	Figure 4-8	Figure 4-15	-
В	-	Figure 4-16	-

4.2.2 TEQFP208

Figure 4-19: LET208

7.2 Handling Devices

For Latch-Up Prevention

The latch-up phenomenon may occur on a CMOS IC in the following cases: the voltage applied to an input or output pin is higher than VCC or lower than VSS; or the voltage applied between a VCC pin and a VSS pin exceeds the rating. A latch-up causes a rapid increase in the power supply current, possibly resulting in thermal damage to an element. When using the device, take sufficient care not to exceed the maximum rating.

About Handling Unused Pins

Leaving unused input pins open may cause permanent damage from a malfunction or latch-up. Take measures for unused pins, such as pulling up or pulling down the voltage with resistors of 2 kilo ohms or higher.

If there are any unused input/output pins, set them to the output state and then open them, or set them to the input state and handle them in the same way as input pins.

About Power Supply Pins

If the device has multiple VCC and VSS pins, the device is designed in such a way that the pins that should be at the same potential are connected to each other inside the device to prevent malfunctions such as latch-up. However, to reduce unwanted emissions, prevent malfunctions of strobe signals caused by an increase of the ground level, and observe standards on total output current, be sure to connect all the VCC and VSS pins to the power source and ground externally. Also handle all the VSS power supply pins in this way as shown in the following diagram. If there are multiple VCC or VSS systems, the device does not operate normally even within the guaranteed operating range.

Figure 7-1 Pin Assignment

In addition, consider connecting with low impedance from the power supply source to the VCC and VSS of this device.

We recommend connecting a ceramic capacitor as a bypass capacitor between VCC and VSS, near this device.

About the Crystal Oscillation Circuit

Noise entering the X0 or X1 pin may cause a malfunction. Design the printed circuit board in such a way that the X0 and X1 pins, the crystal oscillator (or ceramic resonator), and a bypass capacitor to ground are located very close to the device. We recommend that the printed circuit board artwork have the X0 and X1 pins enclosed by ground.

About the Mode Pin (MD)

Use mode pin MD by directly connecting it to a VCC or VSS pin. To prevent noise from causing the device to accidentally enter test mode, reduce the pattern length between each mode pin and a VCC or VSS pin on the printed circuit board, and connect them with low impedance.

Paramotor	Symbol	Ra	ating	Unit	Pomarks
Falameter	Symbol	Min Max The mi			Kellidikə
System Thermal Resistance	Theta j-a	-	16	°C/W	The minimum value depends on the system specification of heat radiation. The described value is estimated under the condition which is specified at Operation Assurance Condition.
Package Thermal Resistance	Theta j-c	-	7.5	°C/W	-
Storage temperature	Tstg	-55	+150	°C	-

*1: These parameters are based on the condition that VSS=AVSS=DVSS=0.0 V.

- *2: Take care that DVCC, AVCC5 do not exceed VCC5 at, for example, the power-on time.
- *3: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
- *4: The average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 10 ms period. The average value is the operation current × the operation ratio.
- *5: The total output current is defined as the maximum current value flowing through all of corresponding pins.
- *6: Output of 5-V pins.
- *7: Output of SMC pins.
- *8: Output of 5-V/3-V pins.
- *9: Output of 3-V pins.
- *10: Output of I²C.
- *11: Output of Media LB pins
- *12: VI or VO should never exceed the specified ratings. However, if the maximum current to/from an input is limited by a suitable external resistor, the ICLAMP rating supersedes the VI rating.
- *13: Take care that the output voltage does not exceed AVCC5 + 0.3 V because ADC Analog input pins (AN0-49) are internally connected to the analog elements.
- *A: Relevant pins: All general-purpose ports and analog input pins
 - · Corresponding pins : all general-purpose ports
 - Use within the operation assurance condition (See 8.2. Operation Assurance).
 - · Use at DC voltage (current).
 - The +B signal should always be applied by connecting a limiting resistor between the +B signal and the microcontroller.
 - The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed rated values at any time regardless of instantaneously or constantly when the +B signal is input.
 - Note that when the microcontroller drive current is low, such as in the low power consumption modes, the + B input potential can increase the potential at the VCC pin via a protective diode, possibly affecting other devices.
 - Note that if the + B signal is input when the microcontroller is off (not fixed at 0 V), since the power is supplied through the pin, the microcontroller may operate incompletely.
 - Note that if the +B signal is input at power-on, since the power is supplied through the pin, the power-on reset may not function in the power supply voltage.
 - Do not leave + B input pins open.

