
Parallax Inc. - P8X32A-D40 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor -

Core Size 32-Bit 8-Core

Speed 80MHz

Connectivity -

Peripherals -

Number of I/O 32

Program Memory Size 32KB (32K x 8)

Program Memory Type ROM

EEPROM Size -

RAM Size 32K x 8

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type Internal

Operating Temperature -

Mounting Type Through Hole

Package / Case 40-DIP (0.600", 15.24mm)

Supplier Device Package 40-DIP

Purchase URL https://www.e-xfl.com/product-detail/parallax/p8x32a-d40

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/p8x32a-d40-4378930
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 2 of 36 Rev 1.4 6/14/2011

Table of Contents

1.0 Product Overview... 1
1.1. ..1 Introduction
1.2. ...1 Stock Codes
1.3. Key Features and Benefits ...3

32-bit Multicore Architecture1.3.1. ..3
1.3.2. ..3 Clock System and Wait Instructions
1.3.3. ...3 Programming Languages and Resources
1.3.4. Flexible I/O and Peripheral Interface ...3
 ..31.4. Applications

 ...3 1.4.1. Corporate and Community Support

2.0 Connection Diagrams .. 4
2.1. ..4 Pin Assignments
2.2. ...4 Pin Descriptions
2.3. Typical Connection Diagrams ..5

Propeller Clip or Propeller Plug Connection - Recommended2.3.1. 5
2.3.2. Alternative Serial Port Connection ...5

3.0 Operating Procedures ... 6
3.1. ..6 Boot-Up Procedure
3.2. ..6 Run-Time Procedure
3.3. Shutdown Procedure ..6
4.0 System Organization ... 6
4.1. ...6 Shared Resources
4.2. ...6 System Clock
4.3. ..7 Cogs (processors)
4.4. ..7 Hub
4.5. ..8 I/O Pins
4.6. ...8 System Counter
4.7. ...8 Locks
4.8.9 Assembly Instruction Execution Stages
4.9. Cog Counters ...10

CTRA / CTRB – Control register4.9.1. ...10
4.9.2. ..10 FRQA / FRQB – Frequency register
4.9 PHSA / PHSB – Phase register.3.

 ...11
 ...10

4.10. Video Generator
VCFG – Video Configuration Register4.10.1. ...11

4.10.2. ..12 VSCL – Video Scale Register
4.1 .3. WAITVID Command/Instruction0

 ..14
 ..12

4.11. CLK Register

5.0 Memory Organization .. 15
5.1. Main Memory ...15

Main RAM5.1.1. ..15
5.1.2. ...15 Main ROM
5.1.3. ...15 Character Definitions
5.1.4. Math Function Tables ..16

5.2. ... 16 Cog RAM

6.0 Programming Languages ..17
6.1. Reserved Word List ... 17

 ... 176.1.1. Words Reserved for Future Use
Math and Logic Operators6.2. ... 18

6.3. Spin Language Summary Table .. 19
 ... 216.3.1. Constants

 226.4. Propeller Assembly Instruction Table
Assembly Conditions6.4.1. .. 24

6.4.2. ... 24 Assembly Directives
6.4.3. .. 24 Assembly Effects
6.4.4. Assembly Operators ... 24

7.0 Electrical Characteristics...25
7.1. ... 25 Absolute Maximum Ratings
7.2. ... 25 DC Characteristics
7.3. AC Characteristics ... 25
8.0 Current Consumption Characteristics26
8.1. 26 Typical Current Consumption of 8 Cogs
8.2. 27 Typical Current of a Cog vs. Operating Frequency
8.3. 27 Typical PLL Current vs. VCO Frequency
8.4. ... 28 Typical Crystal Drive Current
8.5. ... 28 Cog and I/O Pin Relationship
8.6. Current Profile at Various Startup Conditions 29
9.0 Temperature Characteristics.....................................30
9.1. 30 Internal Oscillator Frequency as a Function of Temperature
9.2. ... 31 Fastest Operating Frequency as a Function of Temperature
9.3. Current Consumption as a Function of Temperature 32
10.0 Package Dimensions..33
10.1. .. 33 P8X32A-D40 (40-pin DIP)
10.2. .. 34 P8X32A-Q44 (44-pin LQFP)
10.3. P8X32A-M44 (44-pin QFN) .. 35
11.0 Manufacturing Info ...36
11.1. ... 36 Reflow Peak Temperature
11.2. Green/RoHS Compliance .. 36
12.0 ...36Revision History

Changes for Version 1.1:12.1.1. .. 36
12.1.2. .. 36 Changes for Version 1.2:
12.1.3. ... 36 Changes for Version 1.3
12.1.4. Changes for Version 1.4 ... 36

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 3 of 36 Rev 1.4 6/14/2011

1.3. Key Features and Benefits
The P8X32A design frees developers from common
complexities of embedded systems programming.

1.3.1. 32-bit Multicore Architecture

 True parallel processing with eight symmetric 32-bit
processors (cogs) in one microcontroller

 Multi-cog run-time management (run/wait/stop)
easily solves event-handling problems and
eliminates the need for interrupts. This greatly
simplifies programming for asynchronous and
synchronous events, resulting in a responsive and
easily maintained application.

 20 MIPS per cog, 160 MIPS total with all cogs
running

 Solves mixed-bandwidth needs common to
embedded applications

 Multi-purpose design lowers part count while
increasing system capabilities

 Developer-driven cog assignments bring flexible
response and deterministic timing to embedded
applications

1.3.2. Clock System and Wait Instructions

 Flexible Clock Modes
o Two internal, one external, plus optional 1x–16x

PLL; up to 80 MHz system clock
o Switchable in code at run-time; low frequency

for low-power periods, high frequency for high-
bandwidth moments

 Shared System Clock facilitates synchronization
between cogs

 WAIT Instructions
o Deliver powerful synchronous / asynchronous

event management
o Set dedicated event cogs to an "always ready,"

very low power state

1.3.3. Programming Languages and Resources

 Spin (object-based, high-level) and Assembly
(PASM; low-level); used together for thorough
development, i.e. fast development in Spin plus fast
execution with prewritten high-speed PASM drivers

 Third-party support: C, BASIC, and more
 Enhanced Assembly Language

o Conditional execution for individual instructions;
enables jitter-free signal generation and event
handling

o Optional flag and result writing for individual
instructions

 Open-source Objects
o Objects are shared freely via the Propeller Object

Exchange and Propeller Tool libraries
o Select objects that fit a need, easily integrate

them into a Propeller application

1.3.4. Flexible I/O and Peripheral Interface

 32 I/O Pins
o All general-purpose I/O after boot-up; accessible

by every cog simultaneously
o Single-instruction access to any individual I/O

pin or any contiguous I/O pin group
o Easily move designed functions between pins for

simple system board layout
 Multi-function Counters

o Configurable state machines generate or sense
repetitive signals per clock cycle

o Measure frequency, detect edges, count cycles,
D/A or A/D conversion, and more

o Operate autonomously with optional run-time
monitoring and adjusting

o Two counters per cog
 Video Generators

o RGB: VGA; 8 I/O pins
o Composite: NTSC, PAL; 1-pin (B/W), 3-pin

(typical), or 4-pin (optional)
o One generator per cog

 Software Peripherals
o Peripheral interfaces built with software and

inexpensive passive components; not single-
function on-chip hardware

o Software-based interfaces are flexible; enhance
as peripheral needs arise — no need to redesign
with a chip variant

