
Parallax Inc. - P8X32A-M44 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size 32-Bit 8-Core

Speed 80MHz

Connectivity -

Peripherals -

Number of I/O 32

Program Memory Size 32KB (32K x 8)

Program Memory Type ROM

EEPROM Size -

RAM Size 32K x 8

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type Internal

Operating Temperature -

Mounting Type Surface Mount

Package / Case 44-VQFN Exposed Pad

Supplier Device Package 44-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/parallax/p8x32a-m44

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/p8x32a-m44-4430068
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 2 of 36 Rev 1.4 6/14/2011

Table of Contents

1.0 Product Overview... 1
1.1. ..1 Introduction
1.2. ...1 Stock Codes
1.3. Key Features and Benefits ...3

32-bit Multicore Architecture1.3.1. ..3
1.3.2. ..3 Clock System and Wait Instructions
1.3.3. ...3 Programming Languages and Resources
1.3.4. Flexible I/O and Peripheral Interface ...3
 ..31.4. Applications

 ...3 1.4.1. Corporate and Community Support

2.0 Connection Diagrams .. 4
2.1. ..4 Pin Assignments
2.2. ...4 Pin Descriptions
2.3. Typical Connection Diagrams ..5

Propeller Clip or Propeller Plug Connection - Recommended2.3.1. 5
2.3.2. Alternative Serial Port Connection ...5

3.0 Operating Procedures ... 6
3.1. ..6 Boot-Up Procedure
3.2. ..6 Run-Time Procedure
3.3. Shutdown Procedure ..6
4.0 System Organization ... 6
4.1. ...6 Shared Resources
4.2. ...6 System Clock
4.3. ..7 Cogs (processors)
4.4. ..7 Hub
4.5. ..8 I/O Pins
4.6. ...8 System Counter
4.7. ...8 Locks
4.8.9 Assembly Instruction Execution Stages
4.9. Cog Counters ...10

CTRA / CTRB – Control register4.9.1. ...10
4.9.2. ..10 FRQA / FRQB – Frequency register
4.9 PHSA / PHSB – Phase register.3.

 ...11
 ...10

4.10. Video Generator
VCFG – Video Configuration Register4.10.1. ...11

4.10.2. ..12 VSCL – Video Scale Register
4.1 .3. WAITVID Command/Instruction0

 ..14
 ..12

4.11. CLK Register

5.0 Memory Organization .. 15
5.1. Main Memory ...15

Main RAM5.1.1. ..15
5.1.2. ...15 Main ROM
5.1.3. ...15 Character Definitions
5.1.4. Math Function Tables ..16

5.2. ... 16 Cog RAM

6.0 Programming Languages ..17
6.1. Reserved Word List ... 17

 ... 176.1.1. Words Reserved for Future Use
Math and Logic Operators6.2. ... 18

6.3. Spin Language Summary Table .. 19
 ... 216.3.1. Constants

 226.4. Propeller Assembly Instruction Table
Assembly Conditions6.4.1. .. 24

6.4.2. ... 24 Assembly Directives
6.4.3. .. 24 Assembly Effects
6.4.4. Assembly Operators ... 24

7.0 Electrical Characteristics...25
7.1. ... 25 Absolute Maximum Ratings
7.2. ... 25 DC Characteristics
7.3. AC Characteristics ... 25
8.0 Current Consumption Characteristics26
8.1. 26 Typical Current Consumption of 8 Cogs
8.2. 27 Typical Current of a Cog vs. Operating Frequency
8.3. 27 Typical PLL Current vs. VCO Frequency
8.4. ... 28 Typical Crystal Drive Current
8.5. ... 28 Cog and I/O Pin Relationship
8.6. Current Profile at Various Startup Conditions 29
9.0 Temperature Characteristics.....................................30
9.1. 30 Internal Oscillator Frequency as a Function of Temperature
9.2. ... 31 Fastest Operating Frequency as a Function of Temperature
9.3. Current Consumption as a Function of Temperature 32
10.0 Package Dimensions..33
10.1. .. 33 P8X32A-D40 (40-pin DIP)
10.2. .. 34 P8X32A-Q44 (44-pin LQFP)
10.3. P8X32A-M44 (44-pin QFN) .. 35
11.0 Manufacturing Info ...36
11.1. ... 36 Reflow Peak Temperature
11.2. Green/RoHS Compliance .. 36
12.0 ...36Revision History

Changes for Version 1.1:12.1.1. .. 36
12.1.2. .. 36 Changes for Version 1.2:
12.1.3. ... 36 Changes for Version 1.3
12.1.4. Changes for Version 1.4 ... 36

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 3 of 36 Rev 1.4 6/14/2011

1.3. Key Features and Benefits
The P8X32A design frees developers from common
complexities of embedded systems programming.

1.3.1. 32-bit Multicore Architecture

 True parallel processing with eight symmetric 32-bit
processors (cogs) in one microcontroller

 Multi-cog run-time management (run/wait/stop)
easily solves event-handling problems and
eliminates the need for interrupts. This greatly
simplifies programming for asynchronous and
synchronous events, resulting in a responsive and
easily maintained application.

 20 MIPS per cog, 160 MIPS total with all cogs
running

 Solves mixed-bandwidth needs common to
embedded applications

 Multi-purpose design lowers part count while
increasing system capabilities

 Developer-driven cog assignments bring flexible
response and deterministic timing to embedded
applications

1.3.2. Clock System and Wait Instructions

 Flexible Clock Modes
o Two internal, one external, plus optional 1x–16x

PLL; up to 80 MHz system clock
o Switchable in code at run-time; low frequency

for low-power periods, high frequency for high-
bandwidth moments

 Shared System Clock facilitates synchronization
between cogs

 WAIT Instructions
o Deliver powerful synchronous / asynchronous

event management
o Set dedicated event cogs to an "always ready,"

very low power state

1.3.3. Programming Languages and Resources

 Spin (object-based, high-level) and Assembly
(PASM; low-level); used together for thorough
development, i.e. fast development in Spin plus fast
execution with prewritten high-speed PASM drivers

 Third-party support: C, BASIC, and more
 Enhanced Assembly Language

o Conditional execution for individual instructions;
enables jitter-free signal generation and event
handling

o Optional flag and result writing for individual
instructions

 Open-source Objects
o Objects are shared freely via the Propeller Object

Exchange and Propeller Tool libraries
o Select objects that fit a need, easily integrate

them into a Propeller application

1.3.4. Flexible I/O and Peripheral Interface

 32 I/O Pins
o All general-purpose I/O after boot-up; accessible

by every cog simultaneously
o Single-instruction access to any individual I/O

pin or any contiguous I/O pin group
o Easily move designed functions between pins for

simple system board layout
 Multi-function Counters

o Configurable state machines generate or sense
repetitive signals per clock cycle

o Measure frequency, detect edges, count cycles,
D/A or A/D conversion, and more

o Operate autonomously with optional run-time
monitoring and adjusting

o Two counters per cog
 Video Generators

o RGB: VGA; 8 I/O pins
o Composite: NTSC, PAL; 1-pin (B/W), 3-pin

(typical), or 4-pin (optional)
o One generator per cog

 Software Peripherals
o Peripheral interfaces built with software and

inexpensive passive components; not single-
function on-chip hardware

o Software-based interfaces are flexible; enhance
as peripheral needs arise — no need to redesign
with a chip variant