S6J3200 Series

(Condition: See 8.2. Operation Assurance)

Doromotor	Paramatar Symbol		Conditiono	Value			Unit	Bomorko
Farameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
			BOOST=0 (Drivability					
Output			2mA)					
Differential			R _L = 100 Ω	100	200	600	mV	
Voltago	VOD	DSP0_DATAn+,	BOOST=1 (Drivability	100	200	000		
voltage			4mA)					
			R _L = 50 Ω					
		n=0 to 11	BOOST=0 (Drivability					
			2mA)					
Output Offset	Maa		R _L = 100 Ω	0.5	1.2	15	V	
Voltage	vos		BOOST=1 (Drivability	0.5	1.2	1.5	v	
			4mA)					
			R _L = 50 Ω					

8.3.2.3 PSS Stop Mode Shutdown

This characteristic is specified for the series with the function digits 3, 4, 5, 6, 7, 8, 9, K, L, M, and N.

(Condition: See 8.2. Operation Assurance)

Symbol	Pin	Conditions	Va	lue	Unit	TA (°C)	Remark
Cymbol	Name	Conditions	Тур	Max	onic	14(0)	Kemark
		PD1=ON, PD4_0=ON, PD4_1=ON	65	270	μA	25	-
I _{CCH5}	V _{cc} 5	PD1=ON, PD4_0 or PD4_1=ON	60	245	μA	25	-
		PD1=ON	55	220	μA	25	-

This characteristic is specified for the series with the function digits B.

(Condition: See 8.2. Operation Assurance)

Symbol	Pin	Conditions	Va	ue	e Unit		Remark
Cymbol	Name	Conditions	Тур	Max	onic	14(0)	Remark
		PD1=ON, PD4_0=ON, PD4_1=ON	65	315	μA	25	-
Іссн5	Vcc5	PD1=ON, PD4_0 or PD4_1=ON	60	290	μA	25	-
		PD1=ON	55	265	μA	25	-

Notes:

⁻ The values will be evaluated after engineering samples release.

The values have been standardized with regulator standby mode (RMSEL=1).

8.4 AC Characteristics

8.4.1 Source Clock Timing

(Condition: See 8.2. Operation Assurance)

Parameter	Symbol	Pin Name	Conditions	Min	Value Typ	Max	Unit	Remarks
Source oscillation clock frequency	FC	X0, X1	-	3.6	-	16	MHz	
Source oscillation clock cycle time	tCYL	X0, X1	-	62.5	-	277.8	ns	
CAN PLL jitter (when locked)	tPJ	-	-	-10	-	10	ns	
Internal Slow CR oscillation frequency	FCRS	-	-	50	100	150	kHz	
Internal Fast CR	FCRF	-	-	2.40	4.00	5.61	MHz	Before trim
oscillation nequency				3.20	4.00	4.81	MHz	After trim

Notes:

- The maximum/minimum values have been standardized with the main clock and PLL clock in use.

- The error of source oscillator frequency must be smaller than 3000 ppm.

- Enough evaluation and adjustment are recommended using oscillator on your system board.

8.4.4.2 Power Supply Voltage Stability Conditions

□ For revision M, P

(Condition: See 8.2. Operation Assurance)

Doromotor	Symbol	Din Nama	Conditions	Valu	е	Unit	Bomarka	
Farameter	Symbol	Fininame	Conditions	Min	Max		Remarks	
VCC5 stability time after RSTX assertion	t _{FV5}	VCC5		35	-	μs	VCC5>=2.7 V	
VCC12 stability time after RSTX assertion	tfv12	VCC12	-	35	-	μs	VCC12>=1.1 V	

Note:

This AC specification isn't applied except revision M, P.