1.4. Applications
The P8X32A is particularly useful in projects that can be
vastly simplified with simultaneous processing, including:

 Industrial control systems
 Sensor integration, signal processing, and data

acquisition
 Handheld portable human-interface terminals
 Motor and actuator control
 User interfaces requiring NTSC, PAL, or VGA

output, with PS/2 keyboard and mouse input
 Low-cost video game systems
 Industrial, educational or personal-use robotics
 Wireless video transmission (NTSC or PAL)

1.4.1. Corporate and Community Support

 Sales or technical support: (916) 632-4664
 Email sales: sales@parallaxsemiconductor.com
 Email support: support@parallaxsemiconductor.com
 Engineer-moderated Parallax Semiconductor sub-

forum is available from http://forums.parallax.com
 Parallax-hosted Propeller Object Exchange library:

http://obex.parallax.com

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 9 of 36 Rev 1.4 6/14/2011

4.8. Assembly Instruction Execution Stages

Figure 4: Assembly Instruction Execution Stages

Stage 1 2 3 4 5



(Execute N- 1)
Fetch

Instruction
N

Write
Result

N-1

Fetch
Source

N

Fetch
Destination

N

(Execute N)
Fetch

Instruction
N+1

Write
Result

N


clock cycle M M+1 M+2 M+3 M+4 M+5

The Propeller executes assembly instructions in five
stages. While an entire instruction takes six cycles to
execute, two of those clock cycles are dedicated to the
two adjacent instructions. This results in an overall
throughput of four clock cycles per instruction.



Instruction N-1

Instruction N

Instruction N+1


Program
counter

Figure 5
Cog Memory



In Stage 1, instruction N, pointed to by the Program
Counter, is fetched from cog memory during clock cycle
M. During cycle M+1 the result from the previous
instruction is written to memory. The reason the previous
instruction result is written after the current instruction is
fetched will be explained shortly.

During Stage 2, if the immediate flag of Instruction N is
set, the 9 bit source field is saved as the source value. If
the value is not immediate, the location specified by the
source field is fetched from cog memory during clock
cycle M+2. During clock cycle M+3 the location
specified in the destination field is fetched from cog
memory (Stage 3).

At this point in time (Stage 4) the Arithmetic Logic Unit
(ALU) has all the information needed to execute the
instruction. Executing the instruction takes some amount
of time before the result is available. The amount of time
required for execution is dictated by the slowest operation
the ALU performs. To provide enough time for the ALU
to execute the instruction, a full clock cycle (M+4) is
provided to the ALU for the result to settle into its final
state. During this execution, the cog memory is not

accessed by instruction N. To speed up the throughput of
program execution, the next instruction to be executed is
fetched from cog memory while the current instruction is
executed in the ALU.

Finally at clock cycle M+5 the result of the current
instruction N is written back to cog memory, completing
Stage 5.

The partial interleaving of instructions has a couple
implications to program flow. First, when code
modification occurs through MOVI, MOVS, MOVD or any
operations which modifies an assembly instruction, there
must be at least one instruction executed before the
modified instruction is executed. If the modification is
done on the immediately following instruction (N+1), the
unmodified version of instruction N+1 will be loaded a
clock cycle before the modified version of instruction
N+1 is written to cog memory.

Second, conditional jumps do not know for certain if they
will jump until the end of clock cycle M+4. Since the next
instruction has already been fetched, only one of the two
possible branches can be predicted. In the Propeller,
conditional branches are always predicted to take the
jump. For loops using DJNZ where the jump is taken every
time except the final loop, a tighter execution time of the
loop is achieved.

In the event the jump is not taken, the cog takes no action
until the next instruction is fetched. This is equivalent to a
NOP being inserted before the next instruction is executed.
Unconditional jumps always take four clock cycles to
execute since the Propeller can always accurately predict
what address needs to be loaded into the Program Counter
for the next instruction to execute. Examples of
unconditional jumps include JMP, JMPRET, CALL and RET.

If an instruction needs to access any Hub resource, Stage
4 is extended until the Hub becomes available, increasing
execution time to at least 8 and potentially up to 23 clock
cycles. See Section 4.4: Hub on page 7.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 14 of 36 Rev 1.4 6/14/2011

4.11. CLK Register
The CLK register is the System Clock configuration
control; it determines the source and characteristics of the
System Clock. It configures the RC Oscillator, Clock
PLL, Crystal Oscillator, and Clock Selector circuits (See
the Block Diagram, page 1). It is configured at compile
time by the _CLKMODE declaration and is writable at run
time through the CLKSET command. Whenever the CLK
register is written, a global delay of ~75 µs occurs as the
clock source transitions.

Whenever this register is changed, a copy of the value
written should be placed in the Clock Mode value
location (which is BYTE[4] in Main RAM) and the
resulting master clock frequency should be written to the
Clock Frequency value location (which is LONG[0] in
Main RAM) so that objects which reference this data will
have current information for their timing calculations.

Use Spin's CLKSET command when possible (see sections
6.3 and 6.4) since it automatically updates all the above-
mentioned locations with the proper information.

Table 13: Valid Clock Modes

 Valid Expression CLK Reg. Value Valid Expression CLK Reg. Value

RCFAST 0_0_0_00_000

RCSLOW 0_0_0_00_001

XINPUT 0_0_1_00_010

XTAL1 + PLL1X 0_1_1_01_011
XTAL1 + PLL2X 0_1_1_01_100
XTAL1 + PLL4X 0_1_1_01_101
XTAL1 + PLL8X 0_1_1_01_110
XTAL1 + PLL16X 0_1_1_01_111

XTAL1 0_0_1_01_010
XTAL2 0_0_1_10_010
XTAL3 0_0_1_11_010

XTAL2 + PLL1X 0_1_1_10_011
XTAL2 + PLL2X 0_1_1_10_100
XTAL2 + PLL4X 0_1_1_10_101
XTAL2 + PLL8X 0_1_1_10_110
XTAL2 + PLL16X 0_1_1_10_111

XINPUT + PLL1X 0_1_1_00_011
XINPUT + PLL2X 0_1_1_00_100
XINPUT + PLL4X 0_1_1_00_101
XINPUT + PLL8X 0_1_1_00_110
XINPUT + PLL16X 0_1_1_00_111