1.4. Applications
The P8X32A is particularly useful in projects that can be
vastly simplified with simultaneous processing, including:

 Industrial control systems
 Sensor integration, signal processing, and data

acquisition
 Handheld portable human-interface terminals
 Motor and actuator control
 User interfaces requiring NTSC, PAL, or VGA

output, with PS/2 keyboard and mouse input
 Low-cost video game systems
 Industrial, educational or personal-use robotics
 Wireless video transmission (NTSC or PAL)

1.4.1. Corporate and Community Support

 Sales or technical support: (916) 632-4664
 Email sales: sales@parallaxsemiconductor.com
 Email support: support@parallaxsemiconductor.com
 Engineer-moderated Parallax Semiconductor sub-

forum is available from http://forums.parallax.com
 Parallax-hosted Propeller Object Exchange library:

http://obex.parallax.com

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 4 of 36 Rev 1.4 6/14/2011

2.0 CONNECTION DIAGRAMS

2.1. Pin Assignments

 LQFP and QFN Packages

 DIP Package

2.2. Pin Descriptions

Table 2: Pin Descriptions

Pin Name Direction Description

P0 – P31 I/O

General purpose I/O Port A. Can source/sink 40 mA each at 3.3 VDC. CMOS level logic with threshold
of ≈ ½ VDD or 1.6 VDC @ 3.3 VDC.

The pins shown below have a special purpose upon power-up/reset but are general purpose I/O
afterwards.

P28 - I2C SCL connection to optional, external EEPROM.
P29 - I2C SDA connection to optional, external EEPROM.
P30 - Serial Tx to host.
P31 - Serial Rx from host.

VDD --- 3.3 volt power (2.7 – 3.6 VDC)

VSS --- Ground

BOEn I
Brown Out Enable (active low). Must be connected to either VDD or VSS. If low, RESn becomes a
weak output (delivering VDD through 5 kΩ) for monitoring purposes but can still be driven low to cause
reset. If high, RESn is CMOS input with Schmitt Trigger.

RESn I/O
Reset (active low). When low, resets the Propeller chip: all cogs disabled and I/O pins floating.
Propeller restarts 50 ms after RESn transitions from low to high.

XI I
Crystal Input. Can be connected to output of crystal/oscillator pack (with XO left disconnected), or to
one leg of crystal (with XO connected to other leg of crystal or resonator) depending on CLK Register
settings. No external resistors or capacitors are required.

XO O
Crystal Output. Provides feedback for an external crystal, or may be left disconnected depending on
CLK Register settings. No external resistors or capacitors are required.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 7 of 36 Rev 1.4 6/14/2011

4.3. Cogs (processors)
The Propeller contains eight (8) identical, independent
processors, called cogs, numbered 0 to 7. Each cog
contains a Processor block, local 2 KB RAM configured
as 512 longs (512 x 32 bits), two advanced counter
modules with PLLs, a Video Generator, I/O Output
Register, I/O Direction Register, and other registers not
shown in the Block Diagram.

All eight cogs are driven from the System Clock; they
each maintain the same time reference and all active cogs
execute instructions simultaneously. They also all have
access to the same shared resources.

Cogs can be started and stopped at run time and can be
programmed to perform tasks simultaneously, either
independently or with coordination from other cogs
through Main RAM. Each cog has its own RAM, called
Cog RAM, which contains 512 registers of 32 bits each.
The Cog RAM is all general purpose RAM except for the
last 16 registers, which are special purpose registers, as
described in Table 15 on page 16.

4.4. Hub
To maintain system integrity, mutually-exclusive
resources must not be accessed by more than one cog at a
time. The Hub controls access to mutually-exclusive
resources by giving each cog a turn in a “round robin”
fashion from Cog 0 through Cog 7 and back to Cog 0
again. The Hub and its bus run at half the System Clock
rate, giving a cog access to mutually-exclusive resources
once every 16 System Clock cycles. Hub instructions, the
Propeller Assembly instructions that access mutually-
exclusive resources, require 8 cycles to execute but they
first need to be synchronized to the start of the Hub
Access Window.

It takes up to 15 cycles (16 minus 1, if we just missed it)
to synchronize to the Hub Access Window plus 8 cycles
to execute the hub instruction, so hub instructions take
from 8 to 23 cycles to complete.

Figure 2 and Figure 3 show examples where Cog 0 has a
hub instruction to execute. Figure 2 shows the best-case
scenario; the hub instruction was ready right at the start of
that cog’s access window. The hub instruction executes
immediately (8 cycles) leaving an additional 8 cycles for
other instructions before the next Hub Access Window
arrives.

Figure 3 shows the worst-case scenario; the hub
instruction was ready on the cycle right after the start of
Cog 0’s access window; it just barely missed it. The cog
waits until the next Hub Access Window (15 cycles later)
then the hub instruction executes (8 cycles) for a total of
23 cycles for that hub instruction. Again, there are 8
additional cycles after the hub instruction for other
instructions to execute before the next Hub Access
Window arrives. To get the most efficiency out of
Propeller Assembly routines that have to frequently
access mutually-exclusive resources, it can be beneficial
to interleave non-hub instructions with hub instructions to
lessen the number of cycles waiting for the next Hub
Access Window. Since most Propeller Assembly
instructions take 4 clock cycles, two such instructions can
be executed in between otherwise contiguous hub
instructions.

Keep in mind that a particular cog’s hub instructions do
not, in any way, interfere with other cogs’ instructions
because of the Hub mechanism. Cog 1, for example, may
start a hub instruction during System Clock cycle 2, in
both of these examples, possibly overlapping its execution
with that of Cog 0 without any ill effects. Meanwhile, all
other cogs can continue executing non-hub instructions,
or awaiting their individual hub access windows
regardless of what the others are doing.

Figure 2: Cog-Hub
Interaction – Best Case
Scenario

Figure 3: Cog-Hub
Interaction – Worst Case
Scenario

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 8 of 36 Rev 1.4 6/14/2011

4.5. I/O Pins
The Propeller has 32 I/O pins, 28 of which are general
purpose. I/O Pins 28 - 31 have a special purpose at boot
up and are available for general purpose use afterwards;
see section 2.2, page 4. After boot up, any I/O pins can
be used by any cogs at any time. It is up to the
application developer to ensure that no two cogs try to use
the same I/O pin for different purposes during run time.

Refer to Figure 1, page 1. Each cog has its own 32-bit I/O
Direction Register and 32-bit I/O Output Register to
influence the states of the Propeller chip’s corresponding
32 I/O pins. A cog's desired I/O directions and output
states is communicated through the entire cog collective
to become "Pin Directions" and "Pin Outputs."