(2) Normal Synchronous Transfer (SCR: SPI=0) and Mark Level "L" of Serial Clock Output (SMR: SCINV=1)

(Condition: See 8.2. Operation Assurance)

Paramotor	Symbol	Pin Namo	Pin Name Conditions Value		Unit	Remarks	
Falameter	Symbol	Fin Name	conditions	Min	Max	Onit	Itemarks
Sorial clock		SCK0 to SCK4,		3tclk_lcPnA ^{*1}	-		
Parameter Serial clock cycle time SCK ↑ → SOT delay time Valid SIN → SCK ↓ setup time SCK ↓ → Valid SIN hold time Serial clock	tscyc	SCK8 to SCK12		3t _{CLK_LCPnA} *2	-	ns	
cycle time		SCK16 to SCK17		3tclk_comp	-		
		SCK0 to SCK4,		0	30		
		SCK8 to SCK12		0			
$\begin{array}{l} SCK \uparrow \to SOT \\ delay \ time \end{array}$	1	SOT0 to SOT4,		0	20*3		
	ISHOVI	SOT8 to SOT12		0	20	ns	
		SCK16 to SCK17	Montor	0	45		
		SOT16 to SOT17	Mada	0	15		
		SCK0 to SCK4,		26.5	-		
		SCK8 to SCK12,	(CL=20 pr,				
Valid SIN \rightarrow SCK \perp	tıvs∟ı	SIN0 to SIN4,	10L = -5 mA	20 ^{*3}	-		
setup time		SIN8 to SIN12,	10H-5 MA)			115	
		SCK16 to SCK17		20			
setup time		SIN16 to SIN17		20	-		
		SCK0 to SCK4,					
		SCK8 to SCK12,					
$SCK \downarrow \rightarrow Valid SIN$	4	SCK16 to SCK17		0			
hold time	LSLIXI	SOT0 to SOT4,		0	-	ns	
		SOT8 to SOT12,					
		SOT16 to SOT17					
		SCK0 to SCK4,	Slava	2tclk_lcPnA ^{*1}	-		
Serial Clock	t _{SHSL}	SCK8 to SCK12	Mode	2tclk_lcPnA ^{*2}	-	ns	
		SCK16 to SCK17	(CL=20 pF,	2tclk comp	-		
		SCK0 to SCK4,	Ì _{OL} =-5 mA,	2tclk_lCPnA ^{*1}	-		
Serial clock	t _{SLSH}	SCK8 to SCK12	Iон=5 mA)	2tcLK_LCPnA ^{*2}	-	ns	
		SCK16 to SCK17		2tclk_comp	-		

SCSOX *1		tSCC
SCSOY *2		К V _{он}
SCK		V _{OH}
Round Fu *1: X is	nction (CSxSCINV=1, CSxLV ; 0 to 3.	/L=0), (CSySCINV=0, CSyLVL=0)
*2•V is	Oto 3 However Vand Vie	s a different value

8.4.10 Low-Voltage Detection

8.4.10.1 LVDL0

(Condition: See 8.2. Operation Assurance)

Paramotor	Din Namo	Conditions		Value	Unit	Pomarke	
Farameter	Fill Name	Conditions	Min	Тур	Max	Unit	Remarks
Detection Voltage	-	-	0.9	0.95	1.0	V	*1
Release Voltage	-	-	0.925	1.025	1.125	V	I
Level Detection Time	-	-	-	-	30	μS	*2

Notes:

 *1: This LVD cannot be used to reliably generate a reset before voltage dips below minimum guaranteed MCU operation voltage, as these detection levels are below the minimum guaranteed MCU operation voltage.

 *2: After the brown-out event where the voltage level dips below the detection threshold for less than this time, the detection may occur or be canceled.

8.4.10.2 LVDH0

Note:

LVDH0 is only used to generate power-on reset. Refer to chapter Power-On Conditions for related parameters.