XTAL3 + PLL1X 0_1_1_11_011
XTAL3 + PLL2X 0_1_1_11_100
XTAL3 + PLL4X 0_1_1_11_101
XTAL3 + PLL8X 0_1_1_11_110
XTAL3 + PLL16X 0_1_1_11_111

Table 14: CLK Register Fields

Bit 7 6 5 4 3 2 1 0

Name RESET PLLENA OSCENA OSCM1 OSCM2 CLKSEL2 CLKSEL1 CLKSEL0

RESET Effect

0 Always write ‘0’ here unless you intend to reset the chip.

1 Same as a hardware reset – reboots the chip.

PLLENA Effect

0 Disables the PLL circuit.

1

Enables the PLL circuit. The PLL internally multiplies the XIN pin frequency by 16. OSCENA must be ‘1’ to propagate the
XIN signal to the PLL. The PLL’s internal frequency must be kept within 64 MHz to 128 MHz – this translates to an XIN
frequency range of 4 MHz to 8 MHz. Allow 100 µs for the PLL to stabilize before switching to one of its outputs via the
CLKSEL bits. Once the OSC and PLL circuits are enabled and stabilized, you can switch freely among all clock sources by
changing the CLKSEL bits.

OSCENA Effect

0 Disables the OSC circuit

1

Enables the OSC circuit so that a clock signal can be input to XIN, or so that XIN and XOUT can function together as a
feedback oscillator. The OSCM bits select the operating mode of the OSC circuit. Note that no external resistors or
capacitors are required for crystals and resonators. Allow a crystal or resonator 10 ms to stabilize before switching to an
OSC or PLL output via the CLKSEL bits. When enabling the OSC circuit, the PLL may be enabled at the same time so that
they can share the stabilization period.

OSCM1 OSCM2 XOUT Resistance XIN and XOUT Capacitance Frequency Range

0 0 Infinite 6 pF (pad only) DC to 80 MHz Input

0 1 2000 Ω 36 pF 4 MHz to 16 MHz Crystal/Resonator

1 0 1000 Ω 26 pF 8 MHz to 32 MHz Crystal/Resonator

1 1 500 Ω 16 pF 20 MHz to 60 MHz Crystal/Resonator

CLKSEL2 CLKSEL1 CLKSEL0 Master Clock Source Notes

0 0 0 ~12 MHz Internal No external parts (8 to 20 MHz)

0 0 1 ~20 kHz Internal No external parts, very low power (13-33 kHz)

0 1 0 XIN OSC OSCENA must be ‘1’

0 1 1 XIN × 1 OSC+PLL OSCENA and PLLENA must be ‘1’

1 0 0 XIN × 2 OSC+PLL OSCENA and PLLENA must be ‘1’
1 0 1 XIN × 4 OSC+PLL OSCENA and PLLENA must be ‘1’
1 1 0 XIN × 8 OSC+PLL OSCENA and PLLENA must be ‘1’
1 1 1 XIN × 16 OSC+PLL OSCENA and PLLENA must be ‘1’

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 16 of 36 Rev 1.4 6/14/2011

Figure 8

Propeller Character
Interleaving

As shown in Figure 8, The character pairs are merged
row-by-row such that each character's 16 horizontal pixels
are spaced apart and interleaved with their neighbors' so
that the even character takes bits 0, 2, 4, ...30, and the odd
character takes bits 1, 3, 5, ...31. The leftmost pixels are in
the lowest bits, while the rightmost pixels are in the
highest bits. This forms a long for each row of pixels in
the character pair. 32 such longs, building from top row
down to bottom, make up the complete merged-pair
definition. The definitions are encoded in this manner so
that a cog’s video hardware can handle the merged longs
directly, using color selection to display either the even or
the odd character.

Some character codes have inescapable meanings, such as
9 for Tab, 10 for Line Feed, and 13 for Carriage Return.
These character codes invoke actions and do not equate to
static character definitions. For this reason, their character
definitions have been used for special four-color
characters. These four-color characters are used for
drawing 3-D box edges at run-time and are implemented
as 16 x 16 pixel cells, as opposed to the normal 16 x 32
pixel cells. They occupy even-odd character pairs 0-1, 8-
9, 10-11, and 12-13.

5.1.4. Math Function Tables

Base-2 Log and Anti-Log tables, each with 2048 unsigned
words, facilitate converting values to and from exponent
form to facilitate some operations; see the Propeller
Manual for access instructions. Also, a sine table
provides 2049 unsigned 16-bit sine samples spanning 0°
to 90° inclusively (0.0439° resolution).

5.2. Cog RAM
As stated in Section 4.3, the Cog RAM is used for
executable code, data, and variables, and the last 16
locations serve as interfaces to the System Counter, I/O
pins, and local cog peripherals (see Table 15). Cog RAM
is long-addressable only.

When a cog is booted up, locations 0 ($000) through 495
($1EF) are loaded sequentially from Main RAM / ROM
and its special purpose locations, 496 ($1F0) through 511
($1FF), are cleared to zero. Each Special Purpose register
may be accessed via its physical address, its predefined
name, or indirectly in Spin via a register array variable
SPR with an index of 0 to 15, the last four bits of the
register's address.

Table 15: Cog RAM Special Purpose Registers

Cog RAM Map Address Name Type Description

$1F0 PAR Read-Only1 Boot Parameter

$1F1 CNT Read-Only1 System Counter

$1F2 INA Read-Only1 Input States for P31 - P0

$1F3 INB Read-Only1 Input States for P63- P323

$1F4 OUTA Read/Write Output States for P31 - P0

$1F5 OUTB Read/Write Output States for P63 – P323

$1F6 DIRA Read/Write Direction States for P31 - P0

$1F7 DIRB Read/Write Direction States for P63 - P323

$1F8 CTRA Read/Write Counter A Control

$1F9 CTRB Read/Write Counter B Control

$1FA FRQA Read/Write Counter A Frequency

$1FB FRQB Read/Write Counter B Frequency

$1FC PHSA Read/Write2 Counter A Phase:

$1FD PHSB Read/Write2 Counter B Phase

$1FE VCFG Read/Write Video Configuration

$1FF VSCL Read/Write Video Scale

Note 1: Only accessible as a source register (i.e. MOV Dest, Source).
Note 2: Only readable as a Source Register (i.e. MOV Dest, Source); read-modify-write not possible as a Destination Register.
Note 3: Reserved for future use.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 17 of 36 Rev 1.4 6/14/2011

6.0 PROGRAMMING LANGUAGES
The Propeller chip is programmed using two languages designed specifically for it: 1) Spin, a high-level object-based
language, and 2) Propeller Assembly, a low-level, highly-optimized assembly language. There are many hardware-based
commands in Propeller Assembly that have direct equivalents in the Spin language.

The Spin language is compiled by the Propeller Tool software into tokens that are interpreted at run time by the Propeller
chip’s built-in Spin Interpreter. The Propeller Assembly language is assembled into pure machine code by the Propeller Tool
and is executed in its pure form at run time.