Pin Directions are the result of OR'ing the Direction
Registers of the cogs together. Pin Outputs are the result
of OR'ing the output states of the cogs together. A cog's
output state consists of the bits of its I/O modules (the
Counters, the Video Generator, and the I/O Output
Register) OR'd together then AND'd with the bits of its
Direction Register. All cogs can still access and influence
the I/O pins simultaneously, without electrical contention,

as described by these rules:

A. A pin is an input only if no active cog sets it to
an output.

B. A pin outputs low only if all active cogs that set
it to output also set it to low.

C. A pin outputs high if any active cog sets it to an
output and also sets it high.

Table 3 demonstrates a few possible combinations of the
collective cogs’ influence on a particular I/O pin, P12 in
this example. For simplification, these examples assume
that bit 12 of each cog’s I/O hardware, other than its I/O
Output Register, is cleared to zero (0).

Any cog that is shut down has its Direction Register and
output states cleared to zero, effectively removing it from
influencing the final state of the I/O pins that the
remaining active cogs are controlling.

Each cog also has its own 32-bit Input Register. This
input register is really a pseudo-register; every time it is
read, the actual states of the I/O pins are read, regardless
of their input or output direction.

Table 3: I/O Sharing Examples

 Bit 12 of Cogs’ I/O Direction Register Bit 12 of Cogs’ I/O Output Register

Cog ID 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

State of

I/O Pin P12
Rule

Followed

Example 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Input A

Example 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Output Low B

Example 3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Output High C

Example 4 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Output Low B

Example 5 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Output High C

Example 6 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 Output High C

Example 7 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 Output High C

Example 8 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 Output Low B

Note: For the I/O Direction Register, a 1 in a bit location sets the corresponding I/O pin to the output direction; a 0 sets it to an input direction.

4.6. System Counter
The System Counter is a global, read-only, 32-bit counter
that increments once every System Clock cycle. Cogs can
read the System Counter (via their CNT registers, see
Table 15 on page 16) to perform timing calculations and
can use the WAITCNT command (see section 6.3 on page
19 and section 6.4 on page 22) to create effective delays
within their processes. The System Counter is a common
resource which every cog can read simultaneously. The
System Counter is not cleared upon startup since its
practical use is for differential timing. If a cog needs to
keep track of time from a specific, fixed moment in time,
it simply needs to read and save the initial counter value
at that moment in time, and compare subsequent counter
values against that initial value.

4.7. Locks
There are eight lock bits (semaphores) available to
facilitate exclusive access to user-defined resources
among multiple cogs. If a block of memory is to be used
by two or more cogs at once and that block consists of
more than one long (four bytes), the cogs will each have
to perform multiple reads and writes to retrieve or update
that memory block. This leads to the likely possibility of
read/write contention on that memory block where one
cog may be writing while another is reading, resulting in
misreads and/or miswrites.

The locks are global bits accessed through the Hub via
LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR. Because
locks are accessed only through the Hub, only one cog at
a time can affect them, making this an effective control
mechanism. The Hub maintains an inventory of which
locks are in use and their current states; cogs can check
out, return, set, and clear locks as needed during run time.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 10 of 36 Rev 1.4 6/14/2011

4.9. Cog Counters
Each cog has two counter modules: CTRA and CTRB. Each
counter module can control or monitor up to two I/O pins
and perform conditional 32-bit accumulation of its FRQ
register into its PHS register on every clock cycle.

Each counter module also has its own phase-locked loop
(PLL) which can be used to synthesize frequencies up to
128 MHz.

With a little setup or oversight from the cog, a counter can
be used for:

 frequency synthesis
 frequency measurement
 pulse counting
 pulse measurement
 multi-pin state measurement
 pulse-width modulation
 duty-cycle measurement
 digital-to-analog conversion
 analog-to-digital conversion

For some of these operations, the cog can be set up and
left in a free-running mode. For others, it may use
WAITCNT to time-align counter reads and writes within a
loop, creating the effect of a more complex state machine.

Note that for a cog clock frequency of 80 MHz, the
counter update period is a mere 12.5 ns. This high speed,
combined with 32-bit precision, allows for very dynamic
signal generation and measurement.

The design goal for the counter was to create a simple and
flexible subsystem which could perform some repetitive
task on every clock cycle, thereby freeing the cog to
perform some computationally richer super-task. While
the counters have only 32 basic operating modes, there is
no limit to how they might be used dynamically through
software. Integral to this concept is the use of the
WAITPEQ, WAITPNE, and WAITCNT instructions, which can
event-align or time-align a cog with its counters.

Each counter has three registers:

4.9.1. CTRA / CTRB – Control register

The CTR (CTRA and CTRB) register selects the counter's
operating mode. As soon as this register is written, the
new operating mode goes into effect. Writing a zero to
CTR will immediately disable the counter, stopping all
pin output and PHS accumulation.

Table 4: CTRA and CTRB Registers
31 30..26 25..23 22..15 14..9 8..6 5..0

- CTRMODE PLLDIV - BPIN - APIN

The CTRMODE field selects one of 32 operating modes
for the counter, conveniently written (along with
PLLDIV) using the MOVI instruction. These modes of
operation are listed in Table 6 on page 11.

Table 5: PLLDIV Field

PLLDIV %000 %001 %010 %011 %100 %101 %110 %111

Output
VCO
128

VCO
64

VCO
32

VCO
16

VCO
8

VCO
4

VCO
2

VCO
1

PLLDIV selects a PLL output tap and may be ignored if
not used.

The PLL modes (%00001 to %00011) cause FRQ-to-PHS
accumulation to occur every clock cycle. This creates a
numerically-controlled oscillator (NCO) in PHS[31],
which feeds the counter PLL's reference input. The PLL
will multiply this frequency by 16 using its voltage-
controlled oscillator (VCO). For stable operation, it is
recommended that the VCO frequency be kept within 64
MHz to 128 MHz. This translates to an NCO frequency of
4 MHz to 8 MHz.

The PLLDIV field of the CTR register selects which
power-of-two division of the VCO frequency will be used
as the final PLL output. This affords a PLL range of 500
kHz to 128 MHz.

BPIN selects a pin to be the secondary I/O. It may be
ignored if not used and may be written using the MOVD
instruction.

APIN selects a pin to be the primary I/O. It may be
ignored if not used and may be written using the MOVS
instruction.

4.9.2. FRQA / FRQB – Frequency register

FRQ (FRQA and FRQB) holds the value that will be
accumulated into the PHS register. For some applications,
FRQ may be written once, and then ignored. For others, it
may be rapidly modulated.