8.4.10.3 LVDL1

				Value	-		Guaranteed	
Parameter	Pin Name	Conditions	Min	Тур	Мах	Unit	MCU Operation Range	Remarks
Detection Voltage	-	LVDL1V=10	0.92	0.97	1.02	V		
Release Voltage	-	(Default)	0.945	1.045	1.145	V	No	*1
Detection Voltage	-		1.02	1.07	1.12	V	NO	I
Release Voltage	-		1.095	1.145	1.195	V		
Detection Time	-	-	-	-	30	μs	-	*2

(Condition: See 8.2. Operation Assurance)

Notes:

 *1: This LVD cannot be used to reliably generate a reset before voltage dips below minimum guaranteed MCU operation voltage, as these detection levels are below the minimum guaranteed MCU operation voltage.

*2: After the brown-out event where the voltage level dips below the detection threshold for less than this time, the detection
may occur or be canceled.

8.4.14.2 For Revision F

(Refer to Figure 2-1: Option and Part Number for S6J320C.)

					(Condition:	See 8.2. (Operation Assuran
Devemeter	Sumbal	Conditions		Value		Unit	Domorko
Parameter	Symbol	Conditions	Min Typ Max		Max	Unit	Remarks
Output clock frequency	f	-	10	-	50	MHz	
			210	300	390	mV	One of three is
Differential output voltage	Vod	$R_1 = 100$	250	350	450	mV	
		ohm	295	400	505	mV	selectable
Variation of VOD	delta V _{OD}	_	-	-	25	mV	
	Maria	C∟ = 5 pF	1.075	1.200	1.325	V	One of two is
Common mode voltage	VCM	(differential)	1.125	1.250	1.375	V	selectable
Variation of V _{CM}	delta V _{CM}		-	-	25	mV	
Cycle time of TXCLKP/M	TCIP	-	20	Т	100	ns	Equals 1/f
Duty of TXCLKP/M	Тсрт	-	-	4 / 7 x T	-	ns	
Channel to Channel skew of TXOUTxP/M	Тсѕк	-	-	-	200	ps	
Skew of TXOUTxP and TXOUTxM	Т _{DSK}	-	-	-	50	ps	
Output pulse position for bit 0	T ₀		-0.25	0	+0.25	ns	
Output pulse position for bit 1	T ₁		1 / 7 x T -0.25	1 / 7 x T	1 / 7 x T +0.25	ns	
Output pulse position for bit 2	T ₂		2 / 7 x T -0.25	2 / 7 x T	2 / 7 x T +0.25	ns	
Output pulse position for bit 3	T ₃	f = 50 MHz	3 / 7 x T -0.25	3 / 7 x T	3 / 7 x T +0.25	ns	
Output pulse position for bit 4	T ₄		4 / 7 x T -0.25	4 / 7 x T	4 / 7 x T +0.25	ns	
Output pulse position for bit 5	T ₅		5 / 7 x T -0.25	5 / 7 x T	5 / 7 x T +0.25	ns	
Output pulse position for bit 6	T ₆		6 / 7 x T -0.25	6 / 7 x T	6 / 7 x T +0.25	ns	

Notes:

- All the corresponding ports of products which don't support FPD-Link should be connected to GND. AVCC3_LVDS_PLL, AVSS3_LVDS_PLL, VCC3_LVDS_Tx, VSS3_LVDS_Tx, TxDOUTn+/-, TxCLK+/-.

- Channel to Channel skew of TXOUTxP/M is included in output pulse position.

8.4.15.2 DDR-HSSPI Interface Timing (DDR Mode)

(Condition: See 8.2. Operation Assurance)