Propeller Objects can be written entirely in Spin or can use various combinations of Spin and Propeller Assembly. It is often
advantageous to write objects almost entirely in Propeller Assembly, but at least two lines of Spin code are required to launch
the final application.

6.1. Reserved Word List
All words listed are always reserved, whether programming in Spin or in Propeller Assembly. As of Propeller Tool v1.05:

Table 16: Reserved Word List

_CLKFREQ
s

_CLKMODE
s

_FREE
s

_STACK
s

_XINFREQ
s

ABORT
s

ABS
a

ABSNEG
a

ADD
a

ADDABS
a

ADDS
a

ADDSX
a

ADDX
a

AND
d

ANDN
a

BYTE
s

BYTEFILL
s

BYTEMOVE
s

CALL
a

CASE
s

CHIPVER
s

CLKFREQ
s

CLKMODE
s

CLKSET
d

CMP
a

CMPS
a

CMPSUB
a

CMPSX
a

CMPX
a

CNT
d

COGID
d

COGINIT
d

COGNEW
s

COGSTOP
d

CON
s

CONSTANT
s

CTRA
d

CTRB
d

DAT
s

DIRA
d

DIRB
d#

DJNZ
a

ELSE
s

ELSEIF
s

ELSEIFNOT
s

ENC
a#

FALSE
d

FILE
s

FIT
a

FLOAT
s

FROM
s

FRQA
d

FRQB
d

HUBOP
a

IF
s

IFNOT
s

IF_A
a

IF_AE
a

IF_ALWAYS
a

IF_B
a

IF_BE
a

IF_C
a

IF_C_AND_NZ
a

IF_C_AND_Z
a

IF_C_EQ_Z
a

IF_C_NE_Z
a

IF_C_OR_NZ
a

IF_C_OR_Z
a

IF_E
a

IF_NC
a

IF_NC_AND_NZ
a

IF_NC_AND_Z
a

IF_NC_OR_NZ
a

IF_NC_OR_Z
a

IF_NE
a

IF_NEVER
a

IF_NZ
a

IF_NZ_AND_C
a

IF_NZ_AND_NC
a

IF_NZ_OR_C
a

IF_NZ_OR_NC
a

IF_Z
a

IF_Z_AND_C
a

IF_Z_AND_NC
a

IF_Z_EQ_C
a

IF_Z_NE_C
a

IF_Z_OR_C
a

IF_Z_OR_NC
a

INA
d

INB
d#

JMP
a

JMPRET
a

LOCKCLR
d

LOCKNEW
d

LOCKRET
d

LOCKSET
d

LONG
s

LONGFILL
s

LONGMOVE
s

LOOKDOWN
s

LOOKDOWNZ
s

LOOKUP
s

LOOKUPZ
s

MAX
a

MAXS
a

MIN
a

MINS
a

MOV
a

MOVD
a

MOVI
a

MOVS
a

MUL
a#

MULS
a#

MUXC
a

MUXNC
a

MUXNZ
a

MUXZ
a

NEG
a

NEGC
a

NEGNC
a

NEGNZ
a

NEGX
d

NEGZ
a

NEXT
s

NOP
a

NOT
s

NR
a

OBJ
s

ONES
a#

OR
d

ORG
a

OTHER
s

OUTA
d

OUTB
d#

PAR
d

PHSA
d

PHSB
d

PI
d

PLL1X
s

PLL2X
s

PLL4X
s

PLL8X
s

PLL16X
s

POSX
d

PRI
s

PUB
s

QUIT
s

RCFAST
s

RCL
a

RCR
a

RCSLOW
s

RDBYTE
a

RDLONG
a

RDWORD
a

REBOOT
s

REPEAT
s

RES
a

RESULT
s

RET
a

RETURN
s

REV
a

ROL
a

ROR
a

ROUND
s

SAR
a

SHL
a

SHR
a

SPR
s

STEP
s

STRCOMP
s

STRING
s

STRSIZE
s

SUB
a

SUBABS
a

SUBS
a

SUBSX
a

SUBX
a

SUMC
a

SUMNC
a

SUMNZ
a

SUMZ
a

TEST
a

TESTN
a

TJNZ
a

TJZ
a

TO
s

TRUE
d

TRUNC
s

UNTIL
s

VAR
s

VCFG
d

VSCL
d

WAITCNT
d

WAITPEQ
d

WAITPNE
d

WAITVID
d

WC
a

WHILE
s

WORD
s

WORDFILL
s

WORDMOVE
s

WR
a

WRBYTE
a

WRLONG
a

WRWORD
a

WZ
a

XINPUT
s

XOR
a

XTAL1
s

XTAL2
s

XTAL3
s

a = Assembly element; s = Spin element; d = dual (available in both languages); # = reserved for future use

6.1.1. Words Reserved for Future Use

 DIRB, INB, and OUTB: Reserved for future use with a possible 64 I/O pin model. When used with the P8X32A, these
labels can be used to access Cog RAM at those locations for general-purpose use.

 ENC, MUL, MULS, ONES: Use with the current P8X32A architecture yields indeterminate results.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 18 of 36 Rev 1.4 6/14/2011

6.2. Math and Logic Operators

Table 17: Math and Logic Operators
Operator Constant

Expressions3 Level1
Normal Assign2

Integer Float

Is Unary Description

-- always  Pre-decrement (--X) or post-decrement (X--).

++ always  Pre-increment (++X) or post-increment (X++).

~ always  Sign-extend bit 7 (~X) or post-clear to 0 (X~).

~~ always  Sign-extend bit 15 (~~X) or post-set to -1 (X~~).

? always  Random number forward (?X) or reverse (X?).

@ never   Symbol address.

Highest
(0)

@@ never  Object address plus symbol.

+ never    Positive (+X); unary form of Add.

- if solo    Negate (-X); unary form of Subtract.

^^ if solo    Square root.

|| if solo    Absolute value.

|< if solo   Bitwise: Decode 0 – 31 to long w/single-high-bit.

>| if solo   Bitwise: Encode long to 0 – 32; high-bit priority.

1

! if solo   Bitwise: NOT.

<- <-=  Bitwise: Rotate left.

-> ->=  Bitwise: Rotate right.

<< <<=  Bitwise: Shift left.

>> >>=  Bitwise: Shift right.

~> ~>=  Shift arithmetic right.

2

>< ><=  Bitwise: Reverse.

3 & &=  Bitwise: AND.

| |=  Bitwise: OR.
4

^ ^=  Bitwise: XOR.

* *=   Multiply and return lower 32 bits (signed).

** **=  Multiply and return upper 32 bits (signed).

/ /=   Divide (signed).
5

// //=  Modulus (signed).

+ +=   Add.
6

- -=   Subtract.

#> #>=   Limit minimum (signed).
7

<# <#=   Limit maximum (signed).