4.9.3. PHSA / PHSB – Phase register

The PHS (PHSA and PHSB) register can be written and
read via cog instructions, but it also functions as a free-
running accumulator, summing the FRQ register into
itself on potentially every clock cycle. Any instruction
writing to PHS will override any accumulation for that
clock cycle. PHS can only be read through the source
operand (same as PAR, CNT, INA, and INB). Beware
that doing a read-modify-write instruction on PHS, like
"ADD PHSA, #1", will cause the last-written value to be
used as the destination operand input, rather than the
current accumulation.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 11 of 36 Rev 1.4 6/14/2011

Table 6: Counter Modes (CTRMODE Field Values)

CTRMODE Description
Accumulate

FRQx to PHSx
APIN

Output*
BPIN

Output*

%00000 Counter disabled (off) 0 (never) 0 (none) 0 (none)

%00001
%00010
%00011

PLL internal (video mode)
PLL single-ended
PLL differential

1 (always)
1
1

0
PLLx
PLLx

0
0
!PLLx

%00100
%00101

NCO single-ended
NCO differential

1
1

PHSx[31]
PHSx[31]

0
!PHSx[31]

%00110
%00111

DUTY single-ended
DUTY differential

1
1

PHSx-Carry
PHSx-Carry

0
!PHSx-Carry

%01000
%01001
%01010
%01011

POS detector
POS detector with feedback
POSEDGE detector
POSEDGE detector w/ feedback

A1
A1
A1 & !A2
A1 & !A2

0
0
0
0

0
!A1
0
!A1

%01100
%01101
%01110
%01111

NEG detector
NEG detector with feedback
NEGEDGE detector
NEGEDGE detector w/ feedback

!A1
!A1
!A1 & A2
!A1 & A2

0
0
0
0

0
!A1
0
!A1

%10000
%10001
%10010
%10011
%10100
%10101
%10110
%10111
%11000
%11001
%11010
%11011
%11100
%11101
%11110
%11111

LOGIC never
LOGIC !A & !B
LOGIC A & !B
LOGIC !B
LOGIC !A & B
LOGIC !A
LOGIC A <> B
LOGIC !A | !B
LOGIC A & B
LOGIC A == B
LOGIC A
LOGIC A | !B
LOGIC B
LOGIC !A | B
LOGIC A | B
LOGIC always

0
!A1 & !B1
A1 & !B1
!B1
!A1 & B1
!A1
A1 <> B1
!A1 | !B1
A1 & B1
A1 == B1
A1
A1 | !B1
B1
!A1 | B1
A1 | B1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

*Must set corresponding DIR bit to affect pin. A1 = APIN input delayed by 1 clock. A2 = APIN input delayed by 2 clocks. B1 = BPIN input delayed by 1 clock.

4.10. Video Generator
Each cog has a video generator module that facilitates
transmitting video image data at a constant rate. There are
two registers and one instruction which provide control
and access to the video generator. Counter A of the cog
must be running in a PLL mode and is used to generate
the timing signal for the Video Generator. The Video
Scale Register specifies the number of Counter A PLL
(PLLA) clock cycles for each pixel and number of clock
cycles before fetching another frame of data provided by
the WAITVID instruction which is executed within the cog.
The Video Configuration Register establishes the mode
the Video Generator should operate, and can generate
VGA or composite video (NTSC or PAL).

The Video Generator should be initialized by first starting
Counter A, setting the Video Scale Register, setting the

Video Configuration Register, then finally providing data
via the WAITVID instruction. Failure to properly initialize
the Video Generator by first starting PLLA will cause the
cog to indefinitely hang when the WAITVID instruction is
executed.

4.10.1. VCFG – Video Configuration Register

The Video Configuration Register contains the
configuration settings of the video generator and is shown
in Table 7.

In Propeller Assembly, the VMode through AuralSub
fields can conveniently be written using the MOVI
instruction, the VGroup field can be written with the MOVD
instruction, and the VPins field can be written with the
MOVS instruction.

Table 7: VCFG Register

31 30..29 28 27 26 25..23 22..12 11..9 8 7..0

- VMode CMode Chroma1 Chroma0 AuralSub - VGroup - VPins

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 12 of 36 Rev 1.4 6/14/2011

The 2-bit VMode (video mode) field selects the type and
orientation of video output, if any, according to Table 8.

Table 8: The Video Mode Field

VMode Video Mode

00 Disabled, no video generated.

01 VGA mode; 8-bit parallel output on VPins 7:0

10
Composite Mode 1; broadcast on VPins 7:4, baseband
on VPins 3:0

11
Composite Mode 2; baseband on VPins 7:4, broadcast
on VPins 3:0

The CMode (color mode) field selects two or four color
mode. 0 = two-color mode; pixel data is 32 bits by 1 bit
and only colors 0 or 1 are used. 1 = four-color mode;
pixel data is 16 bits by 2 bits, and colors 0 through 3 are
used.

The Chroma1 (broadcast chroma) bit enables or disables
chroma (color) on the broadcast signal. 0 = disabled, 1 =
enabled.

The Chroma0 (baseband chroma) bit enables or disables
chroma (color) on the baseband signal. 0 = disabled, 1 =
enabled.

The AuralSub (aural sub-carrier) field selects the source
of the FM aural (audio) sub-carrier frequency to be
modulated on. The source is the PLLA of one of the
cogs, identified by AuralSub’s value. This audio must
already be modulated onto the 4.5 MHz sub-carrier by the
source PLLA.

Table 9: The AuralSub Field

AuralSub Sub-Carrier Frequency Source

000 Cog 0’s PLLA

001 Cog 1’s PLLA

010 Cog 2’s PLLA

011 Cog 3’s PLLA

100 Cog 4’s PLLA

101 Cog 5’s PLLA

110 Cog 6’s PLLA

111 Cog 7’s PLLA

The VGroup (video output pin group) field selects which
group of 8 I/O pins to output video on.

 Table 10: The VGroup Field
VGroup Pin Group

000 Group 0: P7..P0

001 Group 1: P15..P8

010 Group 2: P23..P16

011 Group 3: P31..P24

100-111 <reserved for future use>

The VPins (video output pins) field is a mask applied to
the pins of VGroup that indicates which pins to output
video signals on.

 Table 11: The VPins Field

VPins Effect

00001111 Drive Video on lower 4 pins only; composite

11110000 Drive Video on upper 4 pins only; composite

11111111 Drive video on all 8 pins; VGA

XXXXXXXX
Any value is valid for this field; the above
values are the most common.

4.10.2. VSCL – Video Scale Register

The Video Scale Register sets the rate at which video data
is generated, and is shown in Table 12.

 Table 12: VSCL Register
VSCL Bits

31..20 19..12 11..0

− PixelClocks FrameClocks

The 8-bit PixelClocks field indicates the number of clocks
per pixel; the number of clocks that should elapse before
each pixel is shifted out by the video generator module.
These clocks are the PLLA clocks, not the System Clock.
A value of 0 for this field is interpreted as 256.

The 12-bit FrameClocks field indicates the number of
clocks per frame; the number of clocks that will elapse
before each frame is shifted out by the video generator
module. These clocks are the PLLA clocks, not the
System Clock. A frame is one long of pixel data
(delivered via the WAITVID command). Since the pixel
data is either 16 bits by 2 bits, or 32 bits by 1 bit (meaning
16 pixels wide with 4 colors, or 32 pixels wide with 2
colors, respectively), the FrameClocks is typically 16 or
32 times that of the PixelClocks value. A value of 0 for
this field is interpreted as 4096.

4.10.3. WAITVID Command/Instruction

The WAITVID instruction is the delivery mechanism for
data to the cog’s Video Generator hardware. Since the
Video Generator works independently from the cog itself,
the two must synchronize each time data is needed for the
display device. The frequency at which this occurs is
dictated by the frequency of PLLA and the Video Scale
Register. The cog must have new data available before the
moment the Video Generator needs it. The cog uses
WAITVID to wait for the right time and then “hand off”
this data to the Video Generator.