Paramotor	Symbol	Pin Namo	Conditions	Va	lue	Unit	Pomarke
Farameter	Symbol	FiniName	Conditions	Min	Max	Unit	Remarks
HSSPI clock cycle	t _{cyc}	G_SCLK0 M_SCLK0		12.5	-	ns	
G_SCLK↑↓ -> delayed sample clock↑	t _{spcnt}	-		0	31.5	ns	
GSDATA -> G_SCLK↑↓ Input setup time	t _{isdata}	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3		*1	-	ns	
G_SCLK↑↓ -> GSDATA Input hold time	tihdata	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3	(CL = 20 pF, I _{OL} =-10 mA, I _{OH} =10 mA),	*1	-	ns	
G_SCLK↑↓ -> GSDATA Output delay time	toddata	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3		-	tcyc/4 + 1.5	ns	
G_SCLK↑↓ -> GSDATA Output hold time	tohdata	G_SDATA0_0-3 G_SDATA1_0-3 M_SDATA0_0-3 M_SDATA1_0-3		Tcyc/4 - 1.0	Tcyc/4 - 1.0		
GSSEL↓ -> G_SCLK Output delay time	t _{odsel}	G_SSEL0, 1 M_SSEL0, 1		- 15.75+(SS 2CD+0.5)*t cyc	-	ns	
G_SCLK↑ -> GSSEL Output hold time	t _{ohsel}	G_SSEL0, 1 M_SSEL0, 1		0.75*tcyc - 2.0	-	ns	

Notes:

- SS2CD [1:0] should be configured as 01, 10, or 11.

- For *1, the delay of the delay sample clock can be configured (DLP function).

8.4.22 I2S

8.4.22.1 I2S Timing – Master mode (MSMD=1)

(Condition: See 8.2. Operation Assurance)

Parameter	Symbol	Pin Name	Conditions	Va	ue	Uni	Remarks
				MIN	wax	τ	
ECLKU/ECLK1 CIOCK	t _{eck}			20	-	ns	
		FOLKO		0.40*	0.00*		Only relevant if
ECLKU/ECLK1 CIOCK	t _{ehw}	ECLKU, ECLK1		0.40 ^m	0.60 ^m	ns	external ECLK input is
		LOLINI					selected. *1
EULKU/EULKI CIOCK	t _{elw}			0.40 ^m	0.60 ^m	ns	
				LECK	LECK		
	t sck			66.66	-	ns	
				0.25*	0.65*		
width	t _{shw}	1250_5CK, 1251_5CK	(CL = 20 pF, I _{OL} =-5 mA,	0.55 teck	0.05 teck	ns	
12S clock "I " pulse				0.35*	0.65*		
width	t _{slw}		10H-0 11/1	t _{sck}	tsck	ns	
Sender delay time			CPOL=0,				
SCK↑ -> SD/WS	t _{dtr}	12SU_SCK,	SMPL=1	-	26	ns	*2
valid		1251_50K, 1250_SD.			-		
Sender hold time		I2S1_SD,					
SCK↑ -> SD/WS	t _{htr}	I2S0_WS,		-10	-	ns	*2
invalid		12S1_WS					
Receiver setup time	4	12S0 SCK.		21			*2
SD valid -> SCK↑	lsr	12S1_SCK,		21	-	ns	-
Receiver hold time	+.	I2S0_SD,		10		nc	*2
SCK↑ -> SD valid	۲hr	I2S1_SD		10	-	115	_

Notes:

*1: ECKM = 1. Refer to the Resource Input Configuration chapter in TRM for required RESSEL register settings.

*2: Refer to the I2S register description chapter in TRM for different combinations of clock polarity (CPOL), sampling point position (SMPL), polarity/pulse_width/frame_sync phase of WS (FSPL, FSLN, FSPH). Actual waveforms and relevant clock edges will change accordingly; the delay values as per above table will remain the same.