< <=   Boolean: Is less than (signed).

> >=   Boolean: Is greater than (signed).

<> <>=   Boolean: Is not equal.

== ===   Boolean: Is equal.

=< =<=   Boolean: Is equal or less (signed).

8

=> =>=   Boolean: Is equal or greater (signed).

9 NOT if solo    Boolean: NOT (promotes non-0 to -1).

10 AND AND=   Boolean: AND (promotes non-0 to -1).

11 OR OR=   Boolean: OR (promotes non-0 to -1).

= always n/a3 n/a3 Constant assignment (CON blocks). Lowest
(12) := always n/a3 n/a3 Variable assignment (PUB/PRI blocks).

1 Precedence level: higher-level operators evaluate before lower-level operators. Operators in same level are commutable; evaluation order does not matter.
2 Assignment forms of binary (non-unary) operators are in the lowest precedence (level 12).
3 Assignment forms of operators are not allowed in constant expressions.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 19 of 36 Rev 1.4 6/14/2011

6.3. Spin Language Summary Table

Spin Command Returns
Value Description

ABORT Value  Exit from PUB/PRI method using abort status with optional return value.

BYTE Symbol [Count] Declare byte-sized symbol in VAR block.

Symbol BYTE Data [Count] Declare byte-aligned and/or byte-sized data in DAT block.

BYTE [BaseAddress] [Offset]  Read/write byte of main memory.

Symbol.BYTE [Offset]  Read/write byte-sized component of word/long-sized variable.

BYTEFILL (StartAddress, Value, Count) Fill bytes of main memory with a value.

BYTEMOVE (DestAddress, SrcAddress, Count) Copy bytes from one region to another in main memory.

CASE CaseExpression
  MatchExpression :
  Statement(s)
 MatchExpression :
  Stat ment(s) e
 OTHER :
  Statement(s)

Compare expression against matching expression(s), execute code block
if match found.

MatchExpression can contain a single expression or multiple comma-
delimited expressions. Expressions can be a single value (ex: 10) or a
range of values (ex: 10..15).

CHIPVER  Version number of the Propeller chip (Byte at $FFFF)

CLKFREQ  Current System Clock frequency, in Hz (Long at $0000)

CLKMODE  Current clock mode setting (Byte at $0004)

CLKSET (Mode, Frequency) Set both clock mode and System Clock frequency at run time.

CNT  Current 32-bit System Counter value.

COGID  Current cog’s ID number; 0-7.

COGINIT (CogID, SpinMethod (ParameterList), StackPointer) Start or restart cog by ID to run Spin code.

COGINIT (CogID, AsmAddress, Parameter) Start or restart cog by ID to run Propeller Assembly code.

COGNEW (SpinMethod (ParameterList), StackPointer)  Start new cog for Spin code and get cog ID; 0-7 = succeeded, -1 = failed.

COGNEW (AsmAddress, Parameter) 
Start new cog for Propeller Assembly code and get cog ID; 0-7 =
succeeded, -1 = failed.

COGSTOP (CogID) Stop cog by its ID.

CON
 Symbol = Expr ((,┆ )) Symbol = Expr…

 Declare symbolic, global constants.

CON
 #Expr ((,┆ )) Symbol [Offset] ((,┆ )) Symbol [Offset] …

 Declare global enumerations (incrementing symbolic constants).

C
 Symbol 
ON

[Offset] ((,┆ )) Symbol [Offset] …
 Declare global enumerations (incrementing symbolic constants).

CONSTANT (ConstantExpression) 
Declare in-line constant expression to be completely resolved at compile
time.

CTRA  Counter A Control register.

CTRB  Counter B Control register.

DAT
 Symbol Alignment Size Data [Count] ,Size Data [Count]… Declare table of data, aligned and sized as specified.

DAT
 Symbol Condition Instruction Effect(s) Denote Propeller Assembly instruction.

DIRA [Pin(s)]  Direction register for 32-bit port A. Default is 0 (input) upon cog startup.

FILE "FileName" Import external file as data in DAT block.

FLOAT (IntegerConstant) 
Convert integer constant expression to compile-time floating-point value in
any block.

FRQA  Counter A Frequency register.

FRQB  Counter B Frequency register.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 20 of 36 Rev 1.4 6/14/2011

Spin Command Returns
Value Description

((IF ┆ IFNOT)) Condition(s)
 IfStatement(s)
ELSEIF Condition(s)
 ElseIfStatement(s)…
ELSEIFNOT Condition(s)
 ElseIfStatement(s)…
ELSE
 ElseStatement(s)

Test condition(s) and execute block of code if valid.

IF and ELSEIF each test for TRUE. IFNOT and ELSEIFNOT each test for
FALSE.

INA [Pin(s)]  Input register for 32-bit ports A.

LOCKCLR (ID)  Clear semaphore to false and get its previous state; TRUE or FALSE.

LOCKNEW  Check out new semaphore and get its ID; 0-7, or -1 if none were available.

LOCKRET (ID)
Return semaphore back to semaphore pool, releasing it for future
LOCKNEW requests.

LOCKSET (ID)  Set semaphore to true and get its previous state; TRUE or FALSE.

LONG Symbol [Count] Declare long-sized symbol in VAR block.

Symbol LONG Data [Count] Declare long-aligned and/or long-sized data in DAT block.

LONG [BaseAddress] [Offset]  Read/write long of main memory.

LONGFILL (StartAddress, Value, Count) Fill longs of main memory with a value.

LONGMOVE (DestAddress, SrcAddress, Count) Copy longs from one region to another in main memory.

LOOKDOWN (Value:ExpressionList)  Get the one-based index of a value in a list.

LOOKDOWNZ (Value:ExpressionList)  Get the zero-based index of a value in a list.

LOOKUP (Index:ExpressionList)  Get value from a one-based index position of a list.

LOOKUPZ (Index:ExpressionList)  Get value from a zero-based index position of a list.

NEXT
Skip remaining statements of REPEAT loop and continue with the next
loop iteration.

OBJ
 Symbol [Count]:"Object"   Symbol [Count]: "Object"…

 Declare symbol object references.

OUTA [Pin(s)]  Output register for 32-bit port A. Default is 0 (ground) upon cog startup.

PAR  Cog Boot Parameter register.

PHSA  Counter A Phase Lock Loop (PLL) register.

PHSB  Counter B Phase Lock Loop (PLL) register.

PRI Name (Par ,Par…) :RVal | LVar [Cnt] ,LVar [Cnt]…
 SourceCodeStatements

Declare private method with optional parameters, return value and local
variables.

PUB Name (Par ,Par…) :RVal | LVar [Cnt] ,LVar [Cnt]…
 SourceCodeStatements

Declare public method with optional parameters, return value and local
variables.

QUIT Exit from REPEAT loop immediately.

REBOOT Reset the Propeller chip.