Two longs of data are passed to the Video Generator by
with the syntax WAITVID Colors, Pixels.

The Colors parameter is a 32-bit value containing either
four 8-bit color values (for 4 color mode) or two 8-bit
color values in the lower 16 bits (for 2 color mode). For

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 14 of 36 Rev 1.4 6/14/2011

4.11. CLK Register
The CLK register is the System Clock configuration
control; it determines the source and characteristics of the
System Clock. It configures the RC Oscillator, Clock
PLL, Crystal Oscillator, and Clock Selector circuits (See
the Block Diagram, page 1). It is configured at compile
time by the _CLKMODE declaration and is writable at run
time through the CLKSET command. Whenever the CLK
register is written, a global delay of ~75 µs occurs as the
clock source transitions.

Whenever this register is changed, a copy of the value
written should be placed in the Clock Mode value
location (which is BYTE[4] in Main RAM) and the
resulting master clock frequency should be written to the
Clock Frequency value location (which is LONG[0] in
Main RAM) so that objects which reference this data will
have current information for their timing calculations.

Use Spin's CLKSET command when possible (see sections
6.3 and 6.4) since it automatically updates all the above-
mentioned locations with the proper information.

Table 13: Valid Clock Modes

 Valid Expression CLK Reg. Value Valid Expression CLK Reg. Value

RCFAST 0_0_0_00_000

RCSLOW 0_0_0_00_001

XINPUT 0_0_1_00_010

XTAL1 + PLL1X 0_1_1_01_011
XTAL1 + PLL2X 0_1_1_01_100
XTAL1 + PLL4X 0_1_1_01_101
XTAL1 + PLL8X 0_1_1_01_110
XTAL1 + PLL16X 0_1_1_01_111

XTAL1 0_0_1_01_010
XTAL2 0_0_1_10_010
XTAL3 0_0_1_11_010

XTAL2 + PLL1X 0_1_1_10_011
XTAL2 + PLL2X 0_1_1_10_100
XTAL2 + PLL4X 0_1_1_10_101
XTAL2 + PLL8X 0_1_1_10_110
XTAL2 + PLL16X 0_1_1_10_111

XINPUT + PLL1X 0_1_1_00_011
XINPUT + PLL2X 0_1_1_00_100
XINPUT + PLL4X 0_1_1_00_101
XINPUT + PLL8X 0_1_1_00_110
XINPUT + PLL16X 0_1_1_00_111

XTAL3 + PLL1X 0_1_1_11_011
XTAL3 + PLL2X 0_1_1_11_100
XTAL3 + PLL4X 0_1_1_11_101
XTAL3 + PLL8X 0_1_1_11_110
XTAL3 + PLL16X 0_1_1_11_111

Table 14: CLK Register Fields

Bit 7 6 5 4 3 2 1 0

Name RESET PLLENA OSCENA OSCM1 OSCM2 CLKSEL2 CLKSEL1 CLKSEL0

RESET Effect

0 Always write ‘0’ here unless you intend to reset the chip.

1 Same as a hardware reset – reboots the chip.

PLLENA Effect

0 Disables the PLL circuit.

1

Enables the PLL circuit. The PLL internally multiplies the XIN pin frequency by 16. OSCENA must be ‘1’ to propagate the
XIN signal to the PLL. The PLL’s internal frequency must be kept within 64 MHz to 128 MHz – this translates to an XIN
frequency range of 4 MHz to 8 MHz. Allow 100 µs for the PLL to stabilize before switching to one of its outputs via the
CLKSEL bits. Once the OSC and PLL circuits are enabled and stabilized, you can switch freely among all clock sources by
changing the CLKSEL bits.

OSCENA Effect

0 Disables the OSC circuit

1

Enables the OSC circuit so that a clock signal can be input to XIN, or so that XIN and XOUT can function together as a
feedback oscillator. The OSCM bits select the operating mode of the OSC circuit. Note that no external resistors or
capacitors are required for crystals and resonators. Allow a crystal or resonator 10 ms to stabilize before switching to an
OSC or PLL output via the CLKSEL bits. When enabling the OSC circuit, the PLL may be enabled at the same time so that
they can share the stabilization period.

OSCM1 OSCM2 XOUT Resistance XIN and XOUT Capacitance Frequency Range

0 0 Infinite 6 pF (pad only) DC to 80 MHz Input

0 1 2000 Ω 36 pF 4 MHz to 16 MHz Crystal/Resonator

1 0 1000 Ω 26 pF 8 MHz to 32 MHz Crystal/Resonator

1 1 500 Ω 16 pF 20 MHz to 60 MHz Crystal/Resonator

CLKSEL2 CLKSEL1 CLKSEL0 Master Clock Source Notes

0 0 0 ~12 MHz Internal No external parts (8 to 20 MHz)

0 0 1 ~20 kHz Internal No external parts, very low power (13-33 kHz)

0 1 0 XIN OSC OSCENA must be ‘1’

0 1 1 XIN × 1 OSC+PLL OSCENA and PLLENA must be ‘1’

1 0 0 XIN × 2 OSC+PLL OSCENA and PLLENA must be ‘1’
1 0 1 XIN × 4 OSC+PLL OSCENA and PLLENA must be ‘1’
1 1 0 XIN × 8 OSC+PLL OSCENA and PLLENA must be ‘1’
1 1 1 XIN × 16 OSC+PLL OSCENA and PLLENA must be ‘1’

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 17 of 36 Rev 1.4 6/14/2011

6.0 PROGRAMMING LANGUAGES
The Propeller chip is programmed using two languages designed specifically for it: 1) Spin, a high-level object-based
language, and 2) Propeller Assembly, a low-level, highly-optimized assembly language. There are many hardware-based
commands in Propeller Assembly that have direct equivalents in the Spin language.

The Spin language is compiled by the Propeller Tool software into tokens that are interpreted at run time by the Propeller
chip’s built-in Spin Interpreter. The Propeller Assembly language is assembled into pure machine code by the Propeller Tool
and is executed in its pure form at run time.

Propeller Objects can be written entirely in Spin or can use various combinations of Spin and Propeller Assembly. It is often
advantageous to write objects almost entirely in Propeller Assembly, but at least two lines of Spin code are required to launch
the final application.