8.4.22.2 I2S Timing – Slave mode (MSMD=0)

|--|

Parameter	Symbol	Symbol Pin Name Conditions		Va	ue	Uni	Remarks	
	Cymbol	T III Nume	Conditions	Min	Max	t	Temarks	
I2S clock cycle (input SCK)	t _{sck}	I2S0_SCK, I2S1_SCK		66.66	-	ns		
I2S clock "H" pulse width	t _{shw}	12S0_SCK,		0.40* t _{sck}	0.60* t _{sck}	ns		
I2S clock "L" pulse width	t _{slw}	I2S1_SCK		0.40* t _{sck}	0.60* t _{sck}	ns		
Setup time WS transition -> SCK↓	t _{srf}	I2S0_SCK, I2S1_SCK,	(CL = 20 pF, Ioi =-5 mA.	40	-	ns	*1	
Hold time SCK↓ -> WS transition	t _{hrf}	12S0_WS, 12S1_WS 12S0_SCK, 12S1_SCK,	I2S0_WS, I2S1_WS	I _{OH} =5 mA) CPOL=0,	10	-	ns	*1
Sender delay time SCK↑ -> SD valid	t _{dtr}		2S0_SCK, 2S1_SCK,	-	26	ns	*1	
Sender hold time SCK↑ -> SD invalid	t _{htr}	I2S0_SD, I2S1_SD		-10	-	ns	*1	
Receiver setup time SD valid -> SCK↓	t _{sr}	I2S0_SCK, I2S1_SCK,		21	-	ns	*1	
Receiver hold time SCK↓ -> SD valid	t _{hr}	I2S0_SD, I2S1_SD		10	-	ns	*1	

Note:

*1: Refer to the I2S register description chapter in the TRM for different combinations of clock polarity (CPOL), sampling point position (SMPL), polarity/pulse_width/frame_sync phase of WS (FSPL, FSLN, FSPH). Actual waveforms and relevant clock edges will change accordingly; the delay valuesbased on the table above will remain the same.

11. Appendix

11.1 Application 1: JTAG tool Connection

This is an application example of JTAG tool connection. See the relevant application note 002-09861 in detail.

Revision	ECN	Orig. of Change	Submission Date	Description of Change
				[Limitation] Add note that this LVDL2 cannot be used to reliably generate a reset before voltage dips below minimum guaranteed MCU operation voltage with any setting [Limitation] Add note that this LVDH2 cannot be used to reliably generate a reset before voltage dips below minimum guaranteed MCU operation voltage for some of the settings
				8. Electric Characteristics 8.4.10.3 LVDL1 [Improve] Deleted the useless configuration of LVDL1. (LVDL1V=01)
				8.Electric Characteristics 8.4.10.6 LVDH2 [Improve] Typ value of release voltage at conditions of LVDH2V=0001 changes 2.75V to 2.85V.
				8. Electric Characteristics 8.4.11 High Current Output Slew Rate [Improve] Corrected the typo in figure. (VOL8, VOH8 -> VOL, VOH)
				8. Electric Characteristics 8.4.12.2 Display Controller0 Timing (RSDS) [Improve] Delete unnecessary characteristics
				 8. Electric Characteristics 8.4.14 FPD-link [Improve] Corrected unit. "Ohm" -> "ohm" [Improve] Corrected remarks on "Common mode voltage". "One of three" -> "One of two" [Improve] Added missing information. "5 pF (differential)" [Improve] Corrected format. "25MHz" -> "25 MHz", "4/7" -> "4 / 7". [Improve] Added cycle to cycle jitter spec. [Improve] Added information. "Equals 1/f" into TCIP. [Improve] Corrected max time in "Cycle time of TXCLKP/M". [Improve] Added other frequency spec into "Output pulse position". [Limitation] Added PLL lock-up time. [Improve] Separately added specs for revision H.
				8. Electric Characteristics 8.4.14. FPD-Link (LVDS) [Limitation] Specified minimum output frequency 5MHz.
				8. Electric Characteristics 8.4.16 HyperBus [Enhance] Enhanced AC spec Hyper Bus read timing and corrected timing chart
				8. Electric Characteristics 8.4.16 HyperBus [Enhance] The series of port reference voltage level VIL/VIH/VOL/VOH for HyperBus AC specification is defined.
				 8. Electric Characteristics 8.4.16 HyperBus [Improve] Added a note for clarifying the HyperBus clock cycle and source.
				8. Electric Characteristics 8.4.16 HyperBus [Improve] Corrected the revision digit information.
				8. Electric Characteristics 8.4.19 Port Noise Filter [Improve] Change the description of filter specification and note for GPIO [Improve] Added the filter specification for EINT, TIN [Improve] Added the filter specification for SCL, SDA of I2C
				9. Abbreviation