REPEAT Count
 Statement(s)

Execute code block repetitively, either infinitely, or for a finite number of
iterations.

REPEAT Variable FROM Start TO Finish STEP Delta
 Statement(s) Execute code block repetitively, for finite, counted iterations.

REPEAT ((UNTIL┆ WHILE)) Condition(s)
 Statement(s) Execute code block repetitively, zero-to-many conditional iterations.

REPEAT
 Statement(s)
((UNTIL┆ WHILE)) Condition(s)

 Execute code block repetitively, one-to-many conditional iterations.

RESULT  Return value variable for PUB/PRI methods.

RETURN Value  Exit from PUB/PRI method with optional return Value.

ROUND (FloatConstant) 
Round floating-point constant to the nearest integer at compile-time, in any
block.

SPR [Index]  Special Purpose Register array.

STRCOMP (StringAddress1, StringAddress2)  Compare two strings for equality.

STRING (StringExpression)  Declare in-line string constant and get its address.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 22 of 36 Rev 1.4 6/14/2011

6.4. Propeller Assembly Instruction Table
The Propeller Assembly Instruction Table lists the instruction’s 32-bit opcode, outputs and number of clock cycles. The
opcode consists of the instruction bits (iiiiii), the “effect” status for the Z flag, C flag, result and indirect/immediate status
(zcri), the conditional execution bits (cccc), and the destination and source bits (ddddddddd and sssssssss). The meaning of the
Z and C flags, if any, is shown in the Z Result and C Result fields; indicating the meaning of a 1 in those flags. The Result field
(R) shows the instruction’s default behavior for writing (1) or not writing (0) the instruction’s result value. The Clocks field
shows the number of clocks the instruction requires for execution.

0 1 Zeros (0) and ones (1) mean binary 0 and 1.
i Lower case “i” denotes a bit that is affected by immediate status.
d s Lower case “d” and “s” indicate destination and source bits.
? Question marks denote bits that are dynamically set by the compiler.
--- Hyphens indicate items that are not applicable or not important.
.. Double-periods represent a range of contiguous values.

iiiiii zcri cccc ddddddddd sssssssss Instruction Description Z Result C Result R Clocks
000000 000i 1111 ddddddddd sssssssss WRBYTE D,S Write D[7..0] to main memory byte S[15..0] - - 0 8..23 *

000000 001i 1111 ddddddddd sssssssss RDBYTE D,S
Read main memory byte S[15..0] into D (0-
extended)

Result = 0 - 1 8..23 *

000001 000i 1111 ddddddddd sssssssss WRWORD D,S Write D[15..0] to main memory word S[15..1] - - 0 8..23 *

000001 001i 1111 ddddddddd sssssssss RDWORD D,S
Read main memory word S[15..1] into D (0-
extended) Result = 0 - 1 8..23 *

000010 000i 1111 ddddddddd sssssssss WRLONG D,S Write D to main memory long S[15..2] - - 0 8..23 *

000010 001i 1111 ddddddddd sssssssss RDLONG D,S Read main memory long S[15..2] into D Result = 0 - 1 8..23 *

000011 000i 1111 ddddddddd sssssssss HUBOP D,S Perform hub operation according to S Result = 0 - 0 8..23 *

000011 0001 1111 ddddddddd ------000 CLKSET D Set the global CLK register to D[7..0] - - 0 8..23 *

000011 0011 1111 ddddddddd ------001 COGID D Get this cog number (0..7) into D ID = 0 0 1 8..23 *

000011 0001 1111 ddddddddd ------010 COGINIT D Initialize a cog according to D ID = 0 No cog free 0 8..23 *

000011 0001 1111 ddddddddd ------011 COGSTOP D Stop cog number D[2..0] Stopped ID = 0 No Cog Free 0 8..23 *

000011 0011 1111 ddddddddd ------100 LOCKNEW D Checkout a new LOCK number (0..7) into D ID = 0 No lock free 1 8..23 *

000011 0001 1111 ddddddddd ------101 LOCKRET D Return lock number D[2..0] ID = 0 No lock free 0 8..23 *

000011 0001 1111 ddddddddd ------110 LOCKSET D Set lock number D[2..0] ID = 0 Prior lock state 0 8..23 *

000011 0001 1111 ddddddddd ------111 LOCKCLR D Clear lock number D[2..0] ID = 0 Prior lock state 0 8..23 *

000100 001i 1111 ddddddddd sssssssss MUL D,S Multiply unsigned D[15..0] by S[15..0] Result = 0 - 1 future

000101 001i 1111 ddddddddd sssssssss MULS D,S Multiply signed D[15..0] by S[15..0] Result = 0 - 1 future

000110 001i 1111 ddddddddd sssssssss ENC D,S Encode magnitude of S into D, result = 0..31 Result = 0 - 1 future

000111 001i 1111 ddddddddd sssssssss ONES D,S Get number of 1's in S into D, result = 0..31 Result = 0 - 1 future

001000 001i 1111 ddddddddd sssssssss ROR D,S Rotate D right by S[4..0] bits Result = 0 D[0] 1 4

001001 001i 1111 ddddddddd sssssssss ROL D,S Rotate D left by S[4..0] bits Result = 0 D[31] 1 4

001010 001i 1111 ddddddddd sssssssss SHR D,S Shift D right by S[4..0] bits, set new MSB to 0 Result = 0 D[0] 1 4

001011 001i 1111 ddddddddd sssssssss SHL D,S Shift D left by S[4..0] bits, set new LSB to 0 Result = 0 D[31] 1 4

001100 001i 1111 ddddddddd sssssssss RCR D,S Rotate carry right into D by S[4..0] bits Result = 0 D[0] 1 4

001101 001i 1111 ddddddddd sssssssss RCL D,S Rotate carry left into D by S[4..0] bits Result = 0 D[31] 1 4

001110 001i 1111 ddddddddd sssssssss SAR D,S Shift D arithmetically right by S[4..0] bits Result = 0 D[0] 1 4

001111 001i 1111 ddddddddd sssssssss REV D,S
Reverse 32–S[4..0] bottom bits in D and 0-
extend

Result = 0 D[0] 1 4

010000 001i 1111 ddddddddd sssssssss MINS D,S Set D to S if signed (D < S) S = 0 Signed (D < S) 1 4

010001 001i 1111 ddddddddd sssssssss MAXS D,S Set D to S if signed (D => S) S = 0 Signed (D < S) 1 4

010010 001i 1111 ddddddddd sssssssss MIN D,S Set D to S if unsigned (D < S) S = 0 Unsigned (D < S) 1 4

010011 001i 1111 ddddddddd sssssssss MAX D,S Set D to S if unsigned (D => S) S = 0 Unsigned (D < S) 1 4

010100 001i 1111 ddddddddd sssssssss MOVS D,S Insert S[8..0] into D[8..0] Result = 0 - 1 4