6.1. Reserved Word List
All words listed are always reserved, whether programming in Spin or in Propeller Assembly. As of Propeller Tool v1.05:

Table 16: Reserved Word List

_CLKFREQ
s

_CLKMODE
s

_FREE
s

_STACK
s

_XINFREQ
s

ABORT
s

ABS
a

ABSNEG
a

ADD
a

ADDABS
a

ADDS
a

ADDSX
a

ADDX
a

AND
d

ANDN
a

BYTE
s

BYTEFILL
s

BYTEMOVE
s

CALL
a

CASE
s

CHIPVER
s

CLKFREQ
s

CLKMODE
s

CLKSET
d

CMP
a

CMPS
a

CMPSUB
a

CMPSX
a

CMPX
a

CNT
d

COGID
d

COGINIT
d

COGNEW
s

COGSTOP
d

CON
s

CONSTANT
s

CTRA
d

CTRB
d

DAT
s

DIRA
d

DIRB
d#

DJNZ
a

ELSE
s

ELSEIF
s

ELSEIFNOT
s

ENC
a#

FALSE
d

FILE
s

FIT
a

FLOAT
s

FROM
s

FRQA
d

FRQB
d

HUBOP
a

IF
s

IFNOT
s

IF_A
a

IF_AE
a

IF_ALWAYS
a

IF_B
a

IF_BE
a

IF_C
a

IF_C_AND_NZ
a

IF_C_AND_Z
a

IF_C_EQ_Z
a

IF_C_NE_Z
a

IF_C_OR_NZ
a

IF_C_OR_Z
a

IF_E
a

IF_NC
a

IF_NC_AND_NZ
a

IF_NC_AND_Z
a

IF_NC_OR_NZ
a

IF_NC_OR_Z
a

IF_NE
a

IF_NEVER
a

IF_NZ
a

IF_NZ_AND_C
a

IF_NZ_AND_NC
a

IF_NZ_OR_C
a

IF_NZ_OR_NC
a

IF_Z
a

IF_Z_AND_C
a

IF_Z_AND_NC
a

IF_Z_EQ_C
a

IF_Z_NE_C
a

IF_Z_OR_C
a

IF_Z_OR_NC
a

INA
d

INB
d#

JMP
a

JMPRET
a

LOCKCLR
d

LOCKNEW
d

LOCKRET
d

LOCKSET
d

LONG
s

LONGFILL
s

LONGMOVE
s

LOOKDOWN
s

LOOKDOWNZ
s

LOOKUP
s

LOOKUPZ
s

MAX
a

MAXS
a

MIN
a

MINS
a

MOV
a

MOVD
a

MOVI
a

MOVS
a

MUL
a#

MULS
a#

MUXC
a

MUXNC
a

MUXNZ
a

MUXZ
a

NEG
a

NEGC
a

NEGNC
a

NEGNZ
a

NEGX
d

NEGZ
a

NEXT
s

NOP
a

NOT
s

NR
a

OBJ
s

ONES
a#

OR
d

ORG
a

OTHER
s

OUTA
d

OUTB
d#

PAR
d

PHSA
d

PHSB
d

PI
d

PLL1X
s

PLL2X
s

PLL4X
s

PLL8X
s

PLL16X
s

POSX
d

PRI
s

PUB
s

QUIT
s

RCFAST
s

RCL
a

RCR
a

RCSLOW
s

RDBYTE
a

RDLONG
a

RDWORD
a

REBOOT
s

REPEAT
s

RES
a

RESULT
s

RET
a

RETURN
s

REV
a

ROL
a

ROR
a

ROUND
s

SAR
a

SHL
a

SHR
a

SPR
s

STEP
s

STRCOMP
s

STRING
s

STRSIZE
s

SUB
a

SUBABS
a

SUBS
a

SUBSX
a

SUBX
a

SUMC
a

SUMNC
a

SUMNZ
a

SUMZ
a

TEST
a

TESTN
a

TJNZ
a

TJZ
a

TO
s

TRUE
d

TRUNC
s

UNTIL
s

VAR
s

VCFG
d

VSCL
d

WAITCNT
d

WAITPEQ
d

WAITPNE
d

WAITVID
d

WC
a

WHILE
s

WORD
s

WORDFILL
s

WORDMOVE
s

WR
a

WRBYTE
a

WRLONG
a

WRWORD
a

WZ
a

XINPUT
s

XOR
a

XTAL1
s

XTAL2
s

XTAL3
s

a = Assembly element; s = Spin element; d = dual (available in both languages); # = reserved for future use

6.1.1. Words Reserved for Future Use

 DIRB, INB, and OUTB: Reserved for future use with a possible 64 I/O pin model. When used with the P8X32A, these
labels can be used to access Cog RAM at those locations for general-purpose use.

 ENC, MUL, MULS, ONES: Use with the current P8X32A architecture yields indeterminate results.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 18 of 36 Rev 1.4 6/14/2011

6.2. Math and Logic Operators

Table 17: Math and Logic Operators
Operator Constant

Expressions3 Level1
Normal Assign2

Integer Float

Is Unary Description

-- always  Pre-decrement (--X) or post-decrement (X--).

++ always  Pre-increment (++X) or post-increment (X++).

~ always  Sign-extend bit 7 (~X) or post-clear to 0 (X~).

~~ always  Sign-extend bit 15 (~~X) or post-set to -1 (X~~).

? always  Random number forward (?X) or reverse (X?).

@ never   Symbol address.

Highest
(0)

@@ never  Object address plus symbol.

+ never    Positive (+X); unary form of Add.

- if solo    Negate (-X); unary form of Subtract.

^^ if solo    Square root.

|| if solo    Absolute value.

|< if solo   Bitwise: Decode 0 – 31 to long w/single-high-bit.

>| if solo   Bitwise: Encode long to 0 – 32; high-bit priority.

1

! if solo   Bitwise: NOT.

<- <-=  Bitwise: Rotate left.

-> ->=  Bitwise: Rotate right.

<< <<=  Bitwise: Shift left.

>> >>=  Bitwise: Shift right.

~> ~>=  Shift arithmetic right.

2

>< ><=  Bitwise: Reverse.

3 & &=  Bitwise: AND.

| |=  Bitwise: OR.
4

^ ^=  Bitwise: XOR.

* *=   Multiply and return lower 32 bits (signed).

** **=  Multiply and return upper 32 bits (signed).

/ /=   Divide (signed).
5

// //=  Modulus (signed).

+ +=   Add.
6

- -=   Subtract.

#> #>=   Limit minimum (signed).
7

<# <#=   Limit maximum (signed).

< <=   Boolean: Is less than (signed).

> >=   Boolean: Is greater than (signed).

<> <>=   Boolean: Is not equal.

== ===   Boolean: Is equal.

=< =<=   Boolean: Is equal or less (signed).

8

=> =>=   Boolean: Is equal or greater (signed).

9 NOT if solo    Boolean: NOT (promotes non-0 to -1).

10 AND AND=   Boolean: AND (promotes non-0 to -1).

11 OR OR=   Boolean: OR (promotes non-0 to -1).

= always n/a3 n/a3 Constant assignment (CON blocks). Lowest
(12) := always n/a3 n/a3 Variable assignment (PUB/PRI blocks).

1 Precedence level: higher-level operators evaluate before lower-level operators. Operators in same level are commutable; evaluation order does not matter.
2 Assignment forms of binary (non-unary) operators are in the lowest precedence (level 12).
3 Assignment forms of operators are not allowed in constant expressions.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 19 of 36 Rev 1.4 6/14/2011

6.3. Spin Language Summary Table

Spin Command Returns
Value Description

ABORT Value  Exit from PUB/PRI method using abort status with optional return value.

BYTE Symbol [Count] Declare byte-sized symbol in VAR block.

Symbol BYTE Data [Count] Declare byte-aligned and/or byte-sized data in DAT block.

BYTE [BaseAddress] [Offset]  Read/write byte of main memory.

Symbol.BYTE [Offset]  Read/write byte-sized component of word/long-sized variable.

BYTEFILL (StartAddress, Value, Count) Fill bytes of main memory with a value.

BYTEMOVE (DestAddress, SrcAddress, Count) Copy bytes from one region to another in main memory.

CASE CaseExpression
  MatchExpression :
  Statement(s)
 MatchExpression :
  Stat ment(s) e
 OTHER :
  Statement(s)

Compare expression against matching expression(s), execute code block
if match found.

MatchExpression can contain a single expression or multiple comma-
delimited expressions. Expressions can be a single value (ex: 10) or a
range of values (ex: 10..15).

CHIPVER  Version number of the Propeller chip (Byte at $FFFF)

CLKFREQ  Current System Clock frequency, in Hz (Long at $0000)

CLKMODE  Current clock mode setting (Byte at $0004)

CLKSET (Mode, Frequency) Set both clock mode and System Clock frequency at run time.

CNT  Current 32-bit System Counter value.

COGID  Current cog’s ID number; 0-7.

COGINIT (CogID, SpinMethod (ParameterList), StackPointer) Start or restart cog by ID to run Spin code.

COGINIT (CogID, AsmAddress, Parameter) Start or restart cog by ID to run Propeller Assembly code.

COGNEW (SpinMethod (ParameterList), StackPointer)  Start new cog for Spin code and get cog ID; 0-7 = succeeded, -1 = failed.

COGNEW (AsmAddress, Parameter) 
Start new cog for Propeller Assembly code and get cog ID; 0-7 =
succeeded, -1 = failed.

COGSTOP (CogID) Stop cog by its ID.

CON
 Symbol = Expr ((,┆ )) Symbol = Expr…

 Declare symbolic, global constants.

CON
 #Expr ((,┆ )) Symbol [Offset] ((,┆ )) Symbol [Offset] …

 Declare global enumerations (incrementing symbolic constants).

C
 Symbol 
ON

[Offset] ((,┆ )) Symbol [Offset] …
 Declare global enumerations (incrementing symbolic constants).

CONSTANT (ConstantExpression) 
Declare in-line constant expression to be completely resolved at compile
time.

CTRA  Counter A Control register.

CTRB  Counter B Control register.

DAT
 Symbol Alignment Size Data [Count] ,Size Data [Count]… Declare table of data, aligned and sized as specified.

DAT
 Symbol Condition Instruction Effect(s) Denote Propeller Assembly instruction.

DIRA [Pin(s)]  Direction register for 32-bit port A. Default is 0 (input) upon cog startup.

FILE "FileName" Import external file as data in DAT block.

FLOAT (IntegerConstant) 
Convert integer constant expression to compile-time floating-point value in
any block.

FRQA  Counter A Frequency register.

FRQB  Counter B Frequency register.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 21 of 36 Rev 1.4 6/14/2011

Spin Command Returns
Value Description

STRSIZE (StringAddress)  Get size, in bytes, of zero-terminate string.

TRUNC (FloatConstant) 
Remove fractional portion from floating-point constant at compile-time, in
any block.

VAR
 Size Symbol [Count] ((,┆  Size)) Symbol [Count]…

 Declare symbolic global variables.

VCFG  Video Configuration register.

VSCL  Video Scale register.

WAITCNT (Value) Pause cog’s execution temporarily.

WAITPEQ (State, Mask, Port) Pause cog’s execution until I/O pin(s) match designated state(s).

WAITPNE (State, Mask, Port) Pause cog’s execution until I/O pin(s) do not match designated state(s).

WAITVID (Colors, Pixels) Pause cog’s execution until its Video Generator is available for pixel data.

WORD Symbol [Count] Declare word-sized symbol in VAR block.

Symbol WORD Data [Count] Declare word-aligned and/or word-sized data in DAT block.

WORD [BaseAddress] [Offset]  Read/write word of main memory.

Symbol.WORD [Offset]  Read/write word-sized component of long-sized variable.

WORDFILL (StartAddress, Value, Count) Fill words of main memory with a value.

WORDMOVE (DestAddress, SrcAddress, Count) Copy words from one region to another in main memory.

6.3.1. Constants

Constants (pre-defined)

Constant1 Description

_CLKFREQ Settable in Top Object File to specify System Clock frequency.

_CLKMODE Settable in Top Object File to specify application’s clock mode.

_XINFREQ Settable in Top Object File to specify external crystal frequency.

_FREE Settable in Top Object File to specify application’s free space.

_STACK Settable in Top Object File to specify application’s stack space.

TRUE Logical true: -1 ($FFFFFFFF)

FALSE Logical false: 0 ($00000000)

POSX Max. positive integer: 2,147,483,647 ($7FFFFFFF)

NEGX Max. negative integer: -2,147,483,648 ($80000000)

PI Floating-point PI: ≈ 3.141593 ($40490FDB)

RCFAST Internal fast oscillator: $00000001 (%00000000001)

RCSLOW Internal slow oscillator: $00000002 (%00000000010)

XINPUT External clock/oscillator: $00000004 (%00000000100)

XTAL1 External low-speed crystal: $00000008 (%00000001000)

XTAL2 External medium-speed crystal: $00000010 (%00000010000)

XTAL3 External high-speed crystal: $00000020 (%00000100000)

PLL1X External frequency times 1: $00000040 (%00001000000)

PLL2X External frequency times 2: $00000080 (%00010000000)

PLL4X External frequency times 4: $00000100 (%00100000000)

PLL8X External frequency times 8: $00000200 (%01000000000)

PLL16X External frequency times 16: $00000400 (%10000000000)

1 “Settable” constants are defined in Top Object File’s CON block. See Valid Clock Modes for _CLKMODE. Other settable constants use whole numbers.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

6.4.1. Assembly Conditions

Condition Instruction Executes

IF_ALWAYS always

IF_NEVER never

IF_E if equal (Z)

IF_NE if not equal (!Z)

IF_A if above (!C & !Z)

IF_B if below (C)

IF_AE if above/equal (!C)

IF_BE if below/equal (C | Z)

IF_C if C set

IF_NC if C clear

IF_Z if Z set

IF_NZ if Z clear

IF_C_EQ_Z if C equal to Z

IF_C_NE_Z if C not equal to Z

IF_C_AND_Z if C set and Z set

IF_C_AND_NZ if C set and Z clear

IF_NC_AND_Z if C clear and Z set

IF_NC_AND_NZ if C clear and Z clear

IF_C_OR_Z if C set or Z set

IF_C_OR_NZ if C set or Z clear

IF_NC_OR_Z if C clear or Z set

IF_NC_OR_NZ if C clear or Z clear

IF_Z_EQ_C if Z equal to C

IF_Z_NE_C if Z not equal to C

IF_Z_AND_C if Z set and C set

IF_Z_AND_NC if Z set and C clear

IF_NZ_AND_C if Z clear and C set

IF_NZ_AND_NC if Z clear and C clear

IF_Z_OR_C if Z set or C set

IF_Z_OR_NC if Z set or C clear

IF_NZ_OR_C if Z clear or C set

IF_NZ_OR_NC if Z clear or C clear

6.4.2. Assembly Directives

Directive Description

FIT Address Validate previous instr/data fit below an
address.