010101 001i 1111 ddddddddd sssssssss MOVD D,S Insert S[8..0] into D[17..9] Result = 0 - 1 4

010110 001i 1111 ddddddddd sssssssss MOVI D,S Insert S[8..0] into D[31..23] Result = 0 - 1 4

010111 001i 1111 ddddddddd sssssssss JMPRET D,S Insert PC+1 into D[8..0] and set PC to S[8..0] Result = 0 - 1 4

010111 000i 1111 --------- sssssssss JMP S Set PC to S[8..0] Result = 0 - 0 4

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

6.4.1. Assembly Conditions

Condition Instruction Executes

IF_ALWAYS always

IF_NEVER never

IF_E if equal (Z)

IF_NE if not equal (!Z)

IF_A if above (!C & !Z)

IF_B if below (C)

IF_AE if above/equal (!C)

IF_BE if below/equal (C | Z)

IF_C if C set

IF_NC if C clear

IF_Z if Z set

IF_NZ if Z clear

IF_C_EQ_Z if C equal to Z

IF_C_NE_Z if C not equal to Z

IF_C_AND_Z if C set and Z set

IF_C_AND_NZ if C set and Z clear

IF_NC_AND_Z if C clear and Z set

IF_NC_AND_NZ if C clear and Z clear

IF_C_OR_Z if C set or Z set

IF_C_OR_NZ if C set or Z clear

IF_NC_OR_Z if C clear or Z set

IF_NC_OR_NZ if C clear or Z clear

IF_Z_EQ_C if Z equal to C

IF_Z_NE_C if Z not equal to C

IF_Z_AND_C if Z set and C set

IF_Z_AND_NC if Z set and C clear

IF_NZ_AND_C if Z clear and C set

IF_NZ_AND_NC if Z clear and C clear

IF_Z_OR_C if Z set or C set

IF_Z_OR_NC if Z set or C clear

IF_NZ_OR_C if Z clear or C set

IF_NZ_OR_NC if Z clear or C clear

6.4.2. Assembly Directives

Directive Description

FIT Address Validate previous instr/data fit below an
address.

ORG Address Adjust compile-time cog address
pointer.

Symbol RES Count Reserve next long(s) for symbol.

6.4.3. Assembly Effects

Effect Results In

WC C Flag modified

WZ Z Flag modified

WR Destination Register modified

NR Destination Register not modified

6.4.4. Assembly Operators

Propeller Assembly code can contain constant
expressions, which may use any operators that are
allowed in constant expressions. The table (a subset of
Table 17) lists the operators allowed in Propeller
Assembly.

Operator Description

+ Add

+ Positive (+X); unary form of Add

- Subtract

- Negate (-X); unary form of Subtract

* Multiply and return lower 32 bits (signed)

** Multiply and return upper 32 bits (signed)

/ Divide (signed)

// Modulus (signed)

#> Limit minimum (signed)

<# Limit maximum (signed)

^^ Square root; unary

|| Absolute value; unary

~> Shift arithmetic right

|<
Bitwise: Decode value (0-31) into single-high-bit
long; unary

>|
Bitwise: Encode long into value (0 - 32) as high-
bit priority; unary

<< Bitwise: Shift left

>> Bitwise: Shift right

<- Bitwise: Rotate left

-> Bitwise: Rotate right

>< Bitwise: Reverse

& Bitwise: AND

| Bitwise: OR

^ Bitwise: XOR

! Bitwise: NOT; unary

AND Boolean: AND (promotes non-0 to -1)

OR Boolean: OR (promotes non-0 to -1)

NOT Boolean: NOT (promotes non-0 to -1); unary

== Boolean: Is equal

<> Boolean: Is not equal

< Boolean: Is less than (signed)

> Boolean: Is greater than (signed)

=< Boolean: Is equal or less (signed)

=> Boolean: Is equal or greater (signed)

@ Symbol address; unary

Copyright © Parallax Inc., dba Parallax Semiconductor Page 24 of 36 Rev 1.4 6/14/2011

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 25 of 36 Rev 1.4 6/14/2011

7.0 ELECTRICAL CHARACTERISTICS

7.1. Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress
ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the
remainder of Section 0. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 18: Absolute Maximum Ratings

Ambient temperature under bias -55 °C to +125 °C

Storage temperature -65 °C to +150 °C

Voltage on Vdd with respect to Vss -0.3 V to +4.0 V

Voltage on all other pins with respect to Vss
* -0.3 V to (Vdd + 0.3 V)

Total power dissipation 1 W

Max. current out of Vss pins 300 mA

Max. current into Vdd pins 300 mA

Max. DC current into an input pin with internal protection diode forward biased ±500 µA

Max. allowable current per I/O pin 40 mA

ESD (Human Body Model) Supply pins 3 kV

ESD (Human Body Model) all non-supply pins 8 kV

*Note: I/O pin voltages with respect to Vss may be exceeded if internal protection diode forward bias current is not exceeded.

7.2. DC Characteristics
 (Operating temperature range: -55° C < Ta < +125° C unless otherwise noted)

Symbol Parameter Conditions Min Typ* Max Units

Vdd Supply Voltage 2.7
-

3.6 V

Vih, Vil
 Logic High
 Logic Low

0.6 Vdd

Vss

Vdd

0.3 Vdd
V
V

Iil Input Leakage Current Vin = Vdd or Vss -1.0 +1.0 µA

Voh Output High Voltage Ioh = 10 mA, Vdd = 3.3 V 2.85

 V

Vol Output Low Voltage Iol = 10 mA, Vdd = 3.3 V 0.4 V

IBO Brownout Detector Current 3.8 µA

I Quiescent Current RESn = 0V, BOEn = Vdd, P0-P31=0V 600 nA

*Note: Data in the Typical (“Typ”) column is T = 25 °C unless otherwise stated. a

7.3. AC Characteristics
(Operating temperature range: -55°C < Ta < +125°C unless otherwise noted)

Symbol Parameter Min Typ* Max Units Condition

Fosc External XI Frequency DC - 80 MHz

Oscillator Frequency DC
13
8
4

-
20
12
-

80
33
20
8

MHz
kHz
MHz
MHz

Direct drive (no PLL)
RCSLOW
RCFAST

Crystal using PLL

Cin
Input Capacitance 6 - pF

*Note: Data in the Typical (“Typ”) column is T = 25 °C unless otherwise stated. a

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 26 of 36 Rev 1.4 6/14/2011

8.0 CURRENT CONSUMPTION CHARACTERISTICS

8.1. Typical Current Consumption of 8 Cogs
This figure shows the typical current consumption of the Propeller under various operating conditions duplicated across all
cogs. Brown out circuitry and the Phase-Locked Loop were disabled for the duration of the test. Current consumption is
substantially constant over the operational temperature range.

2

10
3

10
4

10
5

10
6

10
7

10
8

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

10

T
yp

ical C
u

rren
t C

on
su

m
p

tion
 of 8 cog

s vs. O
p

eratin
g

 F
req

u
en

cy (3.3V
, T

a =
 25°C

)

F
req

u
en

cy (H
z)

Current (A)

S
pin Loops (R

E
P

E
A

T
)

A
ssem

bly Loops (JM
P

)

W
A

IT
(C

N
T

/P
E

Q
/P

N
E

)

H
ub O

nly

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 28 of 36 Rev 1.4 6/14/2011

8.4. Typical Crystal Drive Current
This graph shows the current consumption of the crystal driver over a range of crystal frequencies and crystal settings, all
data points above 25 MHz were obtained by using a resonator since the driver does not perform 3rd harmonic overtone
driving required for crystals over 25 MHz.

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Typical Crystal Drive Current (Vdd = 3.3 V, Ta = 25° C)
C

ur
re

nt
 (

m
A

)

xtal1

xtal2

xtal3

Frequency (MHz)

8.5. Cog and I/O Pin Relationship
The figure below illustrates the physical relationship between the cogs and I/O pins. While there can be a 1 to 1.5 ns
propagation delay in output transitions between the shortest and longest paths, the purpose of the figure is to illustrate the
length of leads and their associated parasitic capacitance. This capacitance increases the amount of energy required to
transition a pin’s state and therefore increases the current draw for toggling a pin. So, the current consumed by Cog 7
toggling P0 at 20 MHz will be greater than Cog 0 toggling P7 at 20 MHz. The amount of current consumed by transitioning a
pin’s state is dependent on many factors including: temperature, frequency of transitions, external load, and internal load. As
mentioned, the internal load is dependent upon which cog and pin are used. Internal load current for room temperature
toggling of a pin at 20 MHz for a Propeller in a DIP package varies on the order of 300 µA.

cog 0 cog 1 cog 2 cog 3 cog 4 cog 5 cog 6 cog 7
P7

P8

P6

P5

P10

P9

P24

P23

P25

P26

P21

P22

P15

P0

P16

P31

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 29 of 36 Rev 1.4 6/14/2011

8.6. Current Profile at Various Startup Conditions
The diagrams below show the current profile for various startup conditions of the Propeller chip dependent upon the presence
of an EEPROM and PC.

Figure 9

Boot Sequence Current Profile for
no PC and no EEPROM (P31
held low and P29 not connected
(same as held low)).

Figure 10

Boot Sequence Current Profile for
PC (connected but idle) and no
EEPROM. (P31 held high and
P29 not connected).

Figure 11

Boot Sequence Current Profile for
no PC and no EEPROM (P31
held low and P29 held high).

Figure 12

Boot Sequence Current Profile for
no PC and EEPROM (P31 held
low and P29 connected to
EEPROM SDA).

Figure 13

Boot Sequence Current Profile for
PC (connected but idle) and
EEPROM (P31 held high and P29
connected to EEPROM SDA).

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 30 of 36 Rev 1.4 6/14/2011

9.0 TEMPERATURE CHARACTERISTICS

9.1. Internal Oscillator Frequency as a Function of Temperature
While the internal oscillator frequency is variable due to process variation, the rate of change as a function of temperature
when normalized provides a chip invariant ratio which can be used to calculate the oscillation frequency when the ambient
temperature is other than 25 °C (the temperature to which the graph was normalized). The absolute frequency at 25 °C varied
from 13.26 to 13.75 MHz in the sample set. The section of the graph which has a white background is the military range of
temperature; the sections in grey represent data which is beyond military temperature specification.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 31 of 36 Rev 1.4 6/14/2011

9.2. Fastest Operating Frequency as a Function of Temperature
The following graph represents a small sample average of a Propeller chip’s fastest operating range. The test was performed
in a forced air chamber using code run on all eight cogs, multiple video generators, and counter modules. A frequency was
considered successful if the demo ran without fault for one minute. The curves represent an aggressive testing procedure
(averaged, forced air, one minute time limit); therefore the designer must de-rate the curve to arrive at a stable frequency for a
particular application. Again the grayed regions represent temperatures beyond the military temperature range.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 33 of 36 Rev 1.4 6/14/2011

10.0 PACKAGE DIMENSIONS

10.1. P8X32A-D40 (40-pin DIP)

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 34 of 36 Rev 1.4 6/14/2011

10.2. P8X32A-Q44 (44-pin LQFP)

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 36 of 36 Rev 1.4 6/14/2011

11.0 MANUFACTURING INFO

11.1. Reflow Peak Temperature

Package Type Reflow Peak Temp.

DIP 255+5/-0 °C

LQFP 255+5/-0 °C

QFN 255+5/-0 °C

11.2. Green/RoHS Compliance
All Parallax Semiconductor Propeller P8X32A chip
models are certified Green/RoHS Compliant. RoHS,
Green, and ISO certificates are available online at
www.parallaxsemiconductor.com.

12.0 REVISION HISTORY

12.1.1. Changes for Version 1.1:

Section 10.3: P8X32A-M44 (44-pin QFN). Image
replaced to add stencil pattern diagram. New section
inserted: 4.8 Assembly Instruction Execution Stages.
Contact Information updated.

12.1.2. Changes for Version 1.2:

Section 6.4: Modified table entries for ADD, ADDABS, ADDS,
ADDSX, ADDX, CMP, CMPS, CMPSX, CMPX, COGID, COGINIT,
COGSTOP, LOCKCLR, LCOKNEW, LOCKRET, LOCKSET, MAX,
MAXS, MIN, MINS, SUB, SUBABS, SUBS, SUBSX, SUBX, SUMC,
SUMNC, SUMNZ, SUMZ, TEST, TJNZ, TJZ. Section 4.5
updated. Section 5.1: new sentence added at end of
paragraph. Section 5.2: new sentence added at end of first
paragraph.

12.1.3. Changes for Version 1.3

Throughout: updated logo and contact information for
Parallax Inc., dba Parallax Semiconductor. Section 7.1:
footnote added to Table 18: Absolute Maximum Ratings.

12.1.4. Changes for Version 1.4

Section 1.0 changes: 1.3: Key Features and Benefits
revised; former sections 1.4 , 1.6 removed. Section 4.4:
updated all references to hub timing and replaced both
timing diagrams. Section 4.8: reference to hub timing
updated. Section 6.4: timing for hub instructions and
WAITxxx instructions revised. Former Section 7.0:
Propeller Demo Board schematic removed.

Parallax Semiconductor Contact Information

Parallax Semiconductor

599 Menlo Drive

Rocklin, CA 95765

USA

Phone: (916) 632-4664

Fax: (916) 624-8003

sales@parallaxsemiconductor.com

support@parallaxsemiconductor.com

www.parallaxsemiconductor.com

http://obex.parallax.com

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or use of any
product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages even if Parallax, Inc.,
dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this document in whole or in part is
prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.

Propeller and Parallax Semiconductor are trademarks of Parallax, Inc.