ORG Address Adjust compile-time cog address
pointer.

Symbol RES Count Reserve next long(s) for symbol.

6.4.3. Assembly Effects

Effect Results In

WC C Flag modified

WZ Z Flag modified

WR Destination Register modified

NR Destination Register not modified

6.4.4. Assembly Operators

Propeller Assembly code can contain constant
expressions, which may use any operators that are
allowed in constant expressions. The table (a subset of
Table 17) lists the operators allowed in Propeller
Assembly.

Operator Description

+ Add

+ Positive (+X); unary form of Add

- Subtract

- Negate (-X); unary form of Subtract

* Multiply and return lower 32 bits (signed)

** Multiply and return upper 32 bits (signed)

/ Divide (signed)

// Modulus (signed)

#> Limit minimum (signed)

<# Limit maximum (signed)

^^ Square root; unary

|| Absolute value; unary

~> Shift arithmetic right

|<
Bitwise: Decode value (0-31) into single-high-bit
long; unary

>|
Bitwise: Encode long into value (0 - 32) as high-
bit priority; unary

<< Bitwise: Shift left

>> Bitwise: Shift right

<- Bitwise: Rotate left

-> Bitwise: Rotate right

>< Bitwise: Reverse

& Bitwise: AND

| Bitwise: OR

^ Bitwise: XOR

! Bitwise: NOT; unary

AND Boolean: AND (promotes non-0 to -1)

OR Boolean: OR (promotes non-0 to -1)

NOT Boolean: NOT (promotes non-0 to -1); unary

== Boolean: Is equal

<> Boolean: Is not equal

< Boolean: Is less than (signed)

> Boolean: Is greater than (signed)

=< Boolean: Is equal or less (signed)

=> Boolean: Is equal or greater (signed)

@ Symbol address; unary

Copyright © Parallax Inc., dba Parallax Semiconductor Page 24 of 36 Rev 1.4 6/14/2011

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 28 of 36 Rev 1.4 6/14/2011

8.4. Typical Crystal Drive Current
This graph shows the current consumption of the crystal driver over a range of crystal frequencies and crystal settings, all
data points above 25 MHz were obtained by using a resonator since the driver does not perform 3rd harmonic overtone
driving required for crystals over 25 MHz.

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Typical Crystal Drive Current (Vdd = 3.3 V, Ta = 25° C)
C

ur
re

nt
 (

m
A

)

xtal1

xtal2

xtal3

Frequency (MHz)

8.5. Cog and I/O Pin Relationship
The figure below illustrates the physical relationship between the cogs and I/O pins. While there can be a 1 to 1.5 ns
propagation delay in output transitions between the shortest and longest paths, the purpose of the figure is to illustrate the
length of leads and their associated parasitic capacitance. This capacitance increases the amount of energy required to
transition a pin’s state and therefore increases the current draw for toggling a pin. So, the current consumed by Cog 7
toggling P0 at 20 MHz will be greater than Cog 0 toggling P7 at 20 MHz. The amount of current consumed by transitioning a
pin’s state is dependent on many factors including: temperature, frequency of transitions, external load, and internal load. As
mentioned, the internal load is dependent upon which cog and pin are used. Internal load current for room temperature
toggling of a pin at 20 MHz for a Propeller in a DIP package varies on the order of 300 µA.

cog 0 cog 1 cog 2 cog 3 cog 4 cog 5 cog 6 cog 7
P7

P8

P6

P5

P10

P9

P24

P23

P25

P26

P21

P22

P15

P0

P16

P31

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 30 of 36 Rev 1.4 6/14/2011

9.0 TEMPERATURE CHARACTERISTICS

9.1. Internal Oscillator Frequency as a Function of Temperature
While the internal oscillator frequency is variable due to process variation, the rate of change as a function of temperature
when normalized provides a chip invariant ratio which can be used to calculate the oscillation frequency when the ambient
temperature is other than 25 °C (the temperature to which the graph was normalized). The absolute frequency at 25 °C varied
from 13.26 to 13.75 MHz in the sample set. The section of the graph which has a white background is the military range of
temperature; the sections in grey represent data which is beyond military temperature specification.

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 33 of 36 Rev 1.4 6/14/2011

10.0 PACKAGE DIMENSIONS

10.1. P8X32A-D40 (40-pin DIP)

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 34 of 36 Rev 1.4 6/14/2011

10.2. P8X32A-Q44 (44-pin LQFP)

Propeller™ P8X32A Datasheet www.parallaxsemiconductor.com

Copyright © Parallax Inc., dba Parallax Semiconductor Page 36 of 36 Rev 1.4 6/14/2011

11.0 MANUFACTURING INFO

11.1. Reflow Peak Temperature

Package Type Reflow Peak Temp.

DIP 255+5/-0 °C

LQFP 255+5/-0 °C

QFN 255+5/-0 °C

11.2. Green/RoHS Compliance
All Parallax Semiconductor Propeller P8X32A chip
models are certified Green/RoHS Compliant. RoHS,
Green, and ISO certificates are available online at
www.parallaxsemiconductor.com.

12.0 REVISION HISTORY

12.1.1. Changes for Version 1.1:

Section 10.3: P8X32A-M44 (44-pin QFN). Image
replaced to add stencil pattern diagram. New section
inserted: 4.8 Assembly Instruction Execution Stages.
Contact Information updated.

12.1.2. Changes for Version 1.2:

Section 6.4: Modified table entries for ADD, ADDABS, ADDS,
ADDSX, ADDX, CMP, CMPS, CMPSX, CMPX, COGID, COGINIT,
COGSTOP, LOCKCLR, LCOKNEW, LOCKRET, LOCKSET, MAX,
MAXS, MIN, MINS, SUB, SUBABS, SUBS, SUBSX, SUBX, SUMC,
SUMNC, SUMNZ, SUMZ, TEST, TJNZ, TJZ. Section 4.5
updated. Section 5.1: new sentence added at end of
paragraph. Section 5.2: new sentence added at end of first
paragraph.

12.1.3. Changes for Version 1.3

Throughout: updated logo and contact information for
Parallax Inc., dba Parallax Semiconductor. Section 7.1:
footnote added to Table 18: Absolute Maximum Ratings.

12.1.4. Changes for Version 1.4

Section 1.0 changes: 1.3: Key Features and Benefits
revised; former sections 1.4 , 1.6 removed. Section 4.4:
updated all references to hub timing and replaced both
timing diagrams. Section 4.8: reference to hub timing
updated. Section 6.4: timing for hub instructions and
WAITxxx instructions revised. Former Section 7.0:
Propeller Demo Board schematic removed.

Parallax Semiconductor Contact Information

Parallax Semiconductor

599 Menlo Drive

Rocklin, CA 95765

USA

Phone: (916) 632-4664

Fax: (916) 624-8003

sales@parallaxsemiconductor.com

support@parallaxsemiconductor.com

www.parallaxsemiconductor.com

http://obex.parallax.com

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or use of any
product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages even if Parallax, Inc.,
dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this document in whole or in part is
prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.

Propeller and Parallax Semiconductor are trademarks of Parallax, Inc.

